
On Multisite Probabilistic Seismic Hazard Analysis

by Massimiliano Giorgio and Iunio Iervolino

Abstract Seismic hazard assessment, in its classical format, models the stochastic
process of occurrence of earthquakes causing the exceedance of ground-motion in-
tensity measure (IM) thresholds at a specific site. This is because civil structures typ-
ically require probabilistic seismic hazard analysis (PSHA) for one location. On the
other hand, there are cases in which it may be required to count the number of exceed-
ances of a vector of IM thresholds at multiple sites over time. In these situations, in
general, a form of stochastic dependence arises among the processes counting multi-
ple earthquake exceedances of IM at the sites. The present study analyzes this depend-
ence and shows how it is linked to the correlation among IMs at the sites in one
earthquake. Indeed, it provides a formalization and derives closed-form solutions
for multisite PSHA, showing that hazards at multiple sites are independent if and only
if exceedances at the sites in one earthquake are mutually exclusive. The other key
results of the work are: (1) probabilistically rigorous insights into the form of depend-
ence among hazard at multiple sites are derived, and (2) it is shown that site-specific
and multisite PSHA are unified, that is, how and why the latter is a special case of the
former when only one location is considered. In addition, the applicative value of the
formalization provided is illustrated by means of simple examples, including a loss
assessment for a portfolio of structures and a hazard validation exercise.

Introduction

In those situations in which the analyst is interested in
the exceedances of ground-motion intensity measure (IM)
thresholds at more than one site, the key issue is to account
for the existence of stochastic dependence among the site-
specific processes, each counting the exceedances at a single
site. This is the case, for example, of risk assessment for spa-
tially distributed systems (e.g., Esposito et al., 2015) that are
possibly subjected to supply-chain or domino effects and for
validation studies of hazard maps (e.g., Albarello and D’Am-
ico, 2008). In the former case, to probabilistically quantify
the loss, it is necessary to model the number of times the
system’s components that are deployed at different sites
may fail at the same time; in the latter case, it is necessary
to probabilistically characterize the exceedances at multiple
sites consistent with the hazard map being validated in order
to correctly compare with observations (e.g., Iervolino, 2013;
Iervolino and Giorgio, 2015).

In fact, an approach similar to that of Weatherill et al.
(2014) is required; such an approach has been studied by sig-
nificant literature (e.g., McGuire, 1988; Eguchi, 1991) and is
different with respect to probabilistic seismic hazard analysis
(PSHA) (e.g., Cornell, 1968; McGuire, 2004). For example,
according to classical PSHA, each process counting the occur-
rence over time of seismic events causing exceedance of an IM
threshold at a single site is a homogeneous Poisson process
(HPP). However, in general, the process describing the total

number of exceedances collectively observed at the sites in
a given time period is not a Poisson process.

On these premises and in the framework of the hypoth-
eses consistent with those of site-specific PSHA, the study
presented herein shows that it is possible to formally model
the stochastic dependence between the processes regulating
exceedances at different sites and then to formulate in closed-
form a number of results, for example, the mean and the vari-
ance of the total number of exceedances in an arbitrary time
interval or the joint distribution of the number of exceedan-
ces at two or more sites in any time period. It is also inter-
esting to observe that, once the hazard at multiple sites is
formalized, classical site-specific hazard results as the special
case in which only one site is considered. In this sense, the
study generalizes classical PSHA.

These results, as illustrated in the body of the article, are
not obtained by formulating a new hazard theory, but by
using the hypotheses of PSHA and established results in the
field of stochastic point processes (e.g., Snyder, 1975), a class
of random processes to which the HPP used to describe earth-
quake occurrence in PSHA belongs (Kingman, 1993;
Resnick, 2002). In fact, the study analyzes the dependence
among IMs at multiple sites in one earthquake and the well-
known spatial correlation of IMs, which derive from the terms
of ground-motion prediction equations (GMPEs). It is demon-
strated that the correlation of IMs during one seismic event
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reflects in a nonobvious, yet quantifiable, way on the stochas-
tic processes counting the exceedance of IM thresholds at the
multiple sites over time (i.e., in multiple earthquakes).

To pursue the stated goals, the remainder of this article is
structured such that the probabilistic basics of site-specific
PSHA, and the issues arising when extending it to multiple
sites, are reviewed first. Second, the sources of (spatial)
dependence among exceedances at the multiple sites in one
earthquake (e.g., correlation of IMs stemming from GMPEs)
are analyzed. Third, the properties of the Poisson process are
used to link dependence among IMs in one earthquake to
dependence among processes counting exceedances in
multiple earthquakes, and the conditions to obtain indepen-
dent site-specific counting processes are identified. Hence, a
strategy that allows modeling of the joint distribution of the
number of exceedances at multiple sites and the distribution
of the total number of exceedances at the sites, in any time
interval, is presented. Finally, some illustrative applications
are developed to show the practical value of the derived for-
mulations for seismic risk analysis of distributed systems, as
well as their implications for hazard validation studies.

Basics of Site-Specific Hazard and Probabilistic
Issues in Its Extension to Multiple Sites

Site-specific PSHA, in its standard form, models the seis-
mic hazard via a marked Poisson process, which is a process
where a random variable (the mark) is associated with the oc-
currence of any event (e.g., Snyder, 1975) and carries infor-
mation about the features of the event that occurred. In fact, it
assumes that the number N�t� of earthquakes occurring in the
�0; t� time interval at the site of interest (i.e., originating from a
specific seismic source) follows an HPP with rate ν. Moreover,
PSHA associates a mark to any arrival time of an earthquake
(i.e., the multivariate random variable, Z � fM;X; Y; IMg),
the components of which are the event magnitude M, a pair
of coordinates identifying the source location fX; Yg, and the
IM the earthquake produces at the site of interest. The coor-
dinates of the source, together with the coordinates of the site
for which the hazard is computed, determine the source-to-site
distance; one of the covariates of GMPEs that are usually
employed for hazard assessment, as described below.

The multivariate variables Zi � fMi; Xi; Yi; IMig;
�i � 1; 2; :::� associated with different arrival times (i.e., to
different earthquakes) are assumed to be identically distributed
in PSHA, stochastically independent one of each other, and
independent of N�t� (Cornell, 1968). Therefore, it is also
an HPP, the process that counts in �0; t� the number of exceed-
ances of a reference intensity value im� at the site, that is,
NIM> im� �t�. It is well known that this Poisson process is char-
acterized by a rate, which is a fraction of the rate of occurrence
of earthquakes ν; that is, λIM> im� � ν · P�IM> im��. In this
relationship, P�IM> im�� is the probability of exceedance of
the threshold in one earthquake.

Thus, classical PSHA consists of estimating the rate of ex-
ceedance λIM> im� (e.g., the mean number of exceedances per

unit time) of an arbitrary IM value at a site. Given λIM> im� , the
probability that k exceedances occur in the time interval �0; t�
at the site P�NIM> im� �t� � k� can be computed for any t > 0

and k � 0; 1; 2;… via the Poisson distribution in equation (1):

EQ-TARGET;temp:intralink-;df1;313;685P�NIM> im� �t� � k� � �λIM> im� · t�k
k!

· e−λIM> im� ·t : �1�

Computation of λIM> im� is often carried out as in equation (2),
commonly referred to as the hazard integral, in which
P�IM> im�� is obtained via the total probability theorem,
which averages the conditional probability of exceedance of
IM given the event’s characteristics (i.e., M and fX; Yg) with
respect to the joint distribution ofM and fX; Yg. In the equation,
ΩM;X;Y is the domain of fM;X; Yg. (Usually, the source-to-site
distance appears instead of the coordinates of the earthquake
event, yet this representation is clearly equivalent.)

EQ-TARGET;temp:intralink-;df2;313;539λIM> im� � ν · P�IM> im��

� ν ·
ZZZ

M;X;Y∈ ΩM;X;Y

P�IM> im�jm; x; y�

· fM;X;Y�m; x; y� · dm · dx · dy �2�

Issues in Hazard Assessment When Multiple Sites are
Concerned

If one is interested in modeling the number of exceedances
at multiple sites (s in number) located in an area affected by the
same seismic source, then the situation is more complicated.
Indeed, the process, say NIMj > im�

j
�t�, that counts the number

of exceedances of im�
j at the site j is an HPP with rate

λIMj > im�
j
; ∀ j � 1; 2;…; s. This can be obtained via equa-

tion (2) for each of the sites; however, two items areworth noting.

1. The processes NIM1 > im�
1
�t�; NIM2 > im�

2
�t�;…; NIM3 > im�

3
�t�

are, in general, stochastically dependent.
2. The total rate λ#Ex (i.e., the mean number of exceedances

collectively observed per unit time at the ensemble of the
sites, #Ex) can be calculated as the sum of the rates re-
ferring to the individual sites: λ#Ex �

P
s
j�1 λIMj > im�

j
.

Nevertheless, because of item (1), the process
N#Ex�t� �

Ps
j�1 NIMj > im�

j
�t�, that counts the total num-

ber of exceedances over time, is not a Poisson process.

Therefore, an equation like (1) cannot be used to compute
the probability of observing a certain number of exceedances
collectively at the sites within a particular time interval. This is
why, for risk assessment of distributed systems, it is not
straightforward to separate multisite hazard from the behavior
of the components and, thereby, whyMonte Carlo simulations
of ground motions and component failure are typically em-
ployed together; whereas for individual structures, site-specific
hazard is evaluated separately from fragility and then integrated
to obtain the risk (e.g., Cornell and Krawinkler, 2000).

Similarly, it is not easy to formulate the joint distribution
of the number of exceedances at multiple sites—for example,
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to compute the probability of observing, within a particular
time interval, a certain number of exceedances at some sites
and not at the others. In fact, as mentioned, the formalization
of both these issues can be considered as unaddressed in the
seismic field. On the other hand, a formal probabilistic
framework to count exceedances at multiple sites (i.e., multi-
site PSHA), and that degenerates in classical site-specific
PSHA when only one site is considered, can be developed
and is the ultimate aim of this study.

To derive such a framework, it is helpful to distinguish
between (1) the dependence among IMs at different sites af-
fected by one earthquake (i.e., spatial correlation of IMs) and
(2) how the dependence in one earthquake probabilistically
reflects on the joint distribution of the number of exceedan-
ces at the sites in multiple earthquakes (i.e., the dependence
among the processes counting exceedances over time at each
of the sites, that is, the NIMj > im�

j
�t�, j � 1; 2; :::; s). Point (1)

is discussed in the next section, followed by a section
addressing some properties of the Poisson process (point 2),
which are relevant for the following developments.

Dependence of IMs at Multiple Sites in One Event:
Mean and Residuals of GMPEs

The nature and form of stochastic dependence existing
among the processes counting exceedances over time of
ground-motion thresholds at multiple sites is related to the
probabilistic characterization of the effects of a common earth-
quake at the different sites. The latter is an issue referred to
often in recent literature as the spatial correlation of IMs (e.g.,
Jayaram and Baker, 2009; Esposito and Iervolino, 2011, 2012).

To provide insights into this correlation, it is worthwhile
to recall that, for PSHA purposes, ground motion is typically
modeled via a GMPE, which factually is the probabilistic dis-
tribution of the chosen IM conditional on earthquake magni-
tude, source-to-site distance, and other parameters such as
local geological conditions. In other words, GMPEs provide
the P�IM> im�jm; x; y� term of equation (2). In their classical
format, GMPEs are obtained by regression and model the logs
of IM, at a site j due to earthquake i, as in equation (3):

EQ-TARGET;temp:intralink-;df3;55;257 log IMj;i � E�log IMjmi; rj;i; θ� � ηi � εj;i; �3�

in which E�log IMjmi; rj;i; θ� is the mean of log IMj;i condi-
tional on parameters such as magnitude M source-to-site dis-
tance R, and others (θ); ηi denotes the interevent residual,
which is a constant term for all sites in a given earthquake
and quantifies howmuch the mean of log IMj;i in the ith earth-
quake differs from E�log IMjmi; rj;i; θ�; and εj;i models the
effect of intraevent variability of ground motion at site j in
earthquake i. Interevent and intraevent residuals are usually
assumed to be stochastically independent random variables
(RVs), normally distributed with zero mean and variance σ2inter
and σ2intra, respectively. Then, for site-specific hazard, IM is
modeled as a lognormal random variable in which the loga-
rithm has variance σ2T � σ2inter � σ2intra.

The spatial correlation of ground motion formally
depends on the GMPE. In fact, when dealing with multiple
sites, given magnitude and location of the earthquake (i.e.,
given the occurrence of one event with those features), it is
generally assumed that the logs of IMs at the sites form a
Gaussian random field (GRF), in which the components of
the mean vector are given by the E�log IMjmi; rj;i; θ� terms
(one for each of the sites j, j � 1; 2;…; s). In addition, the
covariance matrix Σ of the GRF is taken as in equation (4), in
which ρj;h is the correlation coefficient between intraevent
residuals at two sites fj; hg in the region (e.g., Park et al.,
2007; Malhotra, 2008). Assigning the mean vector and the
covariance matrix completely defines the GRF.

EQ-TARGET;temp:intralink-;df4;313;577Σ � σ2inter ·
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.
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775� σ2intra

·
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.

..
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. ..
.
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2
66664

3
77775 �4�

Regarding correlation, it is important to note the following:

1. Correlation among IMs is generated by the fact that all
components of the mean vector share the same event fea-
tures, such as magnitude and location. (In particular, the
magnitude determines positive correlation because, if the
event is strong for one site, it is strong for all the sites;
whereas, given M, the distance can determine positive or
negative correlation between IMs at the sites, depending on
the relative positions of the sites with respect to the source.)

2. Correlation among IMs is also generated because the first
term on the right side of equation (4) produces interevent
residuals that are perfectly and positively correlated at all
sites in one event, and this is another source of stochastic
dependence among IMs in one earthquake (given i, this
contribution is the same for each j).

3. The last source of correlation among IMs in a single
earthquake is the second term on the right side of equa-
tion (4); the (symmetrical) matrix produces nonperfectly
(positively) correlated intraevent residuals.

In other words, the primary source of spatial dependence
among IMs at different sites stems from the fact that all sites
share the same rupture’s features, including the interevent
residual. Another source of stochastic dependence among
ground motions, generated at different sites by the same
event, is then represented by intraevent residuals (usually,
correlation among these residuals is assumed to decrease as
the separation distance between two sites increases). In sum-
mary, the correlation of interevent and intraevent residuals is
responsible only for a part of the correlation of IMs at multi-
ple sites, and both can only determine positive correlation.
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Before discussing how these issues translate in the
stochastic dependence observed among processes counting
exceedances caused at different sites by multiple earthquakes
(i.e., over time), it is worthwhile to mention that the same
reasoning can be applied to more recent forms of GMPEs,
which further decompose the residuals, including the so-
called single-site sigma (e.g., Rodriguez-Marek et al., 2011).
Therefore, the results presented in the following are not
affected by such a representation of the GMPE.

Dependence among Processes Counting Exceedances
at Different Sites in Multiple Earthquakes: The

Properties of Poisson Processes

Let us consider a marked Poisson process; in particular,
let N�t� denote a homogeneous Poisson process, and let Zi,
denote the RV associated with its ith arrival time. Thus, we
postulate that:

1. the random variables fZ1; Z2; :::g, associated with differ-
ent arrival times, are stochastically independent (of one
another) and identically distributed (i.i.d.); and

2. the random variables fZ1; Z2; :::g and N�t� are stochasti-
cally independent.

Consider now r mutually exclusive subsets fA1; A2; :::; Arg
of the domain of Zi; that is, P��Zi ∈ Ak�∩ �Zi ∈ Am�� � ∅;
∀ i;∀ k ≠ m. In this case, the consequences to points (1)
and (2) are:

3. the process NAk
�t�, which counts the arrival times for

which Zi ∈ Ak for any k, is still an HPP, with mean func-
tion E�NAk

�t�� � E�N�t�� · P�Z ∈ Ak�; and
4. the processes fNA1

�t�; NA2
�t�;…; NAr

�t�g are stochasti-
cally independent (Kingman, 1993; Resnick, 2002).

The operation that produces the processes in point (3) is
called filtering or thinning, and the obtained processes are
called filtered or thinned processes.

It is worth remarking that, subsequent to points (3–4), the
mutual exclusivity of subsets fA1; A2;…; Arg is a necessary
condition for stochastic independence of the filtered processes.
Thus, considering mutual exclusivity implies that the events
�Zi ∈ A1�; �Zi ∈ A2�;…; �Zi ∈ Ar� cannot occur simultane-
ously, the result is that stochastic independence among the fil-
tered processes is not obtained in the case in which the
counted events, given i, are stochastically independent. This
can appear somewhat counterintuitive, yet the reader should
focus on it, because it will be useful later on.

Formalizing Multisite Probabilistic Seismic Hazard

This section directly follows from the previous one, trans-
lating it into the seismic hazard context. In agreement with
classical PSHA, let N�t� denote the HPP that counts the earth-
quakes occurring on a specified seismic source. Let ν be the
rate of such a process. At this point, note that points (1) and (2)
of the previous section are exactly the hypotheses of site-

specific hazard discussed when summarizing the basics of
PSHA. In particular, the magnitude, the earthquake location,
and the IM at the site for which the hazard is evaluated are
independent and identically distributed in multiple earth-
quakes; moreover, they are independent of the process that
counts earthquakes N�t� (see Cornell, 1968). The objective is
now to derive insights into the process counting exceedances,
when extending these hypotheses to multiple sites and taking
advantage of the results (3) and (4) of the previous section.

Consider s sites of interest to which are associated s
thresholds fim�

1 ; im
�
2 ;…; im�

s g in terms of the IM of interest
(i.e., an arbitrary threshold for each site). Also assume that
each mark associated with the arrival times of the counting
process N�t� has the following components: the magnitude
M of the earthquake, the earthquake location fX; Yg, and the
vector IM � fIM1; IM2; :::; IMsg that specifies the effect one
arrival (i.e., one earthquake) produces at the sites. Then Zi,
associated with the ith arrival time, is now the multivariate
RV Zi � fMi; Xi; Yi; IMi;1; IMi;2; :::; IMi;sg, and ΩZ may indi-
cate its domain. (In this context, it may be useful also to de-
note the domain of the variables as Ω with a subscripted list
of the variables; for example,ΩM;X;Y is the space in which the
variable fM;X; Yg takes values.)

As per site-specific PSHA, assume that the multivariate
variables fZ1;Z2;…g, associated with different arrival times
of the process N�t�, are stochastically independent of each
other and identically distributed (i.e., what is observed in one
earthquakes does not affect the probabilities related to the next
one) and are stochastically independent of N�t�. It is useful to
remark that this assumption does not prevent the components
of Zi from being dependent in the same earthquake (e.g.,
because of spatial correlation among IMs in one event).

On these premises, site-specific hazard in the following
description is first contextualized in the light of the properties
of the Poisson process, then the dependence among hazards
for different sites in multiple earthquakes is addressed, and,
finally, the results for multisite hazard are derived.

Note that from now on the variable associated with the
generic arrival time will be denoted as Z, without any sub-
script due to the independent and identically distributed
assumption (1), which allows simplifying the notation in
the rest of the article, when possible.

Site-Specific Hazard: The Process Counting IM
Exceedance at Each Considered Site

The marginal stochastic process counting exceedances
at the generic jth site (i.e., site-specific hazard) can be easily
formulated by partitioning the space ΩZ in the two (disjoint)
subsets: (1) AIMj > im�

j
, which contains all the values of Zi �

fMi; Xi; Yi; IMi;1; IMi;2;…; IMi;sg (earthquake features and
the effects at the sites) resulting in IMj > im�

j , and
(2) AMj ≤ im�

j
, which contains all the other values that Zi can

assume (i.e., nonexceedance of the threshold). Because of the
recalled properties of the Poisson process, the two filtered
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processes associated with these disjointed subsets are sto-
chastically independent processes. In particular, the process
associated with subset AIMj > im�

j
is the process that counts the

number of exceedances at the jth site, NIMj > im�
j
�t�. Con-

versely, the process associated with subset AIMj ≤ im�
j
, namely

NIMj ≤ im�
j
�t�, is the process counting all the events that do not

cause exceedance at site j. Both these processes are homo-
geneous Poisson, and their rates are given in equation (5):

EQ-TARGET;temp:intralink-;df5;55;626

�
λIMj > im�

j
� ν ·P�Z∈ AIMj > im�

j
�� ν ·P�IMj> im�

j �
λIMj≤ im�

j
� ν ·P�Z∈ AIMj≤ im�

j
�� ν ·P�IMj≤ im�

j � : �5�

Being stochastically independent, the sum of these Poisson
processes is still a Poisson process, which (obviously) coin-
cides with N�t�; that is, the process that counts the earth-
quakes occurring on the considered seismic source.

Clearly, λIMj > im�
j
in equation (5) coincides with that in

equation (2) from PSHA. Indeed, it is possible to write equa-
tion (6) to compute it. In the equation, I�IMj > im�

j � is a function

that equals one in the case of threshold exceedance at site j,
and zero otherwise, and fM;X;Y;IM1;:::;IMs

�m; x; y; im1;…; ims�
is the distribution of Zi � fMi; Xi; Yi; IMi;1; IMi;2;…; IMi;sg.
EQ-TARGET;temp:intralink-;df6;55;457

λIMj > im�
j
� ν · P�Z∈ AIMj > im�

j
� � ν · P�IMj > im�

j �

� ν ·
ZZ

…

Z
Z ∈ ΩZ

I�IMj > im�
j �

· fM;X;Y;IM1;…;IMs
�m; x; y; im1;…; ims�

· dm · dx · dy · d�im1� ·… · d�ims�

� ν ·
ZZZ

M;X;Y ∈ ΩM;X;Y

P�IMj > im�
j jm; x; y�

· fM;X;Y�m; x; y� · dm · dx · dy �6�

Using a variable considering multiple sites, Z, to derive the
site-specific hazard integral, ultimately shows that in this
framework the site-specific PSHA is a particular case of
the multisite hazard.

Dependence among the Processes Counting
Exceedances over Time at Multiple Sites

If it is possible that one earthquake causes exceedance at
two sites j and h (i.e., exceedances are not mutually exclu-
sive), then the processes NIMj > im�

j
�t� and NIMh > im�

h
�t�,

j ≠ h, are stochastically dependent. To understand the
nature of this form of dependence, let us consider the
following three disjoint subsets: (1) A�IMj > im�

j �∩ �IMh ≤ im�
h�,

(2) A�IMj ≤ im�
j �∩ �IMh > im�

h�, and (3) A�IMj > im�
j �∩ �IMh > im�

h�.

These contain all the values of the earthquake features that

imply (1) �IMj > im�
j �∩ �IMh ≤ im�

h�, (2) �IMj ≤ im�
j �∩

�IMh > im�
h�, and (3) �IMj > im�

j �∩ �IMh > im�
h�; that is,

three out of the four possible combinations of joint exceed-
ance and/or nonexceedance at the two sites in one event.

Hence, because these subsets are disjointed, the filtered
processes N�IMj > im�

j �∩ �IMh ≤ im�
h��t�, N�IMj ≤ im�

j �∩ �IMh > im�
h��t�,

and N�IMj > im�
j �∩ �IMh > im�

h��t� are stochastically independent

HPPs, whose rates are reported in equation (7), which were
obtained by filtering the process describing the occurrence of
earthquakes.
EQ-TARGET;temp:intralink-;df7;313;6048>><
>>:
λ�IMj > im�

j �∩�IMh≤ im�
h� � ν ·P�Z∈ A�IMj > im�

j �∩�IMh≤ im�
h��

λ�IMj≤ im�
j �∩�IMh > im�

h� � ν ·P�Z∈ A�IMj≤ im�
j �∩�IMh > im�

h��
λ�IMj > im�

j �∩�IMh> im�
h� � ν ·P�Z∈ A�IMj > im�

j �∩�IMh > im�
h��

�7�

These are the rates of earthquakes causing the specific joint
exceedance or nonexceedance at the two sites corresponding
to the subsets (1), (2), and (3).

Note that exceedance of the IM threshold in one earth-
quake at site j can be seen as Z belonging to the union of
subsets (1) and (3); that is, AIMj > im�

j
≡A�IMj > im�

j �∩ �IMh ≤ im�
h�

∪A�IMj > im�
j �∩ �IMh > im�

h�. For the same reason, exceedance

of the IM threshold in one earthquake at site h can be seen
as Z belonging to the union of subsets (2) and (3):
AIMh > im�

h
≡A�IMj ≤ im�

j �∩ �IMh > im�
h� ∪A�IMj > im�

j �∩ �IMh > im�
h�. As

a consequence, it is possible to write equation (8), which
shows that (in general) the processes NIMj > im�

j
�t� and

NIMh > im�
h
�t�, from site-specific PSHA, are not stochastically

independent. This is because both share one component,
N�IMj > im�

j �∩ �IMh > im�
h��t�. This ultimately proves stochastic

dependence in time of hazard at different sites.

EQ-TARGET;temp:intralink-;df8;55;304 (
NIMj > im�

j
�t� � N�IMj > im�

j �∩ �IMh ≤ im�
h��t� � N�IMj > im�

j �∩ �IMh > im�
h��t�

NIMh > im�
h
�t� � N�IMj ≤ im�

j �∩ �IMh > im�
h��t� � N�IMj > im�

j �∩ �IMh > im�
h��t�

�8�

On the other hand, note that, in the case in which it is certain
that a single earthquake cannot cause joint exceedance at sites
j and h (i.e., in the case AIMj > im�

j
and AIMh > im�

h
are disjoint),

NIMj > im�
j
�t� and NIMh > im�

h
�t� are stochastically independent.

In fact, in this case, the joint exceedance cannot occur (i.e.,
P�Z∈ A�IMj > im�

j �∩ �IMh > im�
h�� � 0), and equation (8) can be

rewritten in the simplified form of equation (9), in which
the counting processes for the two sites do not share any term,
because N�IMj > im�

j �∩ �IMh > im�
h��t� is certainly zero.

EQ-TARGET;temp:intralink-;df9;313;139

�
NIMj > im�

j
�t� � N�IMj > im�

j �∩ �IMh ≤ im�
h��t�

NIMh > im�
h
�t� � N�IMj ≤ im�

j �∩ �IMh > im�
h��t�

�9�

Then, it can be argued that the processes NIMj > im�
j
�t� and

NIMh > im�
h
�t� are stochastically independent if the integral in

equation (10) is zero. In the integral, I��IMj > im�
j �∩ �IMh > im�

h��
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equals one when the subscripted event occurs and zero other-
wise. (This formulation was introduced in Esposito and Iervo-
lino, 2011, and named the regional hazard integral.)
EQ-TARGET;temp:intralink-;df10;55;697

P��IMj > im�
j �∩ �IMh > im�

h��

�
ZZ

…

Z
Z ∈ ΩZ

I��IMj > im�
j �∩ �IMh > im�

h��

· fM;X;Y;IM1;…;IMs
�m; x; y; im1; :::; ims�

· dm · dx · dy · d�im1� ·… · d�ims�

�
ZZZ

M;X;Y ∈ ΩM;X;Y

P��IMj > im�
j �∩ �IMh > im�

h�jm; x; y�

· fM;X;Y�m; x; y� · dm · dx · dy �10�
The condition just expressed has an interesting seismic
interpretation: the site-specific HPPs, counting exceedances
over time of the intensity thresholds at two or more sites, are
stochastically independent if, and only if, the probability of
exceedance at multiple sites in one earthquake is zero. In other
words, the numbers of exceedances observed in the same time
interval at different sites are stochastically independent if and
only if any earthquake can cause exceedance at one site at the
most. It is worth noting that, referring to the Dependence of
IMs at Multiple Sites in One Event: Mean and Residuals of
GMPEs section, the only way to satisfy this condition occurs
when the distance among the considered sites is large enough
to assure that exceedance at a site implies nonexceedance at all
others. In particular, it is also worth noting that, for the count-
ing processes being independent, it is not sufficient that resid-
uals of the GMPE are uncorrelated.

Joint Distribution of the Numbers of Exceedances at
Multiple Sites in Any Time Interval

Because of the stochastic dependence just discussed, the
joint distribution of the number of exceedances at multiple

sites in the �0; t� time interval is not easy to calculate. For
example, considering two different sites, say j and h, in gen-
eral the joint distribution cannot be obtained as the product of
the (Poisson) probabilities computed using the marginal
processesNIMj > im�

j
�t� andNIMh > im�

h
�t� from the site-specific

hazard. In fact, to calculate the probability that, in �0; t�, ex-
actly nj and exactly nh exceedances are observed at sites j
and h �j ≠ h; j; h � 1; 2; :::; s�, respectively, equation (11)
must be adopted.

EQ-TARGET;temp:intralink-;df11;313;733

Pf�NIMj > im�
j
�t� � nj�∩ �NIMh > im�

h
�t� � nh�g

� P
�

⋃
min�nj;nh�

nj;h�0

��N�IMj > im�
j �∩ �IMh ≤ im�

h��t� � nj − nj;h�∩

�N�IMj ≤ im�
j �∩ �IMh > im�

h��t� � nh − nj;h�∩
�N�IMj > im�

j �∩ �IMh > im�
h��t� � nj;h��

�

�
Xmin�nj;nh�

nj;h�0

P�N�IMj > im�
j �∩ �IMh ≤ im�

h��t� � nj − nj;h�

· P�N�IMj ≤ im�
j �∩ �IMh > im�

h��t� � nh − nj;h�
· P�N�IMj > im�

j �∩ �IMh > im�
h��t� � nj;h� �

� e
−�λ�IMj > im�

j
�∩ �IMh ≤ im�

h
��λ�IMj ≤ im�

j
�∩ �IMh > im�

h
��λ�IMj > im�

j
�∩ �IMh > im�

h
��·t

·
Xmin�nj;nh�

nj;h�0

�λ�IMj > im�
j �∩ �IMh ≤ im�

h� · t�nj−nj;h
�nj − nj;h�!

·
�λ�IMj ≤ im�

j �∩ �IMj > im�
j � · t�nh−nj;h

�nh − nj;h�!

·
�λ�IMj > im�

j �∩ �IMh > im�
h� · t�nj;h

nj;h!
�11�

Even if the equation looks complicated, its deriva-
tion directly follows from the fact that the processes
N�IMj > im�

j �∩ �IMh ≤ im�
h��t�, N�IMj ≤ im�

j �∩ �IMh > im�
h��t�, and

N�IMj > im�
j �∩ �IMh > im�

h��t� are stochastically independent

HPPs, because the subsets they refer to (subsets 1–3 of
the previous section) are mutually exclusive. In fact, their
mean functions are those in equation (12):

EQ-TARGET;temp:intralink-;df12;55;271 8>>><
>>>:
E�N�IMj > im�

j �∩ �IMh ≤ im�
h��t�� � λ�IMj > im�

j �∩ �IMh ≤ im�
h� · t � ν · t · P�Z∈ A�IMj > im�

j �∩ �IMh ≤ im�
h��

E�N�IMj ≤ im�
j �∩ �IMh > im�

h��t�� � λ�IMj ≤ im�
j �∩ �IMh > im�

h� · t � ν · t · P�Z∈ A�IMj ≤ im�
j �∩ �IMh > im�

h��
E�N�IMj > im�

j �∩ �IMh > im�
h��t�� � λ�IMj > im�

j �∩ �IMh > im�
h� · t � ν · t · P�Z∈ A�IMj > im�

j �∩ �IMh > im�
h��

: �12�

Moreover, the probability of the union of events in equa-
tion (11) results in the summation at the last line of the same
equation, because the events of the kind
EQ-TARGET;temp:intralink-;;313;143

�N�IMj > im�
j �∩ �IMh ≤ im�

h��t� � nj − nj;h�∩
�N�IMj ≤ im�

j �∩ �IMh > im�
h��t� � nh − nj;h�∩

�N�IMj > im�
j �∩ �IMh > im�

h��t� � nj;h�

obtained using different values of nj;h, are mutually exclusive.
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In summary, equation (11) represents the bivariate (i.e.,
joint) probability mass function (PMF) of the RV, counting
the numbers of exceedances in �0; t� at two arbitrarily se-
lected sites. Along the exact same line of reasoning and pro-
cedure, the PMF for the joint exceedance at a larger
(arbitrary) number of sites may be computed, yet the result-
ing equation would be more elaborate.

These PMFs are evidently relevant, among other possible
applications, for those studies devoted to constrain hazard at
sites with poor earthquake observations, based on observa-
tions collected in a certain period of time at other sites. To
complete the framework, in the following section the process
counting the total number of exceedances at an arbitrary
number of sites is discussed.

The Distribution of the Number of Exceedances
Collectively Observed at Multiple Sites

This section targets the distribution (the PMF) of the ran-
dom variable counting the total number of exceedances #Ex
observed at the sites (s in number) in the �0; t� interval. This
result is obtained via the process N#Ex�t�, which rigorously
counts the total number of exceedances. It is the sum of the
processes counting the exceedances at the specific sites:
N#Ex�t� �

Ps
j�1 NIMj > im�

j
�t�. However, as demonstrated,

the terms of the sum are (in general) not independent, and
then N#Ex�t� is not a Poisson process.

At this point, consider s� 1 disjoint subsets Ak,
k � 0; 1; 2;…; s partitioning ΩZ, the domain of the multi-
variate mark, which describes the characteristics of each pos-
sible earthquake and its possible effects at the sites. In

particular, assume that Ak contains all the values of the fea-
tures of the earthquake Z for which the exceedance of the
thresholds is observed at exactly k sites in one earthquake.
This is why the Ak subsets are s� 1 in number: k has zero as
the minimum, whereas s, corresponding to all sites experi-
encing exceedance in the same event, is the maximum. For
example, the subset A0 contains the values of Z associated
with the earthquakes that do not cause exceedances at any of
the sites. Similarly, A3 is the subset that contains the values of
Z associated with all the earthquakes causing exceedances at
three sites. In particular, if Zi ∈ A3, it is possible to say that
the ith earthquake has caused exceedances at exactly three
sites, but it is not possible to distinguish (based on this in-
formation alone) which are the sites where these exceedances
occurred.

Once again, the filtered Poisson process associated with
the generic Ak subset is still an HPP. In other words, the proc-
ess NAk

�t� counting how many times exactly k exceedances

are observed in �0; t� among the sites is an HPP with rate
determined as shown in equation (13):

EQ-TARGET;temp:intralink-;df13;313;709λk�t� � ν · P�Z∈Ak�; k � 0; 1;…; s : �13�

In the equation, P�Z∈ Ak� (i.e., the probability of observing
exactly k exceedances, given the occurrence of one earth-
quake) can be calculated by solving the integral in equa-
tion (14), in which I�Z ∈ Ak� is 1 if Z∈ Ak and 0 otherwise.

EQ-TARGET;temp:intralink-;df14;313;628

P�Z∈ Ak� �
ZZ

…

Z
Z ∈ ΩZ

I�Z ∈ Ak�

· fM;X;Y;IM1;…;IMs
�m; x; y; im1;…; ims�

· dm · dx · dy · d�im1� ·… · d�ims� �14�

Moreover, all these HPPs are stochastically independent, be-
cause the Ak subsets are mutually exclusive; that is, one
earthquake cannot cause exactly k and exactly m exceedan-
ces (k ≠ m). Because the NAk

�t� processes are independent
HPPs, it is advantageous to expressN#Ex�t� as the linear com-
bination of them. In other words, N#Ex�t� can be seen as the
linear combination of the processes (s� 1 in number), each
of which is an HPP counting the number of earthquakes caus-
ing exactly k exceedances collectively at the sites:

EQ-TARGET;temp:intralink-;df15;313;438N#Ex�t� �
Xs
k�0

k · NAk
�t� : �15�

The mean and variance functions of such a process are

EQ-TARGET;temp:intralink-;df16;55;341 (
E�N#Ex�t�� �

Ps
k�0 k · E�NAk

�t�� � v · t ·
Ps

k�0 k · P�Z∈ Ak�
Var�N#Ex�t�� �

Ps
k�0 k

2 · Var�NAk
�t�� � v · t ·

Ps
k�0 k

2 · P�Z∈ Ak�
: �16�

These equations were derived immediately because they benefit
from the independence of the combinedNAk

�t� processes. This
is why it was more convenient for the variance to express
N#Ex�t� as in equation (15) rather than as N#Ex�t� �Ps

j�1 NIMj > im�
j
�t�. For the mean, equation (17) also could be

used due to linearity of the expectation holding regardless of the
dependence of the site-specific counting processes involved.
EQ-TARGET;temp:intralink-;df17;313;199

E�N#Ex�t�� � E
�Xs
j�1

NIMj > im�
j
�t�

�
�

Xs
j�1

E�NIMj > im�
j
�t��

� v · t ·
Xs
j�1

P�Z∈AIMj > im�
j
�

� v · t ·
Xs
j�1

P�IMj > im�
j � : �17�

At this point, equation (16) allows us to remark on three
results relevant to multisite hazard analysis.
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1. Because, in general, its mean and variance functions differ
from each other, the process counting the total number of
exceedances over time in the region cannot be a Poisson
process.

2. If the probability that a single earthquake can cause exceed-
ances in more than one site is zero [i.e., P�Z∈ Ak� � 0 for
any k ≥ 2], then the mean and variance coincide, and the
N#Ex�t� process is still an HPP. This is because, as discussed
in previous sections, in this case the marginal processes
NIM1 > im�

1
�t�; NIM2 > im�

2
�t�;…, and NIMs > im�

s
�t� are sto-

chastically independent.
3. Given the mean, the variance of the process counting the

total number of exceedances over time is at its minimum
if the marginal processes counting exceedances at the
sites are independent.

It is also worthwhile to focus on the PMF of the random
variable counting the total number of exceedances in �0; t�,
which stems from the discussed process looking at a specific
time interval. Because the counting process is not an HPP, the
PMF is not a Poisson distribution. In fact, it can be formulated
starting from
EQ-TARGET;temp:intralink-;df18;55;148

P�N#Ex�t� � x� � P
�Xs
k�1

k · NAk
�t� � x

�

�
Xx

n1�0;…;nk�0

I�
P

s
k�1

k·nk�x� · ⋂
s

k�1

P�NAk
�t� � nk�;

�18�

in which the terms

EQ-TARGET;temp:intralink-;;313;396 ⋂s
k�1

P�NAk
�t� � nk�

are products of the probabilities of observing, in �0; t�, exactly
nk events, each causing exactly k exceedances collectively at
the sites. The equation sums the products that it is possible to
obtain by considering values of (n1; n2;…, ns � 0; 1; 2;…),
which satisfy the condition

EQ-TARGET;temp:intralink-;;313;291

Xs
k�1

k · nk � x :

Therefore, I�
P

s
k�1

k·nk�x� is one in the case
Ps

k�1k ·nk�x

and zero otherwise. In other words, the equation considers
all possible combinations of number and kind of earth-
quakes (in terms of the number of exceedances collectively
caused at the sites) that can occur in �0; t�. For example,
it considers that the following can occur in �0; t�: exactly
two earthquakes that produce zero exceedances, exactly
three earthquakes that produce one exceedance, exactly one
earthquake that produces two exceedances, and so on. Start-
ing from these combinations, the equation retains only the
probabilities of those cases for which the number of occur-
ring earthquakes, combined with the number of sites at
which each of them causes exceedance, gives exactly x total
exceedances in �0; t�.
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Figure 1. (a–d) Each panel reports a configuration for the four sites considered in the first application (triangles) and the ideal seismic
source zone (distances in kilometers).
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Illustrative Applications

To prove the importance of the arguments discussed so
far, it is worthwhile to illustrate the implications they can have
in practical applications of current interest to earthquake en-
gineering and engineering seismology. In particular, two ap-
plications are developed: one referring to the seismic loss
assessment for an infrastructure made of a distributed portfolio
of four buildings, and one referring to an exercise aimed at
validating the probabilistic (site-specific) seismic hazard pool-
ing observations of real earthquakes at several sites.

To this aim, an ideal 20 × 80 km2 areal seismic source is
considered. This area is discretized in point-like earthquake
sources represented by the dots in the panels of Figure 1 (this
number of point-like sources for the discretization of the
source is for the first application, and will be changed in
the second one). The event rate of the earthquakes is assumed
to be ν � 1 event=yr, globally over the source zone and it is
uniformly partitioned among the point-like sources. The dis-
tribution of magnitude is a truncated exponential one, de-
fined in the [4.5,7] range. The b-value of the Gutenberg–
Richter relationship (Gutenberg and Richter, 1944) is equal
to one. The considered IM is the peak ground acceleration
(PGA), and the GMPE is that of Ambraseys et al. (1996).

A Loss Assessment Study for a Portfolio of Buildings

It is assumed that a company has four facilities located in
the region; that is, s � 4 sites of interest. These facilities con-
stitute a supply chain for the company. For the purposes of the

application, four possible spatial arrangements of the facilities
are considered. Each configuration of the four sites corresponds
to a panel in Figure 1, in which the sites are indicated as trian-
gles and the seismic source is within the rectangular frame.

Given the occurrence of one earthquake and the pos-
sibility of contemporary failure of multiple facilities in the
same seismic event, it is assumed that the losses in case
of failure of k facilities in the portfolio (i.e., Lk, with values
in monetary units) are as follows: Lk � 0 for k � 0, Lk � 10

for k � 1, Lk � 100 for k � 2, Lk � 1000 for k � 3, and
Lk � 10; 000 for k � 4. The loss is not additive in this case;
that is, it is assumed that, because of the domino effect in the
chain, the loss if k sites fail is larger than k times that refer-
ring to the failure of one facility only.

The objective of the application is to compute the mean
and variance of the seismic annual loss for each of the four
configurations of the sites. To this aim, for each of the 85
(equally likely) point-like sources in the zone (Fig. 1),
105 Monte Carlo simulations of magnitude were performed.
For the four sites in each of the four configurations, the sim-
ulations computed the PGAs that have a marginal probability
of exceedance in one year equal to 0.0035. This probability
was arbitrarily selected to determine the components of the
threshold vector fim�

1 ; im
�
2 ; im

�
3 ; im

�
4g. In fact, in the context

of the application, these are considered as the accelerations
that, if exceeded in one event at each of the sites, cause the
expected losses described previously. (Of course, a more re-
fined representation of the fragility of the facilities could be
used instead, but this simplification does not affect the value
of this illustrative application.)

Because PGAs at the four sites were also simulated to
have realizations of the random field of IMs, they were also
used to compute the probabilities P�Z∈ Ak�, that is, the
probability that an earthquake causes exceedance of
im�

j ; j � 1; 2; 3; 4 exactly at k sites (k � 0; 1; 2; 3; 4).
These probabilities, which can be formalized via an integral
of the type in equation (19), were computed by means of the
observed frequencies using the IMs from the Monte Carlo
runs. In the equation, I�Z ∈ Ak� is one in the case in which the
subscripted event occurs and zero otherwise. Values ob-
tained for the four configurations of the sites are reported
in Table 1.

EQ-TARGET;temp:intralink-;df19;55;364P�Z∈Ak� �
ZZ

…

Z
Z∈ΩZ

I�Z∈A� · fM;X;Y;IM1;…;IM4
�m; x; y; im1;…; im4� · dm · dx · dy · d�im1� ·… · d�im4�≈

� number of simulated earthquakes for which it resulted Z∈Ak

total number of simulated earthquakes �19�

At this point in addressing the goals of the application, the
mean and the variance of the annual expected loss can be
retrieved from equation (16), replacing k with Lk. For ex-
ample, for the configuration in Figure 1a, these results are

EQ-TARGET;temp:intralink-;df20;55;226

�
E�L�1�� � ν · t ·

P
4
k�0 Lk · P�Z∈ Ak� � 1 · 1 · �10 · 0:01396� 100 · 0:00005� � 0:1446

Var�L�1�� � ν · t ·
P

4
k�0 L

2
k · P�Z∈ Ak� � 1 · 1 · �102 · 0:01396� 1002 · 0:00005� � 1:896

: �20�

In fact, note that although these results were easy to obtain
with the formalization of this study, they could not be com-
puted via the marginal exceedance processes (i.e., site-spe-
cific hazards) at the sites (due to the discussed supply-chain
effect and the presence of stochastic dependence). This is
apparent from Table 1, in which the values of mean and
variance of the annual loss for all the four configurations
represented in Figure 1 are given. The relative differences
among reported values also quantify how much the loss
depends on the spatial configuration of the portfolio.
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A Hazard Validation Study

This example is in the context of studies such as Albar-
ello and D’Amico (2008), in which an interesting problem is
discussed. Consider a region for which a hazard map is avail-
able from PSHA; that is, there is a map of IM values that have
a given probability of exceedance in a certain time interval at
each of the sites in the region. In particular, assume that the
map reports the site-specific PGA with 10% exceedance
probability in 30 years for each site.

The data of the problems are the following. Suppose we
have gathered earthquake recordings from 68 seismic sta-
tions, deployed in the considered region and that have con-
tinuously operated for 30 years. Suppose also that, according
to the earthquake data collected, in 13 cases, the PGA with
10% exceedance probability in 30 years was exceeded. The
scope is to formally establish whether the observations are
statistically consistent with the hazard map or the latter is
underestimating the real seismic hazard in the region.

A viable approach to address this problem is that of hy-
pothesis testing. In fact, consistent with PSHA, the probabil-
ity of exceedance of the PGA threshold is computed via the
Poisson distribution. Thismeans that, according to equation (1),
to obtain 0.1 as the probability of exceedance in 30 years, the
rate must be λIM> im� � 0:0035 for each of the sites, because
these Poisson variables at all the sites are equally distributed.
Obviously, the corresponding PGA thresholds (i.e., im�) are
expected to be different among the sites.

Assuming that the processes counting exceedances ob-
served at the 68 sites are independent, then the total number
of exceedances is still a Poisson RV, being the sum of inde-
pendent Poisson RVs. Consequently, the probability of
observing k exceedances in 30 years over the 68 stations is
given by

EQ-TARGET;temp:intralink-;df21;55;331P�k exceedances of im� at 68 sites in 30 yr�

� �λIM> im� · s · t�k
k!

· e−λIM> im� ·s·t

� �0:0035 · 68 · 30�k
k!

· e−0:0035·68·30 : �21�

In other words, the random variable counting the total
number of exceedances has the following mean and variance:
E�N#Ex�t�� � Var�N#Ex�t�� � 0:0035 · 68 · 30 � 7:14.

At this point, the hazard may be tested against observa-
tions, assuming, for example, a significance level equal to
0.05. In particular, the (null) hypothesis is that the hazard
map is correct (i.e., the mean number of exceedances in
30 years is 7.14), whereas the alternative hypothesis is that
the number of observed exceedances is inconsistent with
what is suggested by the map (i.e., the true mean is larger).
The test can be carried out by computing the probability of
observing at least 13 exceedances at 68 stations in 30 years
via equation (21). This probability is 0.03, which is lower
than 0.05; therefore, the analyst would conclude that the
PSHA is biased with respect to the actual seismicity of the
region, at the significance level 0.05.

On the other hand, it was demonstrated in the previous
sections that the Poisson distributions counting exceedances
of im� at the different sites, although equally distributed, are
not independent if one earthquake can cause more than one
exceedance in the region. Therefore, the use of the Poisson
distribution in equation (21) may be erroneous. In fact, here it
is shown how the presence of stochastic dependence among
processes counting exceedances at different sites can change
the conclusion of the test. To this aim, for each of the
68 (equally likely) point-like sources in the zone (Fig. 2),
104 Monte Carlo simulations of magnitude were performed.
In each of these runs, the PGAs at the recording sites were
also simulated. The obtained set of 68 × 104 observations
was used to compute the PMF of the number of sites that may
experience exceedance of the PGAs from the map in a single

Table 1
Probabilities of Observing from Zero to Four Exceedances of im�

j ; j � 1; 2; 3; 4 at the Four
Sites, Given the Occurrence of One Earthquake for the Configurations of Figure 1

P�Z∈Ak� Mean Variance

Configuration in Figure 1 k � 0 k � 1 k � 2 k � 3 k � 4 E�L�1�� Var�L�1��
Figure 1a 0.98600 0.01396 0.00005 0.00000 0.00000 0.144 1.846
Figure 1b 0.98661 0.01277 0.00059 0.00004 0.00000 0.223 43.723
Figure 1c 0.98735 0.01143 0.00107 0.00015 0.00001 0.494 1439.452
Figure 1d 0.98652 0.01291 0.00057 0.00000 0.00000 0.186 7.104
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Figure 2. Ideal seismic source zone for the second application
and recording sites (triangles). Each site is also a point-like seismic
source (distances in kilometers).
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earthquake, similar to what was done with equation (19); the
only difference is that now there are 68 sites. Indeed, the ob-
tained distribution, given in Figure 3, is the PMF of the col-
lective number of exceedances in one event (from 0 to 68).
Note that, in the figure, only the probabilities up to 10 joint
exceedances (out of 68) are reported.

The distribution of the variable counting the total num-
ber of exceedances at the sites in 30 years, N#Ex�30�, is now
explored. The mean and the variance are computed via
equation (16) and given in equation (22). The variance in the
independent case is equal to the mean, that is, 7.14. The dif-
ference with the (correct) dependent case is apparent:

EQ-TARGET;temp:intralink-;df22;55;398

�
E�N#Ex�30�� � 7:14
Var�N#Ex�30�� � 27:68

: �22�

The PMF of the total number of exceedances in 30 years, for
the region made of 68 sites and discretized by means of 68
seismic sources, is pictured in Figure 4a, whereas its values,
P�N#Ex�30� � k� for k � 0; 1;…; 15, are given in Figure 3b.
Figure 3b can be used to compute the probability of observ-
ing at least 13 exceedances in 30 years, which is 1 minus the
sum of the values until 12. This probability is equal to 0.14,
which is larger than 0.05. Therefore, at the significance level
0.05, the null hypothesis that the map hazard is accurate (sta-
tistically consistent with observations) cannot be rejected,
which is the contrary conclusion with respect to the case
of assuming independence of site-specific processes.

Finally, to further picture the effect of the dependence
among site-specific processes NIMj > im�

j
�t�; j � 1; 2;…; 68,

on the PMF of the variable counting the total number of
exceedances in 30 years, Figure 4 also shows how different
such a distribution is from the Poissonian one considered in
the case of independence assumption.

Conclusions

PSHA for multiple sites (i.e., computing the probability
that a set of sites is going to collectively experience the ex-
ceedance of arbitrary ground-motion intensity thresholds in a

given period of time) is a topic of current interest to engineer-
ing seismology and earthquake engineering for at least two
reasons: (1) seismic risk assessment of multisite systems and
(2) hazard validation studies.

Although site-specific hazard analysis is consolidated, the
study provided a probabilistic formalization of hazard for
multiple sites based on the theory of stochastic point proc-
esses. The approach considered working hypotheses consis-
tent with those of site-specific (classical) PSHA. As a
consequence, it was demonstrated that the random variable
counting the total number of exceedances over time at the sites
in a given period is, in general, not Poisson, even when each
process counting exceedance of an IM threshold at a single site
is Poisson (see point 6 below). Starting from this, a number of
results were derived.

1. The key ingredients for regional hazard assessment are
the rate of occurrence of earthquakes on the earthquake
source(s) and a probabilistic description of the effects (in
terms of exceedance or nonexceedance) that single earth-
quakes can produce at the considered sites.

2. When multiple sites are concerned, the only condition
allowing the hazards for the sites to be independent is
that a single earthquake can produce IM exceedance at
one site at the most.

3. Based on point 2, it is apparent that, even if the residuals
of the GMPE are uncorrelated, the processes counting
exceedances over time at multiple sites are still stochas-
tically dependent if the distance among them is not such
to determine mutually exclusive exceedances in one
earthquake event.

4. The joint distribution of the number of exceedances for a
vector of two IMs at two sites was derived for an arbitrary
time interval (the same scheme may be used to extend it
to any number of sites).
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Figure 3. Probability mass function P�Z∈Ak� of the collective
number of exceedances in one seismic event in the region with 68
sites (values up to 10 collective exceedances out of 68).
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Exact
Poisson (independent)

( )# 30ExP N k=⎡ ⎤⎣ ⎦;
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PMF 0.02 0.06 0.09 0.10 0.10 0.09 0.09 0.08 0.06 0.05 0.05 0.04 0.03 0.03 0.02 0.02

Figure 4. (a) Distribution of total number of exceedances at 68
sites in 30 years; comparison with the independent (wrong) Poisson
assumption. (b) Probability mass function of the total number of
exceedances in 30 years, P�N#Ex�30� � k�, in a region made of
68 sites and discretized by means of 68 seismic sources. Only some
k values are reported in (b).
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5. The probability distribution of the total number of
exceedances occurring in a given time for an arbitrary
number of sites was also formulated, and closed-form
expressions for the mean and the variance of the process
counting the total number of exceedances were also
obtained.

6. Multisite hazard is not regulated by a Poisson process,
and its variance is underestimated in the case in which
the presence of the discussed stochastic dependence is
neglected; if only one site is considered, classical PSHA
results and HPP are obtained.

Finally, illustrative applications have demonstrated the
applicative value of the results and of the closed-form
formulations.

Data and Resources

All data and resources are from the listed references.
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Erratum to

On Multisite Probabilistic Seismic Hazard Analysis

by Massimiliano Giorgio and Iunio Iervolino

The article by Giorgio and Iervolino (2016) provides the
basis for other studies, such as the development of a software
tool (i.e., Iervolino et al., 2016) and related applications of
multisite hazard analysis (e.g., Iervolino et al., 2017). During
these further developments, a bug was found in the program
used to carry out the last example in the article. In particular,
figures 3 and 4 in Giorgio and Iervolino (2016) have to be
replaced with Figures 3 and 4 here, respectively, and equa-
tion (22) should read as

EQ-TARGET;temp:intralink-;df22;313;630

�
E �N#Ex�30�� � 7:14
Var �N#Ex�30�� � 13:46

: �22�

It is emphasized that neither the qualitative results of the
example nor the discussions and conclusions of the study
are affected by this bug, which is pointed out with this erra-
tum to allow the interested reader to fully reproduce all the
examples.
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Figure 4. (a) Distribution of the total number of exceedances at
68 sites in 30 years; comparison with the independent (wrong) Pois-
son assumption. (b) Probability mass function (PMF) of the total
number of exceedances in 30 years, P�N#Ex�30� � k�, in a region
with 68 sites and discretized by means of 68 seismic sources. Only
some k values are reported in (b).
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Figure 3. Probability mass function P�Z∈Ak� of the collective
number of exceedances in one seismic event in a region with 68
sites (values up to 10 collective exceedances out of 68).
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