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Soil-Invariant Seismic Hazard and Disaggregation

by Iunio Iervolino

Abstract Results of probabilistic seismic hazard analysis (PSHA) depend on the soil
conditions of the site investigated. Consequently, it is generally expected that disaggrega-
tion, usually employed to gather further information about hazard levels of interest, changes
with the soil class. This short note discusses the relationship between hazard curves and
disaggregations computed for different soil conditions at the same site. In particular, it is
analytically proven that there are cases, depending on the structure of the ground-motion
prediction equations employed, in which disaggregations for different soil conditions are
necessarily invariant. It is also demonstrated that, in these situations, hazard curves for dif-
ferent soil conditions can be immediately obtained from a curve developed for a reference
soil class. The analytical proofs derived do not require any further testing or validation;
nevertheless, the results are illustrated via simple case studies to show how they may imply
applicative advantages both in the cases of single-model and logic tree PSHA.

Introduction

Probabilistic seismic hazard analysis (PSHA; e.g., Cor-
nell, 1968; McGuire, 2004), in its classical format, is based
on the combination of statistical characterizations of source,
path, and site conditions to provide the annual rate of seis-
mic events exceeding a ground-motion intensity measure
(IM) threshold im. Equation (1), assuming for simplicity
one seismic source, reports a typical hazard integral, in
which ν is the rate of occurrence of earthquakes above a
magnitude of interest, fM,R�m,r� is the distribution of mag-
nitude (M) and source-to-site distance (R) in one event, and
P�IM > imjm,r,θ�, typically provided by a ground-motion
prediction equation (GMPE), is the probability of exceeding
the im threshold conditional to M, R, and one or more
other covariates θ, representing, for example, a specific soil
condition:

EQ-TARGET;temp:intralink-;df1;55;254λim � ν ·
ZZ

m,r
P�IM > imjm,r,θ� · fM,R�m,r� · dr · dm:

�1�
For earthquake engineering and engineering seismology ap-
plications, once PSHA is carried out, the so-called hazard dis-
aggregation (e.g., Bazzurro and Cornell, 1999) is employed
to gather further insights on the earthquakes most threatening
for the site of interest, for example, in terms of magnitude
and distance pairs most causative for the exceedance of a
specific IM value.

PSHA results change, for a specific site, if site conditions
are changed, and this is trivially evident from equation (1), as
at least one of the covariates of the GMPE changes. Conse-
quently, hazard disaggregation is expected, in general, to
change at the same site if soil-site conditions are changed.

It is often believed and recommended that PSHA com-
putations are repeated to account for different soil-site con-
ditions at the same site (e.g., Bazzurro and Cornell, 2004).
Nevertheless, it is worthwhile to recall that there are cases,
which could be not infrequent, depending on the structure
of the GMPE(s) employed in PSHA, in which disaggregation
for different soil conditions are invariant at the same site.
Moreover, in these situations, hazard curves for different
soil conditions can be obtained rigorously from translation
(i.e., horizontal rigid-body motion) of the curve developed
for a reference soil class (e.g., rock). How much the curves
displace each other can be anticipated a priori from the
GMPE.

This short note intends to discuss the relationship be-
tween hazard results for different soil conditions at the
same site, analytically demonstrating cases for invariance.
To this aim, the following starts from hazard disaggre-
gation, in the case of one or multiple seismic sources,
computed via a single-model hazard. Subsequently, the re-
lationships between hazard curves and ordinates of uni-
form hazard spectra (UHS) for different soil conditions are
obtained. Finally, the case of logic-tree-based hazard analysis
is addressed.

The core of the study presented is purely analytical, be-
cause all the arguments are simple mathematical proofs,
which by definition do not require any further testing or val-
idation. Nevertheless, some case-study examples, for a real
site in Italy, are presented to show that the results obtained
apply to several recent GMPEs and, consequently, they may
have practical value in the context of PSHA.
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Single-Model Disaggregation

One Seismic Source

Assume one wants to compute disaggregation in terms
of M and R for the im that has a specific rate of exceedance
λim1

, at the site for a soil condition indicated by θ1. Assume
also the same rate, indicated by λim2

, has been computed for
the site considering a different soil class, indicated by θ2, and
that disaggregation is computed also for this soil hazard.

The two disaggregations are indicated in equation (2),
in which all the terms have been already defined, except
fM,RjIM>im,θ�m,r�, which represents the result of disaggrega-
tion; that is, the distribution of M and R conditional to the
exceedance of the IM value corresponding to the rate the
denominator refers to:

EQ-TARGET;temp:intralink-;df2;55;549 8<
:
fM,RjIM>im1,θ1�m,r� � ν·P�IM>im1jm,r,θ1�·fM,R�m,r�

λim1

fM,RjIM>im2,θ2�m,r� � ν·P�IM>im2jm,r,θ2�·fM,R�m,r�
λim2

: �2�

Because the objective is to compare the two disaggregations,
the hypothesis is that the two rates of exceedance are the
same λim1

� λim2
(of course it is expected that the two cor-

responding IM values on the different soils classes �im1,im2�
are different). If the rates being disaggregated are the same,
then equation (3) applies. The latter, recalling equation (1)
and the distributive property of integrals, may be rewritten
as in equation (4):

EQ-TARGET;temp:intralink-;df3;55;390λim1
− λim2

� 0 �3�

EQ-TARGET;temp:intralink-;df4;55;359 ZZ
m,r

P�IM > im1jm,r,θ1� · fM,R�m,r� · dr · dm

−
ZZ

m,r
P�IM > im2jm,r,θ2� · fM,R�m,r� · dr · dm

�
ZZ

m,r
�P�IM > im1jm,r,θ1� − P�IM > im2jm,r,θ2��

· fM,R�m,r� · dr · dm � 0: �4�

We shall now focus on the last line of the equation.
Because the fM,R�m,r� terms are certainly nonnegative, the
P�IM > im1jm,r,θ1� − P�IM > im2jm,r,θ2� terms need to
have different signs for the integral to be null. In other words,
it has to be that P�IM > im1jm,r,θ1� − P�IM > im2jm,r,θ2�
is negative for some �m,r� and positive for others, such that the
integral is equal to zero. Alternatively, the integral is null also if
P�IM> im1jm,r,θ1�−P�IM> im2jm,r,θ2��0 ∀�m,r�. This
is the case if the GMPE has a structure of the type in equa-
tion (5), in which there is a term g�m,r� that depends on mag-

nitude and distance (and possibly other parameters), θ is a
coefficient depending on soil conditions, and ε is the residual;
that is, a zero-mean Gaussian random variable (RV) with stan-
dard deviation σ (the residual may possibly be split in different
components such as inter- and intraevent, yet it does not affect
the results discussed here):

EQ-TARGET;temp:intralink-;df5;313;661 log�IM� � g�m,r� � θ� ε � μm,r � θ� ε: �5�

In fact, the GMPE provides the distribution of the log�IM� RV,
conditional on �m,r,θ�, which in this case is a Gaussian RV
with mean μm,r � θ and standard deviation σ. Thus, as men-
tioned, the GMPE allows retrieval of P�IM > imjm,r,θ�
needed in the hazard integral. In the case of equation (5), θ
only affects the mean of the distribution of log�IM�, whereas
it does not affect the standard deviation σ.

At this point, it is worth recalling that this situation is
frequent. It is often assumed in GMPEs that the soil changes
the mean of the model, not the residual, which in turn may
depend on other covariates such as magnitude (to follow).
This may be verified via the comprehensive study of Douglas
(2014) and the related online repository (see Data and Resour-
ces), which proves that GMPEs of the type in equation (5) are,
to date, the majority. (See also Bazzurro and Cornell, 2004,
and Goulet et al., 2007, for discussions on how variability of
ground-motion models can be adjusted for site conditions.)

Consequent to the postulated structure of the GMPE,
it results, for each M and R pair, P�IM > im1jm,r,θ1�−
P�IM > im2jm,r,θ2� � 0. To recognize this, let us first write
the difference under investigation as in equation (6), in which
Φ�·� is the Gauss function, and it is assumed, for simplicity of
notation, that θ1 � 0 and θ2 � θ.

EQ-TARGET;temp:intralink-;df6;313;351

P�IM > im1jm,r,θ1� − P�IM > im2jm,r,θ2�

� 1 − Φ
�
log�im1� − μm,r

σ

�

−
�
1 − Φ

�
log�im2� − �μm,r � θ�

σ

��

� Φ
�
log�im2� − �μm,r � θ�

σ

�
− Φ

�
log�im1� − μm,r

σ

�

� Φ
��log�im2� − θ� − μm,r

σ

�
− Φ

�
log�im1� − μm,r

σ

�
: �6�

Equation (6) suggests that the same Gaussian distribution
may be used to compute both P�IM > im1jm,r,θ1� and
P�IM > im2jm,r,θ2�. Therefore, because the Gauss function
is strictly monotonic (e.g., Benjamin and Cornell, 1970), the
order of log�im1� and log�im2� − θ reflects on the order of the
corresponding probabilities (see equation 7 and Fig. 1a).

EQ-TARGET;temp:intralink-;df7;55;88 (
log�im1� > log�im2� − θ ⇒ P�IM > im1jm,r,θ1� < P�IM > im2jm,r,θ2� ∀�m,r�
log�im1� ≤ log�im2� − θ ⇒ P�IM > im1jm,r,θ1� ≥ P�IM > im2jm,r,θ2� ∀�m,r� : �7�
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As a consequence, if the probabilities in equation (7) were dif-
ferent, then the P�IM > im1jm,r,θ1� − P�IM > im2jm,r,θ2�
terms in equation (4) would have all the same sign. This pre-

vents equation (4) to be null, thus equation (8) necessarily
holds:

EQ-TARGET;temp:intralink-;df8;55;332P�IM > im1jm,r,θ1� � P�IM > im2jm,r,θ2� ∀�m,r�:
�8�

The direct consequence is that disaggregations on the two
soils coincide. Indeed, as it may be argued from equa-
tion (9), the disaggregation equations for the two sites have
the same denominator by hypothesis, the same fM,R�m,r�
and ν terms, and finally equation (8) demonstrated equality
of the last term:

EQ-TARGET;temp:intralink-;df9;55;214

fM,RjIM>im1,θ1�m,r� � ν · P�IM > im1jm,r,θ1� · fM,R�m,r�
λim1

� ν · P�IM > im2jm,r,θ2� · fM,R�m,r�
λim2

� fM,RjIM>im2,θ2�m,r�: �9�

Multiple Seismic Sources

The results obtained in this section hold also in the case of
multiples sources, if a single GMPE of the type in equation (5)

is employed in the hazard analysis. Indeed, equation (10) ap-
plies, in which the j subscript refers to the generic source
among those considered, which are k in number.

EQ-TARGET;temp:intralink-;df10;55;433

λim1
− λim2

�
Xk
j�1

νj ·
ZZ

m,r
�P�IM > im1jm,r,θ1� − P�IM > im2jm,r,θ2�� · fM,R,j�m,r� · dr · dm

�
ZZ

m,r
�P�IM > im1jm,r,θ1� − P�IM > im2jm,r,θ2�� ·

�Xk
j�1

νj · fM,R,j�m,r�
�
· dr · dm � 0: �10�

At this point, the same reasoning, starting from equation (4),
can be applied to get the same result of equation (9).

Magnitude-Dependent GMPE Residuals

To recognize that the illustrated result holds also in the
case of magnitude-dependent standard deviation of the resid-
uals, indicated by σm, it is sufficient to rewrite equation (6) as
equation (11):

EQ-TARGET;temp:intralink-;df11;313;254

P�IM > im1jm,r,θ1� − P�IM > im2jm,r,θ2�

� Φ
��log�im2� − θ� − μm,r

σm

�
− Φ

�
log�im1� − μm,r

σm

�
:

�11�

This equation shows, once again, that if σm is the same for
the two soil conditions, then the same Gaussian function may
be used to retrieve the exceedance probabilities of the two
IM thresholds. Then, equation (7) holds for any magnitude,
meaning that the order of probabilities depends on the order
of the thresholds, and not on the standard deviations, pro-
vided that these do not change with the soil class. This proves
that equation (8) is also retained, and therefore all conclu-
sions following it.

(a) (b)

Figure 1. (a) Monotonic nature of the Gaussian complementary cumulative distribution function and order of probabilities; and (b) sin-
gle-model hazard curves for two soil classes at the same site. (Figure not to scale.)
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Single-Model Hazard Curves and Uniform
Hazard Spectra

It is now worthwhile to focus on an interesting implica-
tion of the results of the previous section. In fact, given two
hazard curves for the same site, yet for different soil condi-
tions, if the abscissa is represented in the logarithmic scale,
for each rate of exceedance of im, the corresponding values
of intensity from the two curves are separated by a factor θ
(assuming again that θ1 � 0 and θ2 � θ). In other words, the
two curves are, actually, the same curve, just horizontally
moved by the soil coefficient of the GMPE (Fig. 1b).

This is immediately consequent from equation (8) be-
cause it was shown with equation (6) that the thresholds
for the two soils im1 and im2, corresponding to the same rate
of exceedance, are the same percentile of the IM distribution
from the GMPE, then their distance in logarithmic scale is θ.
Consequently, because the fM,R�m,r� terms in the hazard in-
tegrals are the same for the two soils, such a difference holds
in the resulting hazard curves:

EQ-TARGET;temp:intralink-;df12;55;299 log�im2� � log�im1� � θ ⇒ λim2
� λim1

: �12�

This has important earthquake engineering implications, be-
yond the possibility of quickly retrieving soil hazard from
rock or stiff-soil hazard. For example, if the IM is the spectral
acceleration SA�T� and the factor θ is constant across a range
of oscillation period periods T, then, given a return period
(Tr), the absolute value of the difference, in logarithmic
scale, of the UHS for the two site conditions is θ, whereas the
ratio in linear scale is equal to eθ. This means that one UHS
can be readily retrieved from the other one (Fig. 2a). It is
more frequent that in GMPEs the soil coefficient θ changes
with the spectral ordinate. In this case, the eθ ratio still ap-
plies for every specific spectral ordinate of the UHS.

The Case of Logic Tree

In the case of hazard assessment based on logic tree (e.g.,
Bommer et al., 2005), n models of the type in equation (1) are

employed, and the rate of exceedance of an IM threshold is
provided by equation (13), in which λim,i is the rate of exceed-
ance according to the ith branch and Pi is its nonnegative
weight, such that

Pn
i�1 Pi � 1:

EQ-TARGET;temp:intralink-;df13;313;487λim �
Xn
i�1

λim,i · Pi: �13�

Considering now, again, the case of two soil conditions for the
same site, and the IM values corresponding to the same rate of
exceedance, equation (14) holds, in analogy with equation (4).
In equation (14), the i subscript indicates the GMPE and source
model of the ith branch of the logic tree:

EQ-TARGET;temp:intralink-;df14;313;379

λim1
− λim2

�
Xn
i�1

λim1,i · Pi −
Xn
i�1

λim2,i · Pi � 0

⇒
Xn
i�1

�λim1,i − λim2,i� · Pi

�
Xn
i�1

�
νi ·

ZZ
m,r

�P�IM > im1jm,r,θ1,i�

− P�IM > im2jm,r,θ2,i�� · fM,R,i�m,r� · dr · dm
�

· Pi � 0: �14�

Nevertheless, it is not granted that each �λim1,i − λim2,i�
is null. In fact, the thresholds �im1,im2� corresponding to the
total rates �λim1

,λim2
�, in general, correspond to different rates

for the two soils in each branch of the logic tree (Fig. 2b). As a
consequence, �λim1,i − λim2,i� in equation (14) may have differ-
ent signs for different values of i. This does not warrant
P�IM> im1jm,r,θ1,i� � P�IM> im2jm,r,θ2,i� ∀�m,r,i�. It
cannot be concluded that disaggregation is necessarily retained
when changing the site class, even if all GMPEs employed in
the logic tree are of the form of equation (5), as it can be argued
from the following equation:

(a) (b)

Figure 2. (a) Relationship between uniform hazard spectra (UHS) for two different soil conditions; and (b) rates of exceedance of dis-
aggregated thresholds in one branch of a logic tree.
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EQ-TARGET;temp:intralink-;df15;55;733

fM,RjIM>im1,θ1�m,r� �
Pn

i�1 νi · P�IM > im1jm,r,θ1,i� · fM,R,i�m,r� · Pi

λim1

≠
Pn

i�1 νi · P�IM > im2jm,r,θ2,i� · fM,R,i�m,r� · Pi

λim2

� fM,RjIM>im2,θ2�m,r�: �15�

However, there is a case in which disaggregation is preserved
between two soil conditions even if logic tree is employed. It
happens when all GMPEs in the logic tree have the same soil
coefficient. Indeed, assuming for simplicity θ1,i � 0 ∀i and
θ2,i � θ ∀i, then the two thresholds im1 and im2, in which
log�im2� � log�im1� � θ, have the same probability of exceed-
ance P�IM> im1jm,r,θ1,i � 0� � P�IM> im2jm,r,θ2,i � θ�
on the first and second soil condition according to each
GMPE. Then, they also have the same rate of exceedance ac-
cording to the whole logic tree, exactly as in equation (12).
This result also implies that the more the soil coefficients are
similar among the GMPEs, the more disaggregations tend to
be similar between the two soils (see also the Illustrative
Cases section).

Finally, when the logic tree is used, it may be worth men-
tioning that a useful consequence for hazard analyses also ap-
plies if the soil coefficients of GMPEs are different. In fact,
because the results of the section referring to the single-model
disaggregation hold for each of the branches of the logic tree,
the hazard curves for a soil condition may be computed first
by moving, via the factor θi, each curve computed for another
soil condition in the same branch of the logic tree. Then each
of these curves may be weighted by Pi and the total rates of
exceedance for the target soil may be readily obtained:

EQ-TARGET;temp:intralink-;df16;55;346

log�im2,i� � log�im1,i� � θi ⇒ λim2

�
Xn
i�1

λim2,i · Pi �
Xn
i�1

λim1,i · Pi: �16�

Illustrative Cases

All the results derived in this study are analytical proofs
and they do not require any validation. On the other hand, it
may be beneficial for the reader to develop real case studies
that help to pin the main conclusions and to acknowledge
that they apply in several practical applications. To this goal,
a site in the district of Naples (southern Italy) is considered.
Its location is shown in Figure 3a, along with the seismic
source zones that surround it according to the model of Me-
letti et al. (2008), which lies at the basis of the Italian seismic
hazard map (Stucchi et al., 2011). These zones are used to
compute the hazard for the site in question in three cases. All
of them are carried out using, for the zones, the parameters of
the Gutenberg–Richter relationships (Gutenberg and Richter,
1944) provided in Barani et al. (2009, 2010). Earthquake lo-
cations are assumed to be uniformly distributed within the

zones. Hazard is expressed in terms of rate of exceedance
of IMs corresponding to nine return periods.

Single-Model Hazard Case

The first case is that of a single-model hazard (equation 1)
featuring a GMPE model of the type in equation (5), which as
discussed represents the majority of prediction equations
nowadays. In the first example, the peak ground acceleration
(PGA) hazard is computed with the model of Bommer et al.
(2012) extending the Akkar and Bommer (2010) GMPE. Two
soil conditions are considered: (1) rock and (2) soft soil. The
θ1 and θ2 coefficients for this GMPE are 0 and 0.08320 for
rock and soft soil, respectively. Figure 3c shows the resulting
hazard curves, whereas Figure 3d reports the difference in
terms of logarithms of im for any return period. It is evident
that the soil curve is distant from the rock curve by a term
equal to the soil coefficient, as equation (12) indicates. This
necessarily implies conservation of disaggregation between
the soil conditions for any return period (equation 9). The
disaggregation, which indeed coincides for the two soil con-
ditions, is reported in Figure 3b. In particular, the 475 yr haz-
ard disaggregation is represented in the figure (the reader
interested in the relationship between the shape of disaggre-
gation distributions and the source model for Italy can refer to
Iervolino et al., 2011, for further discussion).

Standard Deviation of Residuals Changing with Soil
Conditions

The second example is to illustrate that, contrary to the
first case, if the standard deviation of the residuals changes
with soil conditions, that is, the GMPE is not of the type in
equation (5), disaggregation is not retained between two dif-
ferent soil types. To this aim, the Bommer et al. (2012) GMPE
is fictitiously forced to have a 20% increased standard
deviation of the residuals for soft soil with respect to the rock
case (this artifact was necessary because the author could not
find a GMPE in which residuals change with the soil condi-
tion). In fact, the original standard deviation of the residuals
used for rock is equal to 0.28, whereas it is increased to 0.34
for the soft soil case. The rest of this example is the same as the
previous one.

Figure 4 shows the disaggregation of 2475 yr PGA
hazard, where it is apparent that, if the soil condition implies
a change in the standard deviation of the GMPEs residuals,
disaggregation is not retained passing from one soil condi-
tion to another.
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Logic Tree Case

The final example refers to the logic tree and illustrates
that, as proven, even if all GMPEs employed are of the type in
equation (5), disaggregation is not preserved among soil
classes; however, if the site coefficients are similar among
GMPEs, then disaggregation tends to be similar. For the pur-

poses of the example, the Bommer et al. (2012) and the Am-
braseys et al. (1996) GMPEs are considered, with weights
both equal to 1/2. Figure 5a shows the PGA hazard curves
computed for the rock condition and for the soft soil condi-
tion (the soil coefficients in the Ambraseys et al., 1996,
GMPE for rock and soft soil are 0 and 0.124, respectively).
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Figure 3. (a) Considered site (triangle) and seismic source zones of Meletti et al. (2008) within 200 km; (b) disaggregation in terms of
magnitude and distance of the hazard for the peak ground acceleration (PGA) with return period of 475 yr; (c) PGA hazard curves for rock and
soft soil conditions using the Bommer et al. (2012) ground-motion prediction equation (GMPE); and (d) difference of the hazard curves in
terms of PGA given the return period.

(a) (b)

3.75
5.75

7.75

0

50

100

150

200

0

0.1

0.2

M

R [km]

P
M

,R
|I

M
>

im
(

)

3.75
5.75

7.75

0

50

100

150

200

0

0.1

0.2

M

R [km]

P
M

,R
|I

M
>

im
(

)

Figure 4. Disaggregation for the PGA hazard with 2475 yr return period: (a) rock versus (b) soft soil fictitiously increasing the standard
deviation of the residuals by 20% with respect to rock.
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These two models are both of the type in equation (5),
yet, as it may be argued from Figure 5b, the difference be-
tween im thresholds for any return period is not immediately
related to the soil coefficients, as in the case of the single-
model hazard. However, coefficients for soft soil in the two
GMPEs are similar, both being around 0.1. Therefore, in the
case of logic tree, disaggregations for rock and soft soil haz-
ards are not the same; however, they should be similar, as
discussed. Indeed, Figure 5c,d shows the disaggregations of
the 2475 yr hazard for the two soil conditions, which closely
resemble each other, yet are not perfectly identical.

Summary

This short note recalled some implications of the struc-
ture of GMPEs on the relationship of hazard curves and con-
sequent disaggregation results, when two different soil classes
at the same site are considered. The hypothesis, not infrequent,
is that the soil class affects only the mean in the GMPE, yet
leaves unchanged the standard deviation of the residuals. In
particular, it was shown that:

1. in the case of a single-model hazard (often used to
approximate a full logic tree):

(a) hazard disaggregation for the two soil conditions is
the same for a given annual rate being disaggregated;

(b) the two hazard curves are factually the same curve
moved by the factor that in the GMPE differentiates
the two soil classes;

(c) results (a) and (b) hold even in the case that the stan-
dard deviation of the residuals is a function of mag-
nitude, as it could happen;

2. in the case of a logic tree:

(d) hazard disaggregation is not expected to be invariant
with the site class even if the GMPEs are all of the
type postulated, except if the site coefficient is the
same for all of them (which implies similarity for
close coefficients);

(e) for each branch, point (b) above holds, then the haz-
ard curves for a soil class may be retrieved quickly
by moving each curve computed in the logic tree for
another site class by a factor depending on the GMPE
of the branch, and then weighting the results via the
weights of the branches.

These simple yet analytically rigorous results were finally
illustrated using recent GMPEs. This was to show that
they may be helpful for earthquake engineering appli-
cations where one is often in need of evaluating hazard
curves and design earthquakes from disaggregation for a
specific site class starting from a reference soil condition
hazard.
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Figure 5. (a) Logic tree PGA hazard curves using Ambraseys et al. (1996) and Bommer et al. (2012) GMPEs; (b) difference of the hazard
curves in terms of PGA given the return period; (c) disaggregation of the 2475 yr return period rock hazard; and (d) disaggregation of the
2475 yr return period soft soil hazard.
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Data and Resources

All resources of this short note came from the listed
references. The ground-motion prediction equation (GMPE)
repository of Douglas (2014) may be found at http://www.
gmpe.org.uk/ (last accessed February 2016).
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