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Abstract Near-source ground-motion records affected by directivity may show
unusual features in the signal resulting in low-frequency cycle pulses in the velocity
time history, especially in the fault-normal component. Such an effect causes the seis-
mic demand for structures to deviate from that of so-called ordinary records. This
circumstance may be particularly hazardous for structural engineering applications
if it is not properly accounted for. In fact, current attenuation laws are not able to
capture such effects well, if at all, and therefore current probabilistic seismic hazard
analysis (PSHA) is not able to predict this peculiar spectral shape. This failure may
possibly lead to an underestimation of, in particular, the nonlinear demand. Account-
ing for pulse-type records in earthquake engineering practice should be reflected both
in the PSHA and in the record selection for seismic assessment of structures. These
applications require a model for the probability of occurrence of pulselike records.
Herein such a model is proposed on an empirical basis. A set of pulselike fault-normal
ground motions from the Next Generation Attenuation of Ground Motions (NGA)
Project dataset, as systematically identified by Baker (2007), is used. The independent
variables studied are chosen from those considered by seismologists to affect the am-
plitude of directivity pulses. Issues related to the dataset and the explanatory power of
the proposed models are also discussed.

Introduction

A site located close to the source of a seismic event may
be in a geometrical configuration with respect to the propa-
gating rupture that favors the constructive interference of the
approaching waves (i.e., a synchronization of phases causing
a buildup of energy) resulting in a large velocity pulse. This
phenomenon requires the rupture propagating toward the site
and the alignment of the site with the slip of the fault. If these
two conditions are met, the ground motion at the site may
show forward directivity effects. In fact, directivity causes,
in theory, full-cycle velocity pulses while the fling step,
which is related to the permanent tectonic deformation at
the site, is believed to cause half-cycle pulses (Bolt and Abra-
hamson, 2003).

Parameters believed to affect the amplitude of the pulse
are related to the aforementioned rupture-to-site geometry,
while empirical models positively correlating the earth-
quake’s magnitude to the period of the pulse (Tp) have been
proposed (e.g., Somerville [2003]); global geophysics-based
directivity predictors are also available (e.g., Spudich
et al. [2004]).

Pulse-type records are of interest to structural engineers
because (1) they may induce unexpected demand in struc-
tures having a fundamental period equal to a certain fraction

of the pulse period and (2) such a demand may not be ade-
quately captured by the current best-practice ground-motion
intensity measures such as first-mode spectral acceleration
(Howard et al., 2005; Tothong and Luco, 2007). An effective
way to visualize the hazardous features of pulselike records
is a plot of the inelastic (Sd;i�T�) to elastic (Sd;e�T�) displace-
ment ratio versus the oscillation period (T) of a bilinear sin-
gle degree of freedom system (SDOF) with a 5% hardening
stiffness and damping ratio. In Figure 1, where such a plot is
given for an SDOF with a strength reduction factor (Rs) equal
to 4, the abscissa is T normalized by the pulse period of the
record Tp (Tothong and Cornell, 2006).

The panels in Figure 1 are given, as an example,
grouping pulselike records by the pulse period for three
Tp values. The plots show a bump in the ratio Sd;i=Sd;e be-
tween inelastic and elastic demand at T=Tp≅0:5, indicating
a comparatively large inelastic demand of this kind of near-
source ground motions, which may not be similar to that of
ordinary records and, therefore, calling for a specific inves-
tigation about its occurrence. This is particularly clear in Fig-
ure 1b,c, while in Figure 1a, where Tp is short, the pulse
effect is partially overwhelmed by the high-frequency con-
tent of the ground motions.
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Hazard Analysis in the Near Source and the Need
for a Pulse Occurrence Probability Model

Because not all near-source ground-motion records
show a pulse in the velocity time history, it may be argued
that near-source records do not always induce nonordinary
seismic demand for structures. Near-source records that do
not contain a pulse display virtually the same response be-
havior as far-field records (e.g., Tothong and Cornell [2006]).
Therefore, the current distinction of far-field and near-source
records may not be the most practical; it should be replaced
by ordinary versus pulselike ground motions.

It is clear that it is not possible to apply the current earth-
quake engineering practice to the near source, and the pro-
cedures have to be reviewed and adjusted consistently. A
rational approach to the seismic risk analysis requires a prob-
abilistic model for the occurrence of directivity effects in
ground motions. The systematic deviations of pulselike sig-
nals with respect to the ordinary imply that, in the probabil-
istic assessment of structures, a pulse occurrence model is
required to incorporate such effects accurately in the prob-
abilistic seismic hazard analysis (PSHA). The phenomena
should also be reflected in the record selection, because
the latter should be related with the disaggregation of seismic
hazard (Cornell, 2004). This issue is briefly reviewed in the
following, although for a more comprehensive review, the
reader should refer to the article by Tothong et al. (2007).

Assuming that all seismic sources are within 30 km from
a certain site of interest and given that, as discussed, not all
near-source (NS) ground motions are pulselike, the PSHA ex-
pressed as the mean annual frequency �λSa;NS� of the spectral
acceleration (Sa) exceeding a certain value (x) should be se-
parated into two terms:

λSa;NS�x� � λSa;NS & pulse�x� � λSa;NS & no pulse�x�: (1)

One of the two, the near-source nonpulselike
�λSa;NS & no pulse�, should be from, say, ordinary PSHA, which
requires a near-source attenuation law computed with re-
cords not showing pulses but still coming from short
source-to-site distances (e.g., within 30 km). The second part
should be the near-source term �λSa;NS & pulse� due to pulse-
like records. This requires ground-motion prediction rela-
tionships able to capture the peculiar spectral shape driven by
the pulses. These so-called narrowband attenuation laws are
currently under the attention of seismologists, for example,
the Next Generation Attenuation of Ground Motions (NGA)
Project (see Data and Resources section). In this case, the
attenuation law will not only depend on magnitude and dis-
tance but also on a vector of other parameters �Z� that are
assumed to be meaningful to predict directivity effects.
The total hazard is the linear combination of the two hazard
curves weighted by the pulse occurrence probability as in
equations (2) and (3), in which a single fault is assumed:

(a) (b)

(c)

s

s

s

Figure 1. Empirical pulselike records’ inelastic to elastic displacement demand ratios (Tothong and Cornell, 2006).
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In equation (2), ν is the mean rate of events on the fault,M is
the magnitude of the event, and R is the source-to-site dis-
tance. dtp and dz are the integration intervals of the varia-
bles pulse period, Tp, and Z, respectively. GSajpulse;M;R;Z;Tp

is the complementary cumulative distribution function of
Sa conditional onM, R, Z, and Tp; fTpjZ;M;R is the probabil-
ity density function (PDF) of Tp given M, R, and Z. Simi-
larly, fZjM;R is the conditional distribution of Z given M and
R, while fM;R is the joint PDF ofM and R. The same meaning
of the symbols applies to equation (3).

The conditional probability of having a pulse is needed
to evaluate equations (2) and (3). In the following, empirical
pulse probability models, based on logistic regression for
strike-slip (SS) and non-strike-slip (NSS) rupture data, are
proposed and results discussed.

The Issue of Identifying a Pulse and
the Dataset Used

It is a nonstraightforward task to ascertain whether a re-
cord shows directivity effects, for example, a pulse in the
velocity time history, and its properties such as the period
Tp. Many seismologists and other earthquake science ex-
perts have engaged in this exercise but no widely accepted
method is readily available. The bulk of the difficulties in
identifying a pulse in the ground motion are related to the
wave propagation effects and to the higher frequency content
that may give an unclear picture of the directivity features. A
common option is to visually analyze the waveform looking
for pulses, but this method requires strong expertise in the
field and may be not very efficient for short-period pulses
or for small or moderate magnitude events, where the pulse
may be lost in the high frequency. Above all, this method
does not allow one to investigate large datasets looking
for the fraction of signals showing directivity effects.

Baker (2007) analyzed extensively the NGA database,
and he is the only researcher we are aware of who has looked
systematically at all records in the database. Therefore, we
know which records are the pulses and also which records
are the nonpulses, which is crucial to develop any pulse
occurrence probability model. Baker (2007) developed a
method based on wavelets to assign a score, a real number

between 0 and 1, to each analyzed record and to determine
the pulse period. The larger the score determined the more
likely the record was to show a pulse. In this way, J. W. Baker
(personal comm., 2006) has found pulselike records in both
fault-normal and fault-parallel components of the ground
motions investigated. Herein only those in the fault-normal
component have been considered; in particular, those ground
motions that have a pulse score larger or equal to 0.85 have
been, arbitrarily, counted as pulse-type records. Of these re-
cords, 98 are classified as within 30 km of the fault by the
NGA flat file (see Data and Resources section). Six of them
of them do not have a measure of the closest distance to fault
rupture but their epicentral distance is within 30 km; how-
ever, they still have not been included herein because in the
NGA they lack information about geometry of the fault/site
that is useful for predicting directivity. This set has also to be
cleared of those considered as late pulses, for example, oc-
curring at the end of the records and, therefore, too late to be
directivity caused; there are 19 of these records (J. W. Baker,
personal comm., 2006). The resulting dataset, given in Ta-
ble 1, consists of 73 records from 23 events;1 12 of those are
SS. The events’ magnitude ranges from M 5.2 to 7.5.

This study proposes models for the estimation of the
pulse occurrence probability based on empirical evidence
(i.e., relative frequency). Therefore, the complementary set
of identified nonpulse records is needed. The total database
considered in the following is made of records within 30 km
(in terms of closest distance to fault rupture) coming from the
NGA catalog2 and whose characteristics have been deter-
mined via the NGA flat file and related documentation
(see Data and Resources section).

In the flat file, the total number of events matching the
selection requirements discussed previously and featuring re-
cords within 30 km in terms of closest distance to fault rup-
ture is 45 (this, again, excludes Chi-Chi and aftershocks); 22
of them are SS. The number of records from these SS events
is 133. Because the records identified as pulses in the given
dataset are 34, the marginal SS pulse occurrence probability
is 34=133 or 26%. For the NSS3 case, the identified pulse
records are 39 among 229 within 30 km; therefore, the mar-
ginal probability of a pulse within 30 km is 39=229 or 17%.
Pooling together SS and NSS data, the overall pulse probabil-
ity in records within 30 km of the fault is about 20%. The
modeling in the following will describe how this probability
depends on geometry and magnitude.

1Note that the Chi-Chi pulse records within 30 km (about 80 in number)
were excluded. This is primarily because we did not want to have to define
whether Chi-Chi is SS or NSS. In fact, it is not straightforward as the very
long rupture did not slip in a prevalent direction during the event.

2Also, those records not having a fault-normal component in the NGA da-
tabase at time of access are not considered herein.

3Records with unknown mechanism have been included in non-SS events.
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Table 1
Pulses’ Dataset

Earthquake Name Date (mm/dd/yyyy) Magnitude Mechanism Station Name

San Fernando 02/09/1971 6.6 Reverse LA—Hollywood Stor FF
San Fernando 02/09/1971 6.6 Reverse Lake Hughes #1
San Fernando 02/09/1971 6.6 Reverse Lake Hughes #4
San Fernando 02/09/1971 6.6 Reverse Pacoima Dam (upper left abut)
Friuli, Italy—02 09/15/1976 5.9 Reverse Buia
Santa Barbara 08/13/1978 5.9 Reverse-Oblique Santa Barbara Courthouse
Coyote Lake 08/06/1979 5.7 Strike-Slip Coyote Lake Dam (SW Abut)
Coyote Lake 08/06/1979 5.7 Strike-Slip Gilroy Array #6
Coyote Lake 08/06/1979 5.7 Strike-Slip SJB Overpass, Bent 3 g.l.
Coyote Lake 08/06/1979 5.7 Strike-Slip SJB Overpass, Bent 5 g.l.
Imperial Valley—06 10/15/1979 6.5 Strike-Slip Aeropuerto Mexicali
Imperial Valley—06 10/15/1979 6.5 Strike-Slip Agrarias
Imperial Valley—06 10/15/1979 6.5 Strike-Slip Brawley Airport
Imperial Valley—06 10/15/1979 6.5 Strike-Slip EC County Center FF
Imperial Valley—06 10/15/1979 6.5 Strike-Slip EC Meloland Overpass FF
Imperial Valley—06 10/15/1979 6.5 Strike-Slip El Centro Array #10
Imperial Valley—06 10/15/1979 6.5 Strike-Slip El Centro Array #11
Imperial Valley—06 10/15/1979 6.5 Strike-Slip El Centro Array #3
Imperial Valley—06 10/15/1979 6.5 Strike-Slip El Centro Array #4
Imperial Valley—06 10/15/1979 6.5 Strike-Slip El Centro Array #5
Imperial Valley—06 10/15/1979 6.5 Strike-Slip El Centro Array #6
Imperial Valley—06 10/15/1979 6.5 Strike-Slip El Centro Array #7
Imperial Valley—06 10/15/1979 6.5 Strike-Slip El Centro Array #8
Imperial Valley—06 10/15/1979 6.5 Strike-Slip El Centro Differential Array
Imperial Valley—06 10/15/1979 6.5 Strike-Slip Holtville Post Office
Mammoth Lakes—02 05/25/1980 5.7 Strike-Slip Convict Creek
Irpinia, Italy—01 11/23/1980 6.9 Normal Bagnoli Irpino
Irpinia, Italy—01 11/23/1980 6.9 Normal Sturno
Westmorland 04/26/1981 5.9 Strike-Slip Parachute Test Site
Morgan Hill 04/24/1984 6.2 Strike-Slip Coyote Lake Dam (SW Abut)
Morgan Hill 04/24/1984 6.2 Strike-Slip Gilroy Array #6
Morgan Hill 04/24/1984 6.2 Strike-Slip Hollister Diff Array #1
Drama, Greece 11/09/1985 5.2 Normal-Oblique Drama (basement)
North Palm Springs 07/08/1986 6.1 Reverse-Oblique North Palm Springs
San Salvador 10/10/1986 5.8 Strike-Slip Geotech Investigation Center
Whittier Narrows—01 10/01/1987 6.0 Reverse-Oblique Bell Gardens—Jaboneria
Whittier Narrows—01 10/01/1987 6.0 Reverse-Oblique Compton—Castlegate Street
Whittier Narrows—01 10/01/1987 6.0 Reverse-Oblique Downey—Co Maintenance Building
Whittier Narrows—01 10/01/1987 6.0 Reverse-Oblique Glendale—Las Palmas
Whittier Narrows—01 10/01/1987 6.0 Reverse-Oblique LA—West 70th Street
Whittier Narrows—01 10/01/1987 6.0 Reverse-Oblique LB—Orange Avenue
Whittier Narrows—01 10/01/1987 6.0 Reverse-Oblique LB—Rancho Los Cerritos
Whittier Narrows—01 10/01/1987 6.0 Reverse-Oblique Lakewood—Del Amo Boulevard
Whittier Narrows—01 10/01/1987 6.0 Reverse-Oblique Norwalk—Imp Highway, South Grnd
Whittier Narrows—01 10/01/1987 6.0 Reverse-Oblique Santa Fe Springs—East Joslin
Superstition Hills—02 11/24/1987 6.5 Strike-Slip Parachute Test Site
Loma Prieta 10/18/1989 6.9 Reverse-Oblique Gilroy Array #2
Loma Prieta 10/18/1989 6.9 Reverse-Oblique Saratoga—Aloha Avenue
Erzican, Turkey 03/13/1992 6.7 Strike-Slip Erzincan
Cape Mendocino 04/25/1992 7.0 Reverse Fortuna—Fortuna Boulevard
Cape Mendocino 04/25/1992 7.0 Reverse Petrolia
Landers 06/28/1992 7.3 Strike-Slip Lucerne
Landers 06/28/1992 7.3 Strike-Slip Yermo Fire Station
Northridge—01 01/17/1994 6.7 Reverse Jensen Filter Plant
Northridge—01 01/17/1994 6.7 Reverse Jensen Filter Plant Generator
Northridge—01 01/17/1994 6.7 Reverse LA—Century City CC North
Northridge—01 01/17/1994 6.7 Reverse LA—Wadsworth Virginia Hospital North
Northridge—01 01/17/1994 6.7 Reverse LA Dam
Northridge—01 01/17/1994 6.7 Reverse Lake Hughes #9
Northridge—01 01/17/1994 6.7 Reverse Newhall—West Pico Canyon Road
Northridge—01 01/17/1994 6.7 Reverse Pacoima Dam (downstream)

(continued)
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Directivity Factors and Pulse Occurrence Covariates

In Somerville et al. (1997), for SS events, the amplitude
of spectral modification of ordinary attenuation laws due to
directivity in ground motions depends on X cos�θ�, where
X � s=L is the ratio of the distance from the epicenter to the
site (measured along the rupture direction) and the fault
length; θ is the angle between the fault strike and the path
to the site with respect to the rupture (measured in degrees
herein). For dip-slip (DS) events, the analogous parameter is
Y cos�ϕ�, where Y � d=W and ϕ have similar meaning of X
and θ, respectively, if the hypocenter and the plane of the
rupture (W is the fault width) are considered in place of
the epicenter and the fault direction (Fig. 2).

Other factors that may explain directivity effects are the
event’s magnitude, which is correlated with the pulse period
(Somerville, 2003) and the source-to-site distance. Neither of
them appears explicitly in X cos�θ� and Y cos�ϕ�, although
the rupture length is related to magnitude and source-to-site

distance is not independent from the geometrical configura-
tion. Recently, also the s distance (d distance) alone has been
considered as a meaningful predictor of directivity (N. A.
Abrahamson, personal comm., 2005) and it is confirmed
in the following.

A rough explanation is that for large s (or d) the chance
that the rupture evolves yielding directivity effects increases
independently of the fault length. Therefore, the variables
considered herein as possible covariates in the model to pre-
dict pulse occurrence are (1) the closest distance to fault rup-
ture (R), (2) the event’s magnitude (M), (3) the length ratio X
(Y for NSS events), (4) the θ angle4 (ϕ for NSS events), (5) the
s distance (d for NSS events), and the Somerville et al. (1997)
parameter X cos�θ� (Y cos�ϕ� for NSS events).

Table 1 (Continued)
Earthquake Name Date (mm/dd/yyyy) Magnitude Mechanism Station Name

Northridge—01 01/17/1994 6.7 Reverse Pacoima Dam (upper left)
Northridge—01 01/17/1994 6.7 Reverse Rinaldi Receiving Station
Northridge—01 01/17/1994 6.7 Reverse Sylmar—Converter Station
Northridge—01 01/17/1994 6.7 Reverse Sylmar—Converter Station East
Northridge—01 01/17/1994 6.7 Reverse Sylmar—Olive View Med FF
Kobe, Japan 01/16/1995 6.9 Strike-Slip Takarazuka
Kobe, Japan 01/16/1995 6.9 Strike-Slip Takatori
Kocaeli, Turkey 08/17/1999 7.5 Strike-Slip Arcelik
Kocaeli, Turkey 08/17/1999 7.5 Strike-Slip Gebze
Duzce, Turkey 11/12/1999 7.1 Strike-Slip Lamont 1060
Sierra Madre 06/28/1991 5.6 Reverse LA—City Terrace
Sierra Madre 06/28/1991 5.6 Reverse San Marino—SW Academy

sL

R
site

epicenter

fault

site

fault

hypocenter

SS Plan View DS Side View

φθ

Figure 2. SS and DS directivity schematics (Somerville et al., 1997).

4From Figure 2, it is possible to derive a geometrical relationship between
the θ (ϕ) angle and the R and s (d) distances. However, because ruptures may
not always be represented by straight lines, such relationships may be lost.
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In Figures 3–5, the dataset, separated into pulselike and
nonpulselike records is represented in terms of several of
the covariates listed previously. These plots show, although
weakly, empirical trends that the probability models are ex-
pected to reproduce. For example, it is possible to observe in
Figure 3 that, at least for the SS case, the pulse occurrence
likelihood decreases with R and increases with s. Similarly
Figure 4 suggests that there is a negative trend of pulse oc-
currence probability with respect to θ and ϕ, as the fraction
of pulselike records seems larger for low values of these an-
gles. At the same time, it should be noted that some pulses
correspond to values of the covariates that are unfavor-
able according to the directivity prediction models discussed
previously.

Such figures also give a picture of the covariate ranges
and, therefore, of the applicability of the models. In particu-
lar, it seems that there is no practical information in the data
on pulse occurrence beyond about 40 km in terms of s for the
SS case and beyond 20 km in terms of d for the NSS case.
Furthermore, insufficient pulse data are available for R below
5 km in the NSS case.

Pulse Occurrence Probability Models Based on
Logistic Regression

The occurrence of a pulse in a near-source ground mo-
tion may be represented as an indicator variable (I) that can

assume the two values: 1 if there is a pulse in the record or 0
if the record does not show a pulse. The probability of the
occurrence of the pulse is p � P�I � 1�; the probability of
the record not showing a pulse is 1 � p � P�I � 0�. To link
this categorical response to a specific variable believed to
have some prediction power, the most used model is the lo-
gistic regression (Agresti, 2002). Logistic regression as-
sumes the log of the odds ratio to be a linear function of the
explanatory variable. This means log�p=�1 � p�� � α� βz,
where p is the occurrence probability given z and fα; βg are
the coefficients to be determined. In general, multivariate lo-
gistic regressions are of the type in equation (4), which is
written in the case of k predictor variables:

log
�

p

1 � p

�
� α� β1z1 � β2z2 �…� βkzk: (4)

Several simple and multiple regression models for pulse
occurrence in SS and NSS cases have been investigated in this
exploratory study using the glmfit tool, which serves to fit
generalized linear models, in MATHWORKS—MATLAB®
software. Unfortunately, it is not easy to determine the pre-
diction power and to compare logistic models. One qualita-
tive way to determine whether the logistic distribution is a
good approximation of the data is to group the sample in
z bins and then to estimate p as the ratio of occurrences over
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Figure 3. Dataset used in terms of projected distance (along the rupture plane) from the origin of the rupture toward the site versus the
closest distance to fault rupture.
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Figure 4. Dataset used in terms of the angle between the site and the fault plane versus the normalized distance.
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the number of data within the bin; plotting these frequencies
versus the fit gives a picture of the adequacy of the model.

Furthermore, there is no widely accepted direct analog
to R2 as defined for ordinary least-squares regressions. None-
theless, a number of logistic R2 measures have been pro-
posed. These approximations of R2 are not actual percents
of variance explained by the model, but rather attempts to
measure strength of association. In equations (5) (Efron,
1978) and (6) (McFadden, 1974), two of these measures
are given,5 where n is the sample size, p̂i is the probability
estimated by the model, yi is the ith binary response in the
sample, and p � 1

n

P
n
i�1 yi:

R2
E � 1 �

P
n
i�1�yi � p̂i�2P
n
i�1�yi � p�2 ; (5)

R2
MF � 1 �

P
n
i�1 yi log�p̂i� � �1 � yi� log�1 � p̂i�
n�p log�p� � �1 � p� log�1 � p�� : (6)

To choose the best functional form, the Akaike informa-
tion criterion (AIC) may be used; it allows one to compare
models with a different number of terms counterbalancing
the improvement of fit with the manageability of the equa-
tion. AIC is defined in equation (7), where the first term in the
parentheses is the maximized log likelihood (for n indepen-
dent Bernoulli trials) and q is the number of parameters (this
penalizes the model for having many parameters); it may be
stated that the lower the AIC is, the better is the model:

AIC � �2
��Xn

i�1

yi log�p̂i� � �1 � yi� log�1 � p̂i�
�
� q

�
:

(7)

Univariate Probability Models

Strike-Slip. Simple (univariate) logistic regression allows
one to determine the probability trends with respect to those
parameters previously discussed. Consider the SS records
first: in Figure 6, the continuous estimated conditional occur-
rence probability is plotted versus each of the predictors
along with the pulse observations (as coded by the values
of the indicator variable defined). The parameters showing
the largest explanatory power with respect to the pulse oc-
currence are the closest distance to fault rupture, the θ angle,
and the distance measured along the rupture. In Figure 6a, it
is possible to see the clear decreasing trend of pulse occur-
rence probability with R. Such a trend is confirmatory with
respect to what is qualitatively observed in the left panel of
Figure 3. The occurrence probability at zero distance is 0.58
and drops to 0.03 at 30 km. The s distance, Figure 6b, also
shows some predictive power with an expected trend. The

plot refers to the 0–90-km range, which is the data availa-
bility interval. Between these limits, the probability of ob-
serving a pulse increases from 0.16 to 0.75; however, as
discussed, the actual upper bound for the applicability of
the model should be around 40 km, where the occurrence
has 0.4 probability. The θ angle, Figure 6c, seems also sig-
nificant for pulse occurrence, estimating an occurrence prob-
ability of 0.54 for a site that is sitting on the line of the
rupture (in the most favorable condition to see a pulse)
and drops to 0.01 for a site orthogonally placed with respect
to the fault in a way that the rupture proceeds beyond it.

Other candidates, to be directivity-related parameters, all
seem to have small, if any, predictive power with respect to
pulse occurrence probability. It can be observed in Figure 6d,
e,f that the occurrence probability does not vary much in
the data intervals for the length ratio X and magnitude; a
slightly greater trend is shown for X cos�θ�. (Note that given
these results, magnitude can, in principle, be dropped from
the conditional pulse occurrence probability in equations 2
and 3.)

The coefficients, fα; βg, relative to the univariate regres-
sions shown in Figure 6, along with pseudo-R2 measures and
AIC scores, are given in Table 2; their values confirm the
discussion given previously.

Non-Strike-Slip. The same analyses just described have
been repeated for the NSS sample with respect to the direc-
tivity predictors that apply to the DS case. Qualitative trends
obtained (Fig. 7) are generally the same as the SS case if in-
stead of s, θ, and X, their DS analogs are considered. More-
over, the ranking of the variables in terms of predictive power
for the pulse occurrence probability of the SS case also holds
for NSS. R seems to significantly affect pulse occurrence as
do the ϕ angle and d distance, while Y cos�ϕ� and Y show
lower predictive power. The regression on the event’s mag-
nitude is still nonsignificant and for the NSS case turns out in
a slightly negative trend.

Generally, the predicted probability is lower with respect
to the SS case as anticipated by the marginal frequencies ob-
served in the input dataset. In fact, the NSS data are more
heterogeneous than SS because they do not focus on a spe-
cific fault mechanism (i.e., being generic NSS).

Although it may be problematic to compare directly R2

for different logistic regressions, the larger values for the SS
solutions with respect to those for NSS (Table 3) seem to sug-
gest a lower efficiency of the models for the latter case with
respect to the former. This may reflect the fact that the geom-
etry and the physics in the SS case are, in principle, cleaner
than in the NSS. Note that the AIC is larger for lower R2 and
for larger sample size.

Multivariate Logistic Regression Models

For a given site and rupture schematic such that near-
source conditions occur, specific values for the predictors are
available (see Fig. 2); therefore, to perform a PSHA as sug-

5These tend to be smaller than ordinary R2, and values of 0.2–0.4 are con-
sidered highly satisfactory.
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gested by equations (2) and (3), the pulse occurrence prob-
ability has to be conditioned on a vector of covariates treated
jointly. To this aim, multivariate logistic regressions, equa-
tion (4), have been investigated to build up pulse occurrence
probability models.

Strike-Slip. When constructing a multivariate regression
model, choosing the appropriate covariates and terms is not
a straightforward task. Including only few covariates may
lead to a lower prediction power than including many terms
and interactions. On the other hand, a complex model, al-

(a) (b)

(c) (d)

(e) (f)

Figure 6. Univariate logistic regressions for the SS case.

Table 2
Univariate Logistic Regression Coefficients and Scores for the SS Case

Covariate Constant Term Linear Term R2
E R2

MF AIC

R (km) 0.32347 �0:12169 0.16051 0.12467 136.3561
s (km) �1:6349 0.030403 0.040238 0.034712 149.958
θ (deg) 0.17263 �0:05545 0.12381 0.12873 135.7425
M �1:9439 0.13523 0.000848 0.000775 155.0894
X �1:2452 0.32971 0.001278 0.001522 154.9764

X cos�θ� �1:5435 0.99033 0.011531 0.013597 153.1507
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though better representing the input sample, may be less
manageable and may lose in generality. Several approaches
exist to build up multiple ordinary regression models once a
basic set of covariates has been established, such as forward
selection and backward elimination (Agresti, 2002), which

also apply to the logistic case. A full quadratic model, which
would include all of the five basic predictor candidates for
the SS case, fR; s; θ; X;Mg, should have 20 terms because
of the interactions and the squared variables. Because the
number of pulselike records for the SS case is only slightly

(a) (b)

(c) (d)

(e) (f)

Figure 7. Univariate logistic regressions for the NSS case.

Table 3
Univariate Logistic Regression Coefficients and Scores for the NSS Case

Covariate Constant Term Linear Term R2
E R2

MF AIC

R (km) �0:25026 �0:07785 0.058661 0.050954 202.3675
d (km) �1:8323 0.028856 0.007687 0.009624 211.0061
ϕ (deg) �0:57869 �0:0286 0.082195 0.080198 196.255

M �1:4399 �0:02245 1:42 × 10�05 1:36 × 10�05 213.0149
Y �1:8301 0.50793 0.004479 0.004608 212.0546

Y cos�ϕ� �1:9319 0.86251 0.013224 0.012865 210.3287

Probability of Occurrence of Velocity Pulses in Near-Source Ground Motions 2271



Ta
bl
e

4
M
ul
tiv
ar
ia
te

R
eg
re
ss
io
n
M
od
el
s
fo
r
th
e
SS

C
as
e

C
ov
ar
ia
te
s

α
β
1

β
2

β
3

β
4

β
5

β
6

β
7

β
8

β
9

R
2 M
F

R
2 E

A
IC

fR
;s
g

�0
:2
7
0
0
6

�0
:1
3
3
3
1

0.
03
88
01

0.
22
51
4

0.
17
17
5

13
1.
23
66

fR
;θ
g

1.
28
09

�0
:1
0
4
1

�0
:0
5
0
8
3

0.
25
69
8

0.
21
62
4

12
4.
50
98

fs
;θ
g

�0
:0
5
1
1
6

0.
00
85

�0
:0
5
2
8
7

0.
12
81
6

0.
13
09
3

13
7.
40
95

fR
;s
;R

·s
g

�0
:3
3
8
4
4

�0
:1
2
6
9
5

0.
04
25
77

�0
:0
0
0
3
2

0.
22
51
6

0.
17
18
9

13
3.
21
53

fR
;θ
;R

·θ
g

1.
79
89
1

�0
:1
4
9
3
8

�0
:0
8
1
6
7

0.
00
25
79

0.
26
22
1

0.
22
69
9

12
4.
88
35

fs
;θ
;s

·θ
g

�0
:1
0
3
1
2

0.
01
16
46

�0
:0
5
0
3
6

�0
:0
0
0
1
9

0.
12
76
8

0.
13
10
4

13
9.
39
21

fR
;s
;θ
g

0.
85
92
5

�0
:1
1
1
3
7

0.
01
87
04

�0
:0
4
4
4
1

0.
27
08

0.
22
51
1

12
5.
16
79

fR
;s
;θ
;R

·s
g

0.
92
31
76

�0
:1
1
6
7
6

0.
01
55
26

�0
:0
4
4
6
5

0.
00
02
61

0.
27
14
7

0.
22
52
1

12
7.
15
35

fR
;s
;θ
;R

·θ
g

1.
38
15
8

�0
:1
5
4
8
4

0.
01
75
15

�0
:0
7
4
1
5

0.
00
24
82

0.
27
48
2

0.
23
45
7

12
5.
73
86

fR
;s
;θ
;s

·θ
g

1.
02
57
5

�0
:1
1
3
1
5

0.
00
88
37

�0
:0
5
1
5
6

0.
00
05
84

0.
27
50
5

0.
22
60
2

12
7.
03
16

fR
;s
;θ
;R

·θ
;s

·θ
g

1.
49
62
4

�0
:1
5
5
7
2

0.
01
02
6

�0
:0
7
9
0
7

0.
00
24
73

0.
00
04
18

0.
27
71
8

0.
23
50
4

12
7.
66
77

fR
;s
;θ
;R

·s
;R

·θ
g

1.
76
40
9

�0
:1
8
7
2
3

0.
00
21
34

�0
:0
7
9
6
5

0.
00
12
25

0.
00
28
9

0.
27
72
1

0.
23
64
9

12
7.
44
79

fR
;s
;θ
;s

·θ
;R

·s
g

1.
04
59
1

�0
:1
1
5
1
8

0.
00
78
95

�0
:0
5
1
4
6

0.
00
05
68

9
:9
9
×
1
0
�0

5
0.
27
52
6

0.
22
60
3

12
9.
02
96

fR
;s
;θ
;R

·s
;R

·θ
;s

·θ
g

1.
79
20
8

�0
:1
8
5
5
4

�0
:0
0
0
1
6

�0
:0
8
1
5
7

0.
00
11
43

0.
00
28
59

0.
00
01
93

0.
27
83
6

0.
23
65
8

12
9.
43
35

fR
;s
;θ
;R

·s
;R

·θ
;s

·θ
;

R
2
;s

2
;θ

2
g

1.
31
99
72

�0
:3
8
5
9
3

0.
04
50
24

0.
00
83
49

0.
00
12
75

0.
00
36
87

�0
:0
0
1
0
4

0.
00
70
86

�0
:0
0
0
3
7

�0
:0
0
1
4
7

0.
30
06
2

0.
26
24
4

13
1.
52
34

2272 I. Iervolino and C. A. Cornell



larger (34) than the number of terms in the model, there is
significant risk of data overfitting. Therefore, based on the
results of the previous section, the variables showing the
lowest marginal predictive power, fX;Mg, have been ex-
cluded from candidates for the multivariate regressions for
pulse occurrence. This does not imply that magnitude or fault
length do not affect hazard analysis in the near source, but
rather, that they are more related to the amplitude of the di-
rectivity effects once the geometry has been determined.

For the fR; s; θg set of covariates, several multiple re-
gression models have been fitted. They are linear and quad-
ratic. Results in terms of coefficients are given in Table 4.
Among those computed, the linear combination of the covar-
iates is reported here, equation (8), as it is the best perform-
ing model that includes all three covariates known given the
rupture and the site. There is no support from the analyses
for the inclusion of interaction or squared terms. In fact,
while a two-variable model (with only R and θ) has a slightly
lower (better) AIC, we prefer a model that makes use of
the maximum level of information about the source-to-site
configuration,

P�pulsejR; s; θ� � eα�β1R�β2s�β3θ

1� eα�β1R�β2s�β3θ
: (8)

Because, for the rupture’s schematic geometry, θ is known
given R and s, it is possible to represent this model in a
three-dimensional plot, which is given in Figure 8 up to the

bounds of the covariates determined by data availability. As-
suming the epicenter of the event at the origin and the rupture
direction being coincident with the s axis, any point in the
fR; sg plane may be considered as a site for which the θ angle
is also known �θ � arctan�R=s��. Therefore, for that site, the
pulse occurrence probability predicted according to the pro-
posed model may be read on the vertical axis.

From the plot, it is possible to observe the expected
marginal trends of pulse occurrence with respect to the three
covariates. The probability generally decreases with R and
increases with s. Because the univariate regression suggested
a low probability for large θ, it should be reflected in the left
corner of the model, as it actually is.

Non-Strike-Slip. For the NNS case, an analogous set of co-
variates, fR; d;ϕg, and analogous functional forms of the
SS case have been investigated and results are reported in
Table 5. The corresponding model of equation (8) is given
in Figure 9 for the NSS case. Again, the shape of the prob-
ability surface is similar between SS and NSS. In comparing
Figure 9 to Figure 8, it has to be recalled that the former
refers to a restricted covariates’ domain with respect to the
latter because of the applicability boundaries of NSS data.
The NSS multivariate model, as also observed for the univari-
ate regressions, generally predicts lower conditional prob-
abilities with respect to the SS case.

It may be observed from the results reported in Table 5
that this model is not the best performing in terms of global
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Figure 8. Selected multivariate logistic regression model for the SS case.
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scores. In fact, other functional forms scoring better AICs can
lead to significantly different conditional probabilities,
which may approach 1 for some values of the input para-
meters, although this behavior seems to be not justified
by the input data. In other words, the multivariate models
for the NSS case lack robustness if compared to the SS case.
This is mainly due to the aforementioned heterogeneity of
the covariate data. In fact, the NSS dataset includes several
fault mechanisms while the set of predictors has been cali-
brated for DS ruptures. Therefore, the presented model has
been chosen for consistency with the SS case, as the same
points supporting its preference in the SS case still hold.

Discussion and Conclusions

Near-source issues in earthquake engineering are of con-
cern for nonlinear assessment of structures. Because of the
peculiar spectral features that ground motion may experi-
ence, the PSHA at the site requires appropriate procedures.
Then, record selection cannot follow the current far-field
practice and should reflect the near-source pulse and non-
pulse hazards. Both of these issues call for a pulse occurrence
probabilistic model. The study presented attempted to build
and propose such models empirically. The fundamentals of
the analyses are related to the choice of the covariates (i.e.,
independent variables) and the determination of the response
sample (i.e., the dataset).

Because PSHA refers to a specific site, the occurrence of
pulses should be conditional on some parameters, available
for the source-to-site configuration, which are believed to
predict directivity effects. To this aim, covariates were cho-
sen among factors identifying near-source conditions and,
according to seismologists, affecting the amplitude of pulses
specifically for SS and DS events.

As directivity effects are generally observed most
strongly in the velocity signals recorded in the direction
orthogonal to the strike, the empirical dataset was made
up of fault-normal rotated records. All of those records with-
in 30 km in terms of closest distance to fault rupture (arbi-
trarily considered as a practical upper bound for near-source
conditions) reported by the Next Generation Attenuation da-
tabase were used (except the Chi-Chi related records). Pulse-
like velocity ground motions have been identified by the
rational method, based on wavelets, proposed by Baker
(2007). Some judgment was used to identify (and classify
as nonpulselike) those velocity recordings showing multiple
low-frequency cycles that are likely not related to directivity.
Finally, consistent with the seismological parameterization
of directivity, the obtained dataset was split into two parts
featuring SS and NSS records, in compliance with the dif-
ferent physics of directivity in the two cases. The dataset
was purged of those records for which the information re-
garding the covariates was not available. This alone allows
one to evaluate the marginal pulse occurrence frequencies,
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Figure 9. Selected multivariate logistic regression model for the NSS case.
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which are not larger than 26%, a number found for the
SS sample.

Simple and multiple logistic regression models have
been investigated to associate pulse occurrence in the dataset
to the covariates, for both SS and NSS samples. General find-
ings hold for SS and NSS. Pulse occurrence probability has
shown, as expected, significant dependence on distance to
the rupture, R, along the rupture, s, and also on the θ angle
(which, in principle, is a deterministic nonlinear function of
the other two parameters). Less explanatory power, if at all,
for pulselike records occurrence, was found for the event’s
magnitude and other pulse-amplitude-related factors. Al-
though these results may sound intuitively unexpected, it
has to be recalled here that this study dealt with pulse occur-
rence probability alone, rather than on the prediction of the
amplitude of such pulses, for which the excluded parameters
do play a role.

The strength of the association between the response
variables and the covariates, in simple logistic models, has
been found to be systematically weaker in the NSS case than
in the SS. This may be because, for NSS, the set of physical
conditions to determine a pulselike record seems more dif-
ficult to realize, as suggested by the marginal pulse frequency,
which is 17%. Moreover, because the NSS dataset by defini-
tion includes different mechanisms, while the chosen predic-
tors refer specifically to DS events, some predictors may show
comparatively less explanatory power.

Multivariate logistic regression models were also inves-
tigated. To avoid data overfitting, only the covariates shown
to be the best predictors in the simple univariate models were
considered in the multiple regressions, which have been in-
vestigated up to complete quadratic functional forms. For the
SS case, the proposed model is the linear combination of the
geometrical predictors, as there is no empirical support to use
models that include interaction or quadratic terms. In the NSS
case, the discussed intrinsic features of the sample weakened
the robustness of the regressions. Therefore, the proposed
NSS multivariate model has been arbitrarily selected by ana-
logy with the SS case.

Finally, it is worth mentioning that because it is a general
opinion that strong directivity is associated with a strong as-
perity and with a smooth fault plane, there may be a case for
a common event term in the regression models. On the other
hand, one can argue that in the same event, the geometry
varies from site to site so the event term might be small.
Therefore, selected univariate (depending on R) and multi-
variate (depending on the linear combination of the five basic
covariates) logistic regression models, for both SS and NSS
cases, have been tested for random effect (RE). The RE con-
sidered is the event, that is, the specific earthquake for each
sample. The XTLOGIT routine of STATACORP—STATA™ soft-
ware (version 8.0) software was used to test the logistic
models. Such analyses for those models investigated led to
the conclusion that the proportion of the total variance con-
tributed by the event variance component is small and, at least
assuming an 0.05 significance level, the null hypothesis that

the random effect is negligible cannot be rejected. Therefore,
based on these results, there is no compelling need to use
logistic regression models that include specific event terms.

Data and Resources

The records’ pulse scores used in the analyses herein
have been kindly provided by J. W. Baker. Other information
about the considered ground motions is obtained via the Next
Generation Attenuation of Ground Motions Project (http://
peer.berkeley.edu/products/nga_project.html) and, in parti-
cular, from its online published flat file (http://peer.berkeley
.edu/assets/NGA_Flatfile.xls) and documentation (http://
peer.berkeley.edu/nga/NGA_Documentation.xls), both of
them last accessed in August 2006.

Acknowledgments

The authors would like to thank Jack W. Baker of Stanford University
and Polsak Tothong of AIRWorldwide Corporation. I. Iervolino would also
like to thank Massimiliano Giorgio of the Second University of Naples and
Paolo Viarengo of the University of Naples Federico II. C. Allin Cornell was
supported in part by the Earthquake Engineering Research Centers Program
of the National Science Foundation under Award Number EEC-9701568
through the Pacific Earthquake Engineering Research Center (PEER). The
support from the Department of Structural Engineering of the University
of Naples Federico II to I. Iervolino is also gratefully acknowledged.

This work started in 2005, and at the end of October 2007, we sub-
mitted the manuscript to BSSA. A few weeks later, on 14 December 2007, C.
Allin Cornell passed away. I. Iervolino wants to recall here the unique per-
sonal and scientific education he received from such a great person.

References

Agresti, A. (2002). Categorical Data Analysis, Second Ed., Wiley and Sons,
New York.

Baker, J. W. (2007). Quantitative classification of near-fault ground motions
using wavelet analysis, Bull. Seismol. Soc. Am. 97, 1486–1501.

Bolt, B. A., and N. A. Abrahamson (2003). Estimation of strong seismic
ground motions, in International Handbook of Earthquake and Engi-
neering Seismology, Part B, W. H. K. Lee, H. Kanamori, P. C. Jennings
and C. Kisslinger (Editors), Academic Press, New York, 983–1001.

Cornell, C. A. (2004). Hazard, ground motions and probabilistic assessment
for PBSD, in Performance Based Seismic Design Concepts and Im-
plementation, PEER Report 2004/05, Pacific Earthquake Engineering
Research Center, Berkeley, California, 39–52.

Efron, B. (1978). Regression and ANOVAwith zero-one data: measures of
residual variation, J. Am. Stat. Assoc. 73, 113–121.

Howard, K., C. A. Tracy, and R. G. Burns (2005). Comparing observed and
predicted directivity in near-source ground motion, Earthq. Spectra
21, 1063–1092.

McFadden, D. (1974). Conditional logit analysis of qualitative choice beha-
vior, in Frontiers in Economics, P. Zarembka (Editor), Academic
Press, New York, 105–142.

Somerville, P. G. (2003). Magnitude scaling of the near fault rupture direc-
tivity pulse, Phys. Earth Planet. Interiors 137, 201–212.

Somerville, P. G., N. F. Smith, R. W. Graves, and N. A. Abrahamson (1997).
Modification of empirical strong ground motion attenuation relations
to include the amplitude and duration effects of rupture directivity, Se-
ism. Res. Lett. 68, 199–222.

2276 I. Iervolino and C. A. Cornell



Spudich, P., B. S. J. Chiou, R. Graves, N. Collins, and P. G. Somerville
(2004). A formulation of directivity for earthquake sources using iso-
chrone theory, U.S. Geol. Surv. Open-File Rept. 2004-1268.

Tothong, P., and C. A. Cornell (2006). Probabilistic seismic demand analysis
using advanced ground motion intensity measures, attenuation rela-
tionships, and near-fault effects, PEER Report 2006/11, Pacific Earth-
quake Engineering Research Center, Berkeley, California.

Tothong, P., and N. Luco (2007). Probabilistic seismic demand analysis
using advanced ground motion intensity measures, Earthq. Eng.
Struct. Dyn. 36, 1837–1860.

Tothong, P., C. A. Cornell, and J. W. Baker (2007). Explicit directivity-pulse
inclusion in probabilistic seismic hazard analysis, Earthq. Spectra 23,
867–891.

Dipartimento di Ingegneria Strutturale
Università degli Studi di Napoli Federico II
Via Claudio 21, 80125
Naples, Italy
iunio.iervolino@unina.it

(I.I.)

Department of Civil and Environmental Engineering
Stanford University
Stanford, California 94305

(C.A.C.)

Manuscript received 1 November 2007

Probability of Occurrence of Velocity Pulses in Near-Source Ground Motions 2277


