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SUMMARY

State-of-the-art approaches to probabilistic assessment of seismic structural reliability are based on simula-
tion of structural behavior via nonlinear dynamic analysis of computer models. Simulations are carried out
considering samples of ground motions supposedly drawn from specific populations of signals virtually
recorded at the site of interest. This serves to produce samples of structural response to evaluate the failure
rate, which in turn allows to compute the failure risk (probability) in a time interval of interest. This proce-
dure alone implies that uncertainty of estimation affects the probabilistic results. The latter is seldom quan-
tified in risk analyses, although it may be relevant. This short paper discusses some basic issues and some
simple statistical tools, which can aid the analyst towards the assessment of the impact of sample variability
on fragility functions and the resulting seismic structural risk. On the statistical inference side, the addressed
strategies are based on consolidated results such as the well-known delta method and on some resampling
plans belonging to the bootstrap family. On the structural side, they rely on assumptions and methods typical
in performance-based earthquake engineering applications. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Performance-based earthquake engineering or PBEE [1] assumes that the occurrence of the (main)
earthquakes at the site of the construction can be described by a homogeneous Poisson process (HPP).
It can be shown that, in the framework of PBEE, if seismic damage accumulation is not considered
(e.g., [2]), also the process of earthquakes causing structural failure is a HPP. This is convenient,
because the HPP is a one-parameter model, that is, the failure probability in any time interval only
depends on the failure rate, λf. It is usually computed via Equation (1), where P[ f |im] is a function
providing the failure probability conditional to the values of a ground motion intensity measure (IM),
that is, the fragility of the structure, and dλim= d(im) � dλim/d(im) is obtained from the derivative of the
seismic hazard curve. The latter, usually provided by engineering seismologists, associates to each IM
value, im, the rate of earthquakes exceeding it at the site where the structure is located, λim.

λf ¼ ∫
im
P f imj½ �� dλimj j (1)

In the state-of-the-art approach, the fragility can be evaluated via several procedures that are all
based on nonlinear dynamic analysis of a structural numerical model. The simulations aim at the
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generation of samples of structural response given samples of ground motions, selected consistently
with the seismic hazard of the site [3]. It immediately follows that only an estimate of the failure
rate of the structure is obtained. To better understand this issue, one can consider that a probability
model is often assigned to define structural fragility, lognormal being a typical choice.
Consequently, the failure rate is provided by Equation (2), where Φ(·) is the standard normal
cumulative distribution function (CDF) and {η, β} are parameters.

λf η; βð Þ ¼ ∫
im
Φ

log imð Þ � η
β

� �
� dλimj j (2)

In this context, given the hazard curve, the failure rate is a function of {η, β}. These parameters are
typically not known, and are estimated based on a sample of ground motions. Because of record-to-

record variability of structural response, their estimated values, say η̂; β̂
n o

, are expected to change

when changing the sample used, the ground motion selection procedure, and all other elements of

the analysis staying the same. Therefore, also λ̂f ¼ λf η̂; β̂
� �

varies with the sample. In other words,

λ̂f is an estimator (i.e., function of the sample) of the fixed, yet unknown, failure rate, λf. As such, λ̂f
can be regarded as a random variable (RV), the distribution of which quantifies the uncertainty
involved in the risk estimation. To evaluate the mean and the standard error [4] of the failure rate
estimator, σλ̂f , is the goal of this simple study.

It is to note that, in fact, uncertainty of estimation in fragility assessment may also arise from
structural modeling. Moreover, several components needed to evaluate the hazard curve appearing in
Equation (1) may suffer from uncertainty of estimation. More in general, all the factors contributing
to the seismic risk of structures in PBEE, that is hazard, fragility, and loss, are based on several
models the calibration of which relies on estimations; see for example [5]. To limit the scope of the
study, the focus herein is on record-to-record variability of structural response for fragility
assessment and the effect on the resulting failure rates.

The remainder of the paper is structured such that the case of lognormal fragility is addressed first.
Then, some non-parametric and parametric resampling plans, belonging to the bootstrap family [6], are
illustrated. Finally, uncertainty of estimation when the failure rate is computed via the Cornell method
[7] is addressed. Examples equip the study to illustrate how the discussed strategies can be employed to
get information about the estimator of seismic structural reliability.

2. COMMON FRAGILITY MODELING STRATEGIES

To briefly recall the most common strategies to fit fragility functions, it is assumed that a suite of
records (n in number) is available. It may be a single set of records, which is manipulated (i.e.,
scaled) to get structural responses spanning the IM domain; for example, via incremental dynamic
analysis or IDA [8]. It may also be the case of multiple sets of records, each of which is used at a
specific IM level; that is, multi-stripe analysis (MSA) that is considered generally superior to IDA in
warranting consistency with hazard. The following assumes, for simplicity, that response data are
from IDA, also for those situations in which MSA could be employed [9].

2.1. IM-based approach

A simple and effective way to evaluate the structural fragility is the so-called IM-based approach, in
which, typically, IDA is employed to obtain a sample of ground motion IMs that caused failure of
the structural numerical model, taking for each record in the set the minimal IM-value at which an
undesired structural response is observed. See for example Figure 1 (left) where the IM is the
spectral acceleration, Sa(T), at an oscillation period (T) equal to 1.82 s and 5% damping. The
engineering demand parameter (EDP), measuring structural response, is the maximum inter-story
drift ratio (IDR), and the failure threshold is edpf=0.03 (see Section 3.3 for structural details).
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Such a sample of n values, im ¼ im1; im2;…; imnf g, is considered drawn from the distribution of the
ground motion intensity causing failure of the structure, say IMf. The CDF of this RV is the seismic
fragility. As discussed with respect to Equation (2), it is a common assumption in PBEE
applications to assign the lognormal model to it, Equation (3). The parameters represent the mean
and the standard deviation of the logarithms of the IM (RV) causing structural failure. Therefore,
based on the im sample, they can be estimated via Equations (4).

P f imj½ � ¼ P IMf ≤ im
� �

≈Φ η̂; β̂
� �

(3)

η̂ ¼ 1
n
�∑
n

i¼1
log imið Þ

β̂2 ¼ 1
n� 1

�∑
n

i¼1
log imið Þ � η̂½ �2

8>><
>>: (4)

2.2. Truncated IDA

It is also to mention the case in which it is not possible to evaluate the IM causing the failure of the
structure for all n records in the ground motion set. For example, when IDA is intentionally carried
out until a immax level and not beyond. This may be because larger IMs may require scaling records
by large factors, which is believed to sometimes cause bias in the evaluation of structural response,
or simply because analyzing the structure at large IM levels may be computationally demanding, yet
not particularly impacting the risk assessment, which is dominated by less large yet more frequently
exceeded IMs, as Equation (1) suggests.

In these situations, it may be that failure is observed only for a fraction of the records, say m in
number; for the other n�m, the information is only that failure occurs for intensity larger than
immax. This means that the sample of IMf is censored and the parameters of the lognormal fragility
can be estimated by the maximum likelihood criterion in Equation (5),* where ϕ(·) is the standard
normal probability density function (PDF).

*The equation is from [9], yet revised.

Figure 1. Example of IM-based and EDP-based fragility assessment, left and right respectively, from
incremental dynamic analysis using 30 records (see Section 3.3 for details). Crosses represent individual
structural responses. IDR is inter-story drift ratio. [Colour figure can be viewed at wileyonlinelibrary.com]
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η̂; β̂
n o

¼ argmax
η;β

∑
m

i¼1
log

1
imi�β �ϕ

log imið Þ � η
β

� �� 	
 �
þ n� mð Þ� log 1� Φ

log immaxð Þ � η
β

� �� 	� �
(5)

2.3. EDP-based approach

Alternative to the IM-based is the EDP-based approach, which works at fixed IM levels. At IM= im, all
the records in the ground motion set feature the same intensity, and simulations provide a vector, edp ¼
edp1; edp2;…; edpnf g , representing structural response conditional to im. The edp vector can be

partitioned in two: the EDP-values that determine failure, say k, and those for which failure has not
occurred, n� k.

Applying this procedure to a number of intensity levels imi, i={1, 2, … ,m}, yields data to fit a

fragility model [9]. Under this hypothesis, η̂; β̂
n o

can be obtained via the binomial likelihood of

Equation (6), where ki and (n� ki) are the number of failures and non-failures observed at IM= imi,
respectively. Figure 1 (right) provides an example, where two IM levels are highlighted, 0.2 g and
0.4 g. Crosses beyond edpf represent failure.

η̂; β̂
n o

¼ argmax
η;β

∑
m

i¼1
log

n

ki


 �
þ ki� log Φ

log imið Þ � η
β

� �� 	
þ n� kið Þ� log 1� Φ

log imið Þ � η
β

� �� 	
 �� �

(6)

It is also to mention that at a specific intensity level, and for a specific record, it may be that the
structure is failed, but the EDP-value is not available from the computer simulation; these situations
are referred to as collapse cases [10]. To represent this kind of failure for all IM levels, the fractions
of collapse cases over the total number of records (n=30) are given as the thick curve in Figure 1.
The total number of failures at each IM level, ki, is given by the sum of EDPs beyond edpf and the
collapse cases.

2.4. Non-parametric fragility

It is functional to the following discussions to recall that the fragility of the structure is in principle
unknown. In other words, referring for example to the IM-based approach, the {im1, im2, … , imn}
values in the im vector are realizations of independent- and identically-distributed RVs, the
distribution being the fragility of the structure, the exact shape of which is not available. As
discussed, this issue is often addressed by assuming a probabilistic model whose parameters are
calibrated based on im . In principle, an alternative, which does not require a hypothesis about the
underlying model, is to build the empirical CDF of the intensity causing structural failure. The
empirical fragility is a stepwise function defined between minus and plus infinity as in Equation (7),
where I imi≤imð Þ is an indicator function that equals 1 if imi≤ im and 0 otherwise.

P f imj½ � ¼ 1
n
� ∑

n

i¼1
I imi≤imð Þ (7)

3. UNCERTAINTY OF ESTIMATION IN LOGNORMAL FRAGILITY

3.1. Known distribution of parameter estimators

If the estimates of the parameters of the lognormal fragility function are obtained via Equations (4),
their estimators have known distributions. In particular, the sampling mean is normally distributed,
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while the rescaled estimator of the variance is chi-squared-distributed with n� 1 degrees of freedom;
Equations (8).† Because these distributions are known, and because the RVs they refer to are also
statistically-independent [4], then the mean and the variance of the failure rate estimator can be
obtained solving the integrals of Equations (9), where f(·) indicates PDF.

η̂∼N η;
β2

n


 �
n� 1

β2
�β̂2∼χ2n�1

8>>><
>>>:

(8)

E λ̂f
h i

¼ ∫
þ∞

0
∫

þ∞

�∞
λ̂f u; vð Þ�f η̂ uð Þ�f β̂2 vð Þ�du�dv

VAR λ̂f
h i

¼ ∫
þ∞

0
∫

þ∞

�∞
λ̂f u; vð Þ � E λ̂f

h in o2
�f η̂ vð Þ�f β̂2 uð Þ�du�dv

8>>><
>>>:

(9)

Note that the distributions in Equations (8) depend on the true parameters of the fragility, which are
not available and estimates are used instead. Therefore, Equations (9) also provide estimates.

3.2. Delta method

An approximation of the mean and the variance of the estimator of the failure rate can also be obtained
by the so-called delta method (e.g., [11]), which is based on the Taylor series expansion of the function

λ̂f ¼ λf η̂; β̂
� �

, Equations (10). To illustrate how it works, it is applied to the lognormal fragility, even if

it was discussed that this case can be solved as described in the previous section when the parameters
are estimated via Equations (4).

E λ̂f
h i

≈λ̂f þ 1
2
�VAR η̂½ ��∂

2λ̂f
∂η̂2

þ 1
2
�VAR β̂2

h i
� ∂2λ̂f

∂ β̂2
� �2

VAR λ̂f
h i

≈VAR η̂½ �� ∂λ̂f
∂η̂

 !2

þ VAR β̂2
h i

� ∂λ̂f
∂ β̂2
� �

2
4

3
5
2

8>>>>>>><
>>>>>>>:

(10)

Rewriting the failure rate in Equation (2) as in Equation (11), showing the lognormal PDF, helps to
obtain the partial derivatives given in Equations (12). Because the variances of the estimators are also
available, see Equations (13)‡ descending from Equations (8), the variance and the mean of the
estimator can be obtained applying Equations (10). Note that all these equations need to be derived

only once, and can always be applied. They allow to evaluate the mean and the variance of λ̂f by
only computing two integrals each.

λf ¼ ∫
þ∞

0
∫
im

0

1

u�
ffiffiffiffiffiffiffiffiffiffiffiffi
2�π�β2

p �e�1
2� log uð Þ�η

β½ �2 �du� dλimj j (11)

†For simplicity, herein both point estimates of the parameters and their estimators (i.e., the random variables) will be in-
dicated with the same symbol.
‡The about equal symbol means that the variance estimate is used in lieu of the true (unknown) value.
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∂λ̂f
∂η̂

¼ ∫
þ∞

0
∫
im

0

log uð Þ � η̂

β̂2
�e

�
1
2
� log uð Þ � η̂

β̂

� �2

u�
ffiffiffiffiffiffiffiffiffiffiffiffi
2�π�β̂2

q �du� dλimj j

∂2λ̂f
∂η̂2

¼ ∫
þ∞

0
∫
im

0

log uð Þ � η̂

β̂2

� �2
� 1

β̂2

( )
�e

�
1
2
� log uð Þ � η̂

β̂

� �2

u�
ffiffiffiffiffiffiffiffiffiffiffiffi
2�π�β̂2

q �du� dλimj j

∂λ̂f
∂ β̂2
� � ¼ ∫

þ∞

0
∫
im

0

log uð Þ � η̂½ �2
2�β̂4 � 1

2�β̂2
( )

�e
�
1
2
� log uð Þ � η̂

β̂

� �2

u�
ffiffiffiffiffiffiffiffiffiffiffiffi
2�π�β̂2

q �du� dλimj j

∂2λ̂f

∂ β̂2
� �2 ¼ ∫

þ∞

0
∫
im

0

log uð Þ � η̂½ �4
4�β̂8 � 3� log uð Þ � η̂½ �2

2�β̂6 þ 3

4�β̂4
( )

�e
�
1
2
� log uð Þ � η̂

β̂

� �2

u�
ffiffiffiffiffiffiffiffiffiffiffiffi
2�π�β̂2

q �du� dλimj j

:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(12)

VAR η̂½ �≈β̂
2

n

VAR β̂2
h i

≈
2�β̂4
n� 1

8>><
>>: (13)

3.3. Example

To illustrate the aforementioned procedures, the fragility analysis of a case study structure is
considered. It is a four-story, three-bay, steel moment resisting perimeter frame. It belongs to
the archetype structures designed and used for the purposes of the NIST GCR 10-917-8 report
[12]. The numerical model is a 2D centerline idealization implemented in the OpenSees
analysis platform [13]. Material nonlinearity is accounted for by means of a lumped-plasticity
approach, where the properties of the plastic hinges at the element edges are estimated using
the regression equations suggested by [14]. Geometric nonlinearities (P�Δ effects) are also
considered.

The structure is supposedly located in the town of Ancona (lon. 13.515; lat. 43.614), in
central Italy (Figure 2, left), on a site characterized by a shear-wave velocity in the upper
30 m equal to 270 m/s. The hazard for the site has been computed using the seismic source
model also used in [15] and the ground motion prediction equation of [16]. The hazard curve

Figure 2. Ancona site (dot) and relevant seismic sources (left); hazard curve (right). [Colour figure can be
viewed at wileyonlinelibrary.com]
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is in terms of annual rate of exceedance of spectral pseudo-acceleration at T = 1.80s (Figure 2,
right).§

The seismic input for the analyses is a set of 30 single-component recorded accelerograms
selected among the records of the FEMA P695 [17] far-field set and the Engineering Strong
Motion database (http://esm.mi.ingv.it/). All records are from free-field, firm soil conditions, with
the nearest distance of the recording stations to the fault plane being in the 7–33 km range and
correspond to causal events of magnitude ranging from 6.0 to 7.5. Only one horizontal
component per station is used. Figure 1 shows the IDA results for the model subjected to the
records.

In this application, the IM-based approach of Section 2.1 is considered to get the failure rate of
the structure and then uncertainty of estimation. Data indicating failure are the 30 IM-values
where individual IDA curves cross IDR equal to edpf=0.03 (cross-marked data of Figure 1,
left). The estimators of Equations (4) are used to get the fragility curve, they result equal to

η̂ ¼ �0:99; β̂ ¼ 0:34
n o

; that is, the mean and standard deviation of the logarithms of the IM causing

failure. Fragility is integrated with the hazard via Equation (1), yielding an annual failure rate equal
to 2.50 �10�5 [events/year] for the structure at the site of interest.**

At this point, to get the mean and the variance of λ̂f , integrals in Equations (9) are solved
numerically. For comparison, also the delta method of Equations (10) is applied. The results for
both are given in Table I. In this example, the approximated delta method yields very similar results
with respect to the solution via Equations (9), and the coefficient of variation of the failure rate is
about 25%.

4. RESAMPLING SEISMIC FRAGILITY

Beyond the simple case described in the previous section, it may be that the distributions of the fragility
parameter estimators are not readily available. In these situations, to get a sense of the uncertainty of
estimation, some techniques collectively known as bootstrap, and typically requiring Monte Carlo
simulation, can be an option. The basic version of bootstrap relies on the generation of samples
from an empirical distribution obtained from data regarding a phenomenon of interest; alternatively,
a parametric model calibrated on data can be used for resampling. Owing to their apparent
simplicity, these techniques are routinely used in research, including earthquake engineering (e.g.,
[18, 19]).

In this section, the basics of bootstrap and parametric bootstrap are recalled so that they can be used
to approximate σλ̂f . However, bootstrap can be applied to more general problems; for example, it can be

used to evaluate the distribution of the estimator. On the other hand, it is also the subject of a large deal
of statistics literature and, therefore, the interested reader is referred to dedicated readings about this
and other resampling plans; for example, [6].

§The 1.82 s spectral acceleration hazard is herein considered approximately equal to the 1.80 s one.
**This rate is about equal to the annual failure probability, Pf, because for such a small rate Pf 1yrð Þ ¼ 1� e�λf ≈λf .

Table I. Mean and standard error of the failure rate in the case of lognormal distribution and approximated
distributions/variances of its parameter estimators.

λ̂f [events/year] Method

E λ̂f
h i

[events/year]

σλ̂f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR λ̂f

h ir
[events/year] Coefficient of variation [�]

2.50 � 10�5 Approx. distrib. 2.56 � 10�5 6.34 � 10�6 25%
Delta 2.56 � 10�5 6.28 � 10�6 25%
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4.1. Resampling

Given the discussion in the previous section, the failure rate in Equation (1) can be seen as a function of
the response data used to fit the fragility function. In other words, referring for example to the IM-based

approach: λ̂f ¼ λf im1; im2;…; imnð Þ.
The bootstrap-based standard deviation, σ̂λ̂f , is obtained via Monte Carlo simulation, sampling the

empirical fragility function discussed in Section 2.4. In practical terms, sampling from the empirical
distribution means resampling data from im ¼ im1; im2;…; imnf g , that is, random drawing with
replacement to obtain several other vectors still of size n. A generic vector obtained by resampling
im can be indicated as im� ¼ im�

1; im
�
2;…; im�

n

 �
. The key point is that each im� can be considered

as a new realization of the fragility function. Consequently, it can be employed to estimate the failure
rate of the structure. If this procedure is repeated nb number of times, σ̂λ̂f can be computed via

Equation (14), where λ̂�f ;i is the failure rate from the i-th resampling and μ̂λ̂�f
¼ 1

nb
�∑nb

i¼1λ̂
�
f ;i.

σ̂λ̂f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nb � 1

�∑
nb

i¼1
λ̂�f ;i � μ̂λ̂�f

� �2s
(14)

4.2. Parametric resampling

Beyond the non-parametric case, there may be situations in which the fragility function has a
probabilistic model associated to it, yet the distributions of the parameter estimators are not readily
available. The parametric bootstrap may be a solution to this issue.

To illustrate it, let us continue with the IM-based example above in which the im ¼
im1; im2;…; imnf g data vector is used to fit a lognormal model via Equation (5). The parametric

bootstrap, consists of sampling an arbitrary number of vectors of the kind im� ¼ im�
1; im

�
2;…; im�

n

 �
from the lognormal distribution, which features the parameters estimated from the original sample, that

is, Φ η̂; β̂
� �

. If it is decided to truncate IDA when the first m records out of n induce structural failure,

then the im� vector is ordered and the first m intensity values are taken to estimate η̂�; β̂�
n o

via

Equation (5), such that a new fragility function, Φ η̂�; β̂�
� �

, is used to integrate with hazard and obtain

λ̂�f (this means that in each run immax is the m-th ordered IM). Repeating this procedure multiple times
allows to compute Equation (14) to get the parametric-bootstrap-based σ̂λ̂f .

An analogous procedure can be applied for the EDP-based approach, as it is illustrated via the
examples in the following section.

Figure 3. Fragilities from 500 resampling of the IM-based empirical fragility (left); fragilities from 500
samplings of the lognormal EDP-based fragility data (right). [Colour figure can be viewed at

wileyonlinelibrary.com]
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4.3. Examples

To apply bootstrap of Section 4.1, the vector of 30 IM-values is used to build the empirical
fragility curve (thick line in Figure 3, left). Five-hundred samples are extracted from it, such
that a new vector of 30 IM-values is obtained each time, and a new empirical fragility
function is built in every run. The 500 individual fragility curves are identified by thin lines in
Figure 3 (left). Each curve is, then, numerically integrated with the hazard as per Equation (1)
yielding 500 failure rates. The failure rate computed with the original empirical CDF is given in
Table II, along with the non-parametric-bootstrap-based mean and standard error of the failure rate
estimator.

To apply parametric resampling of Section 4.2, the EDP-based approach of Section 2.3 is applied.
Five IM levels are considered, Sa(T=1.82s) = {0.2g, 0.3g, 0.4g, 0.5g, 0.6g}. Applying Equation (6) to
the resulting data, when the failure threshold is edpf=0.03, yields a lognormal fragility with

parameters η̂ ¼ �0:96; β̂ ¼ 0:30
n o

; the obtained fragility is the thick curve in Figure 3 (right). At

each of the five IM levels, a sample of 30 failure/no-failure cases is drawn from a binomial

distribution with pi ¼ Φ log imið Þ � η̂½ �=β̂
n o

, i={1, 2, … , 5}, and the parameters of the fragility

function are re-calibrated via Equation (6). The obtained fragilities in 500 runs are given in Figure 3
(right) as thin lines, while the results in terms of failure rates are given in Table II.

To illustrate the parametric resampling procedure in the case of truncated IDA of Section 2.2, the
lognormal fragility curve is calibrated via Equation (5). This fragility, shown in Figure 4 (left) as the
thick line, was obtained censoring IDA at the IM level where the first 15 out of 30 records induce

failure, which yields η̂ ¼ �0:98; β̂ ¼ 0:36
n o

. When resampling, 30 IM-values are extracted in each

run. The first 15 values of the extracted IMs are kept (i.e., immax is the median of the extracted
IMs). These values, in turn, are used to re-fit a lognormal fragility via Equation (5). The fragilities
from the simulations are given in Figure 4 (left) as thin lines. In Figure 4 (right), the distribution of
immax is also shown. The mean and the standard error of the failure rate are given in Table II.

Table II. Mean and standard error the failure rate with 500 non-parametric or parametric resamplings.

λ̂f [events/year] Approach μ̂λ̂�f
[events/year] σ̂λ̂f [events/year]

Coefficient of
variation [�]

2.58 � 10�5 IM-based non-parametric 2.62 � 10�5 5.17 � 10�6 20%
1.98 � 10�5 EDP-based parametric 2.00 � 10�5 3.99 � 10�6 20%
2.52 � 10�5 IM-based (truncated) parametric 2.56 � 10�5 6.48 � 10�6 25%

Figure 4. Truncated IM-based lognormal fragilities (left) and distribution of truncation IM to observe 15 out
of 30 failures in each IDA (right). [Colour figure can be viewed at wileyonlinelibrary.com]
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5. UNCERTAINTY OF ESTIMATION IN THE CORNELL METHOD

The Cornell method [7, 20] to assess seismic structural reliability is based on the cloud analysis that is a
less computationally demanding alternative, with respect to IDA and MSA, to evaluate the relationship
between ground motion and structural response. In particular, a suite of n unscaled ground motion
records, with arbitrary intensities, {im1, im2, … , imn}, is used to obtain a sample of structural
responses, {edp1, edp2, … , edpn}. A log-linear regression model, of the type in Equation (15), is

then calibrated based on these data. In the equation, â; b̂
n o

are the estimated coefficients and ε is

the residual, that is, in the classical case, a zero mean Gaussian RV, with estimated standard

deviation β̂D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2ð Þ�1�∑n

i¼1 log edpið Þ � âþ b̂� log imið Þ
� �h i2r

.

log edpð Þ ¼ âþ b̂� log imð Þ þ ε (15)

This model is used to obtain the failure rate as per Equation (16), where edpf is the median capacity,
and βC is the corresponding logarithmic standard deviation under lognormality assumption. The
parameters {k0, k} are obtained from the linearization of the hazard curve in the log–log space
around the rate corresponding to the IM-value obtained transforming edpf via the linear regression.

The cloud regression enters in the equation via: α̂ ¼ eâ, b̂, and β̂D.

λ̂f≈k0�
edpf
α̂


 ��k
b̂�e12�k

2

b2
� β̂2Dþβ2Cð Þ (16)

The analytical format of the failure rate allows to apply the delta-method to propagate the
uncertainty in the evaluation of the structural response, and to obtain the mean and standard
deviation of the failure rate estimator. In fact, Cornell’s equation can be interpreted as a function

transforming the estimators of the IM-EDP relationship in the estimator of the failure rate: λ̂f ¼
λf â; b̂; β̂D
� �

. From the Taylor series expansion, it follows that the mean and the variance of λ̂f can

be approximated via Equations (17), requiring the partial derivatives of the estimator with respect to
the RVs involved and their variances/covariances, similar to Equations (10). (Note that, under

classical hypotheses, only COV â; b̂
h i

is not equal to zero among the covariances of the involved

estimators.)

E λ̂f
h i

≈λ̂f þ 1
2
�VAR â½ ��∂

2λ̂f
∂â2

þ 1
2
�VAR b̂

h i
�∂

2λ̂f
∂b̂2

þ 1
2
�VAR β̂2D

h i
� ∂2λ̂f

∂ β̂2D
� �2 þ COV â; b̂

h i
� ∂

2λ̂f
∂â�∂b̂

VAR λ̂f
h i

≈VAR â½ �� ∂λ̂f
∂â

 !2

þ VAR b̂
h i

� ∂λ̂f
∂b̂

 !2

þ VAR β̂2D
h i

� ∂λ̂f
∂ β̂2D
� �

2
4

3
5
2

þ 2�COV â; b̂
h i

�∂λ̂f
∂â

�∂λ̂f
∂b̂

8>>>>>>><
>>>>>>>:

(17)

It can be recognized that the first-order and second-order partial derivatives needed are those in
Equations (18). In the case of linear regression, the moments of the estimators are also known [4].
They are recalled in Equations (19) for convenience. In these equations, η̂ ¼ 1

n �∑n
i¼1 log imið Þ is the

mean of the IMs of the records used for cloud analysis. As it happened for the delta method applied
to the lognormal fragility in Section 3.2, all these equations need to be derived only once, and can
always be applied.
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∂λ̂f
∂â

¼ k

b̂
�λ̂f

∂2λ̂f
∂â2

¼ k

b̂
�∂λ̂f
∂â

∂λ̂f
∂b̂

¼ k

b̂2
� logC � âð Þ � k2

b̂3
� β̂2D þ β2C
� �� �

�λ̂f

∂2λ̂f
∂b̂2

¼ �2�k
b̂3

� logC � âð Þ þ 3�k2
b̂4

� β̂2D þ β2C
� �� �

�λ̂f þ k

b̂2
� logC � âð Þ � k2

b̂3
� β̂2D þ β2C
� �� �

�∂λ̂f
∂b̂

∂2λ̂f
∂â�∂b̂ ¼ k

b̂2
� logC � âð Þ�∂λ̂f

∂â
� k

b̂2
�λ̂f � k2

b̂3
� β̂2D þ β2C
� �

�∂λ̂f
∂â

∂λ̂f
∂ β̂2D
� � ¼ 1

2
�k

2

b̂2
�λ̂f

∂2λ̂f

∂ β̂2D
� �2 ¼ 1

2
�k

2

b̂2
� ∂λ̂f
∂ β̂2D
� �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(18)

VAR â½ �≈ 1
n
þ η̂2

∑
n

i¼1
log imið Þ � η̂½ �2

8>><
>>:

9>>=
>>;�β̂2D

VAR b̂
h i

≈
β̂2D

∑
n

i¼1
log imið Þ � η̂½ �2

COV â; b̂
h i

≈
�η̂�β̂2D

∑
n

i¼1
log imið Þ � η̂½ �2

VAR β̂2D
h i

≈
2�β̂4D
n� 2

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(19)

5.1. Example

As an example, the Cornell method is applied to the structure introduced in Section 3.3 also using the
same records. In particular, the structural responses from the IDAs when the scaling factor of each of
the 30 records is equal to one 1 were considered to carry out the linear regression in Equation (15); see

Figure 5 (left). The estimates are: â ¼ -2:55; b̂ ¼ 0:88; β̂D ¼ 0:25
n o

,

VAR â½ � ¼ 0:0195; VAR b̂
h i

¼ 0:0027; COV â; b̂
h i

¼ 0:0069; VAR β̂2D
h i

¼ 0:00028
n o

. The other

parameters required to apply Equation (16) are k0 = 4.65 � 10�7 and k=3.41 from the linearization of
the hazard curve (Figure 5, right). Then, because the capacity was considered deterministic (i.e.,

βC=0) for simplicity, no other information is needed to compute λ̂f ¼ 3:03�10�5 . At this point,

applying Equations (17) to (19) one obtains E λ̂f
h i

¼ 3:15�10�5 and VAR λ̂f
h i

¼ 9:43�10�11, yielding

a coefficient of variation equal to 31%.††

††Beyond the cloud analysis, the difference of the results of the Cornell method with respect to other cases also depends
on the log-linear approximation of the hazard curve. For discussions, the interested reader can refer, for example, to
[21] and references therein.
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6. FINAL REMARKS

At least because the procedures to assess seismic structural risk employ simulation of dynamic
response with ground motion samples, the failure rate (probability) is affected by uncertainty of
estimation. In this short study, a few easy-to-apply techniques have been considered to get a
quantitative sense of such an uncertainty, when it descends from record-to-record-variability of
response.

Three categories of procedures have been described that are especially suited in the case of
incremental dynamic or multi-stripe analyses: one which is applicable when the (approximate)
distribution of the estimator of the fragility parameters is available, one based on the delta method
approximation, and one based on bootstrap. In this context, quantification of uncertainty in
estimation was also obtained for the Cornell method, which consists of an approximate closed-form
solution for the failure rates based on a log-linear hazard curve and cloud-type structural analysis.

The procedures described can be of aid to the structural analysts to provide the risk estimate with
uncertainty of estimation, which in turn allows more informative comparisons of reliability between
structures and/or better evaluation of probabilistic seismic losses.
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