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In the last decades, codes have implemented the load–resistance factor design (LRFD) approach to
achieve a certain safety level in structural sections. Recently, the same philosophy established in the case
of steel bars was adapted for reinforcement by innovative materials such as fiber-reinforced polymers
(FRPs). LRFD is claimed to be a semi-probabilistic approach, although the implied safety is not intelligible
by practitioners, being hidden into the so-called safety factors (SFs) prescribed by codes, which should
account for load- and strength-affecting heterogeneities. Often, especially in the case of FRP reinforce-
ment, the SFs differ from one code to another because of the format of the design equations. The objective
of the simple study presented in the paper is to compare the safety levels, expressed in terms of conven-
tional probability of failure, for different codes at the state-of-the art with respect to the design of FRP-
reinforced concrete worldwide. The purpose is to investigate how the different equation formats, design
values of material properties, and partial safety factors, affect the implicit design safety and whether it is
similar among international guidelines. The study considers design of cross sections in bending at the
ultimate limit state according to: ACI 440.1R-06 (US guidelines), CAN/CSA-S806-02 (Canadian guide-
lines), and CNR-DT 203/2006 (Italian guidelines, for which sensitivity of design to SFs is also investi-
gated). For comparison purposes, design of steel-reinforced sections is considered according to the
recent Italian regulations. Results indicate that reliability indices achieved with design procedures are
generally comparable among the considered codes, and larger than that referring to steel reinforcement.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

This section briefly reviews the basics of safety formats in inter-
national design codes and motivates the study. In fact, although
the most of the background may be found in well-known literature
(e.g., [1]), it may be worthwhile to recall the working hypotheses of
current practice, as they are not directly intelligible from guide-
lines. At the end of the introduction, the framework of the guide-
lines is presented and the organization of the work is given.

The objective of structural design is that the construction war-
rants a given safety margin with respect to some feared failure
mode. In fact, structural safety has to refer to an undesired condi-
tion (limit state hereafter), which may lead to some unacceptable
situation, namely failure. The quantification of safety consists of
the reliability assessment, that is, the evaluation of the probability
of safe behavior, Ps. For any engineering system Ps has to be referred
to the time in which it operates; e.g., the design life (T).
ll rights reserved.
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Structural reliability has to be necessarily expressed in probabi-
listic terms because most, if not all, the factors possibly determin-
ing failure are uncertain despite the values assumed in design; e.g.,
mechanical models, members’ geometry, materials’ properties, and
loads. In fact, these are called random variables (RVs),
X ¼ fX1;X2; . . . ;Xng, whose actual heterogeneity is characterized
by appropriate probability density functions (PDFs) for each in-
stant in the lifetime of the structure generating, in fact, stochastic
processes (e.g., [2]).

If the failure for the structure of interest may be expressed by a
function, G, which is positive if the system is in safe conditions and
is non-positive if limit state of interest is reached, for example, in
the stress–strength model, the difference between the resistance
(R) and its counterparts due to loads (L), the structural reliability
may be expressed as the probability that the limit state function
remains positive in the (0, T) interval (being 0 the life’s start time),
Eq. (1), from which the probability of failure1 (Pf) emerges.

PsðTÞ ¼ 1� PfðTÞ ¼ Pr½GðX; tÞ > 0 8t 2 ð0; TÞ�
¼ Pr½RðX; tÞ � LðX; tÞ > 0 8 t 2 ð0; TÞ� ð1Þ
1 Because, it is expected the reliability of structures to be high (e.g., Ps is relatively
close to 1) may be handy to work in terms of Pf expressed as a power of ten.
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Fig. 1. Stress–strength model for reliability assessment. For simplicity Gaussian PDF
shape is considered for both PDFs of R and L.
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Calibrating the RVs in a way that their variability does not
explicitly depend on time anymore (i.e., rendering the safety
assessment a time-invariant problem; e.g., [3]) the failure probabil-
ity is expressed by the integral of the joint PDF of the variables,
fXðx1; x2; . . . ; xnÞ, over the domain in which the set of X renders G
non positive (i.e., the failure domain or F), as follows:

Pf ¼ Pr½X 2 F� ¼
Z

F:G60
fXðx1; x2; . . . ; xnÞ � dx1 � dx2 . . . dxn ð2Þ

A reliability-oriented structural code should ask the practitioner
to assess the safety of a structure (either of new design or existing)
computing the probability of failure and verifying whether it does
not exceed some upper bound that is considered acceptable P�f

� �
, as

follows:

Pf 6 P�f ð3Þ

Modern codes do not allow for such an explicit approach for
various reasons, mostly related to the difficulty of giving prac-
tice-ready procedures to assess the probability of failure, and the
persistent need to have a prescriptive format of design rules. In
fact, Eq. (3) is replaced by one of the type of Eq. (4), which basically
is a comparison of design values of actions due to loads (Ld) and
resistance (Rd) computed via deterministic equations, which are
familiar to engineers.

Ld 6 Rd ð4Þ

This is done at a sectional level, while it should be more cor-
rectly computed for the whole structure; however, that would im-
ply significant complications. Leaving the probabilistic approach to
a sectional level inevitably renders the failure probabilities con-
ventional, in a way that they do not represent failure probability
of structures where such sections are employed and usable for
comparison purposes only [4].

If the terms in Eq. (4) are calibrated based on the PDFs of L and R
(separately if stochastically independent) this approach is
Fig. 2. Calibration of safety factors (left), an
considered semi-probabilistic and referred to as load–resistance fac-
tor design (LFRD); [5]. In fact, Ld and Rd reflect the probabilistic nat-
ure of L and R through some coefficients called safety factors (SFs)
and applied, depending on the code, to statistics of uncertain de-
sign variables affecting R and L, or directly on measures of resis-
tance and loads effects acting on the structural element (to follow).

When postulated, about four decades ago, LFRD was conceived
to be temporary. It was supposed to be shortly replaced by codes
allowing professionals to compute Eq. (2) explicitly for their struc-
tures [6]. Nevertheless, it is still used around the world and also
adopted by regulations concerning new technologies in civil engi-
neering, such as reinforced concrete (RC) structures employing fi-
ber reinforced polymers (FRPs). This is mainly because its afore
mentioned probabilistic basis and simplicity of application by reli-
ability non-experts. However, codes seldom clearly report the cal-
ibration of the design parameters and the underlying hypotheses,
and, therefore, safety implied in design is not directly intelligible.
Moreover, design equations are custom for each code and it is also
not possible to compare them in terms of implicit safety. This moti-
vated other work (e.g., [7–9]) and the simple investigation pre-
sented in the following, where a probabilistic assessment for
international codes dealing with FRP-RC cross sections is carried
out. In fact, the purposes of this study may be summarized as: (i)
to understand how the format of design equations, material prop-
erties assumed for computations, and safety factors (eventually
partial), affect safety of cross sections at ultimate limit state in each
guideline; and (ii) to address whether the different declensions of
LRFD in each code imply comparable safety.

In particular, reliability analysis of flexural capacity of glass fi-
ber-reinforced polymer (GFRP) RC cross sections at ultimate limit
state (ULS) is performed. The analysis considers design of cross sec-
tions in bending according to three codes: ACI 440.1R-06 (US guide-
lines; [10]), CAN/CSA-S806-02 (Canadian guidelines; [11]), and the
Italian guidelines CNR-DT 203/2006 [12]. For comparison, design
of steel-reinforced sections according to the recent new Italian
Building Code or NIBC [13] is also included. These three codes were
chosen to cover the majority of modern standards concerning de-
sign of concrete reinforced with composite materials.

Case studies concern design of cross sections, according to the
codes, for different values of the safety factors. Subsequently, con-
ventional failure probability is computed and compared. Finally,
for CNR-DT 203/2006, it is analyzed how sensitive is design to dif-
ferent SF values.

2. Basics of load–resistance factor design

Typical categories of uncertainty in structural analysis are loads,
material strengths, member geometries, and there is also some
uncertainty related to the mechanical (analytical) models assumed
(e.g., [1,14]). If a cross section in bending is considered, uncertainty
d safety assessment procedure (right).



Fig. 3. Sketch for analysis of FRP-RC cross section.
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is reflected in both soliciting and resisting moments, and if is it
possible to characterize mathematically this lack of knowledge
by appropriate PDFs, safety may be quantitatively evaluated.
Roughly speaking, if the mean, l, of R is larger than that of L, then
the probability of failure is directly proportional to the separation
between the two PDFs (considered stochastically independent). In
fact, smaller is the overlapping area, safer is the cross section, as in
Fig. 1. Given this concept, the original version of LRFD approach re-
lies on a prescribed factor (the central safety factor, /0, larger than
one; [5]) which is the ratio of R and L expectations, as follows:

lR P /0 � lL ð5Þ

In other words, if the cross section is designed so that the aver-
age strength is /0 times the average load effect, a certain ‘‘distance’’
between R and L PDFs is assured in a way that, given the disper-
sions or standard deviations (r, roughly speaking: a measures
how flat the PDFs are if Gaussian shape is assumed), an acceptable
failure probability is obtained. In fact, /0 acts as a way to oversize
the section to assure a large expected strength, as shown in Fig. 2,
left.

Alternate, although equivalent, formats of LRFD exist, in which
the safety factor (/) is not the central one, being applied to percen-
tiles of the distributions of R (rk) and L (lk), Eq. (6). However, be-
cause the percentiles are functionally related to some parameters
of the PDF, for example they may be a few (a-times) standard devi-
ations (r) away from the mean as in Eq. (7); this format is equiv-
alent to Eq. (5)

rk P / � lk ð6Þ

rk ¼ lR � aR � rR

lk ¼ lL þ aL � rL

�
ð7Þ

In codes, generally, Rd and Ld are obtained using separate factors
reducing strength (/) and amplifying load effects (c); i.e., Eq. (8).

Rd ¼
rk

/
P c � lk ¼ Ld ð8Þ

Other codes do not apply safety factors to the sectional
strength; instead they reduce the material’s ultimate resistance
using conservative percentiles as design values. This makes the ob-
tained sectional strength a conservative percentile of the PDF of R.
Design values are obtained by applying SFs to some percentiles ob-
tained by material testing (for concrete and reinforcement, for
example, fu,c and fu,r, respectively) leading to Eq. (9), in which sec-
tional strength is function of SFs applied to materials.2

Rd ¼ R
fu;c

/c
;
fu;r

/r

� �
P c � lk ¼ Ld ð9Þ
2 In the following separate safety factors will also be assumed for dead and live
loads.
To assess the safety level implied by codes, at least at a sectional
level, one should design representative case studies applying the
safety factors specified for materials and loads, and reproduce the
PDFs of the action and strength for the designed sections. This al-
lows the computation of failure probability as a function of the
safety factors (Fig. 2, right), and it is the approach followed in the
study focusing only on the safety factors to be applied on nominal
resistance/material properties as provided by each considered code.

3. Design of FRP-reinforced concrete

Fiber reinforced polymers are impacting the international
concrete industry; they can be used as both internal and external
reinforcement for structural members providing an effective and
cost-efficient alternative to reinforcing steel, especially in corrod-
ing environment (e.g., [15]). Extensive research has supported
the FRP application in civil engineering and has provided the cur-
rent confidence to use it in practice (e.g., [16,17]). However, there
are a limited number of standards and codes that address design of
FRP-reinforced concrete; examples are in United States, Canada, Ja-
pan, and, more recently, Italy.

Design of FRP-RC members for flexure is analogous to the de-
sign of steel-RC members, being based on similar assumptions.
However, the modulus of elasticity of FRP is much lower than that
of steel and thus, larger strains are needed to develop comparable
tensile stresses in the reinforcement. In fact, given comparable
strength of two sections reinforced with FRP and steel, the former
should have larger deflections and crack widths with respect to the
latter. This is why serviceability limit states may control design.
Moreover, design procedures account for brittle behavior of both
FRP and concrete. Therefore, while steel-reinforced sections are
explicitly designed to have a ductile failure in ultimate conditions,
FRP-reinforced concrete sections cannot display the same energy
dissipation capacity. Based on these considerations, the concrete
may be over-reinforced [17]; if the section fails, the concrete will
crush (i.e., compression-controlled failure) providing some warn-
ing of failure. If the amount of reinforcement is such that failure
is tension-controlled, that is FRP fails, collapse may me brittle.
However, in such a case there may be some warning of impending
failure, because of extensive cracking and large deflections due to
the FRP elongation.

In the following, ULS design according to different codes is re-
viewed. The US design approach is based on the inequality of Eq.
(10), similar to Eq. (8), in which Rn is the nominal strength of mem-
ber (in terms of bending moment), / is the strength reduction factor
(lower than one in this case), and Ld is the design load effect

/ � Rn P Ld ð10Þ

The Italian (European, actually) and Canadian approaches are
based on Eq. (9) in which Rd is the design value of the ultimate
member resistance, computed as a function of the design strength
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Fig. 4. Trends of effective height on width ratio and reinforcement ratio for balanced failure condition as function of codes safety factors, for different values of the factored
moments. (a) and (b) US guidelines, (c) and (d) Italian guidelines, (e) and (f) Canadian guidelines, and (g) and (h) steel reinforced concrete sections.
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of materials (derived dividing the characteristic material strength
by material safety factor, see next section) and Ld is the design load
effect also, based on percentiles.
3.1. US guidelines

In the US, design of concrete structures reinforced with FRP bars
is based on documents produced by American Concrete Institute
(ACI) – Committee 440. ACI design guidelines for structural RC
with FRP bars (ACI 440.1R-06 [10]) are primarily based on modifi-
cations of ACI-318 (ACI 318-05 [18]); i.e., the standard building
code requirements for structural concrete (reinforced with steel
bars). In ACI guidelines the sectional design flexural strength,
which is the nominal flexural strength of the member, Mn, multi-
plied by a strength reduction factor, / (this product gives Rd), has
to exceed the factored moment (referred to as required strength
in ACI 318-05) Mu (i.e., Ld), as follows:

/ �Mn P Mu ð11Þ

According to ACI guidelines both concrete crushing and FRP
rupture are acceptable failure modes, although concrete crushing
is preferred. The failure mode can be determined by comparing



Table 1
Case study cross sections.

Code Failure mode d (mm) Af (mm2) q
qfb

Rd (kNm)

ACI Concrete 370 1104 1.50 104
GFRP 600 614 0.50 101

CNR Concrete 310 1350 1.50 101
GFRP 460 736 0.50 109

CAN Concrete 380 614 1.50 104
NIBC (steel) Concrete 360 859 1.00 108
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the FRP reinforcement ratio, qf, Eq. (12), to the balanced reinforce-
ment ratio, qfb, which is the ratio where concrete crushing and FRP
rupture occur simultaneously, as follows:

qf ¼
Af

b � d ð12Þ

qfb ¼ 0:85 � b1 �
f 0c
ffu
� Ef � ecu

Ef � ecu þ ffu
ð13Þ

In Eqs. (12) and (13): Af is the FRP area, b and d are width and
effective depth of the section (Fig. 3); b1 is a stress-block factor
for concrete depending on material properties (taken as 0.85 for
concrete strength, f 0c, up to and including 28 MPa; for strength
above 28 MPa, this factor is reduced continuously at a rate of
0.05 per 7 MPa of strength in excess of 28 MPa, but is not taken less
than 0.65); f 0c is the compressive strength of concrete evaluated on
cylindrical specimens; Ef is the warranted modulus of elasticity of
FRP; ffu is the design tensile strength of FRP and ecu is the ultimate
compressive strain of concrete (equal to 0.003).

The design tensile strength, ffu, may be determined by Eq. (14)
where CE is an environmental reduction factor depending on the fi-
ber type and exposure conditions (equal to 0.7 for GFRP bars and
concrete exposed to earth and weather, as considered in this pa-
per), f �fu is the manufacturer-guaranteed tensile strength of FRP bars,
defined as the mean tensile strength of a sample of test specimens
(ffu,ave) minus three standard deviations (r), Eq. (15). This guaran-
teed strength provides a 99.87% probability that similar FRP bars
exceed the indicated value. Depending on the number of tested
specimens, the confidence level of the distribution parameters
and then, of the guaranteed tensile strength, may be determined.
The design rupture strain should be determined similarly.

ffu ¼ CE � f �fu ð14Þ

f �fu ¼ ffu;ave � 3 � r ð15Þ

If qf 6 qfb, FRP failure determines the nominal flexural strength,
Mn, which may be computed via the simplified and conservative
formula in Eq. (16); otherwise concrete crushing is the failure
mode to consider and Eq. (17), based on stress-block approach,
applies

Mn ¼ Af � ffu � d� b1 � cb

2

� �
ð16Þ

Mn ¼ qf � ff � 1� 0:59 � qf � ff

f 0c

� �
� b � d2 ð17Þ

In Eq. (16), cb ¼ ð ecu
ecuþefu

Þ � d is the neutral axis depth when
both materials are at ultimate deformation (i.e., balanced-

failure condition); in Eq. (17), ff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEf �ecuÞ2

4 þ 0:85�b1 �f 0c
qf

� Ef � ecu

q�

�0:5 � Ef � ecuÞ 6 ffu. In FRP-failing sections, the actual depth of neu-
tral axis (c in Fig. 3) is lower than cb leading to a greater value of
Mn.
The strength reduction factor / assigned by the code is given in
Eq. (18) and is equal to 0.65 in case of concrete crushing, 0.55 for
FRP rupture, and varies linearly between the two. Eq. (18) implies
that a section is controlled by concrete crushing if the reinforce-
ment ratio, qf, is equal or larger than 1.4 times the qfb. While con-
crete crushing failure mode can be predicted based on calculations,
the member as constructed may not fail accordingly. For example,
if the concrete strength is higher than specified, the member can
fail due to FRP rupture. For this reason, and to establish a transition
between the two values of /, a section controlled by concrete
crushing is defined as a section in which qf P 1:4 � qfb

/ ¼
0:55 qf 6 qfb

0:3þ 0:25 � qf
qfb

qfb < qf < 1:4 � qfb

0:65 qf P 1:4 � qfb

8><
>: ð18Þ
3.2. Italian guidelines

Italian design guidelines [12], Guidelines for the Design and Con-
struction of Concrete Structures Reinforced with Fiber-Reinforced
Polymer Bars, have been developed within the framework of the
Italian Consiglio Nazionale delle Ricerche (CNR). The new docu-
ment adds to the series of documents recently issued by CNR on
the structural use of fiber reinforced polymer composites, starting
with the publication of CNR-DT 200/2004 [19], pertaining to the
use of externally bonded systems for strengthening concrete and
masonry structures.

According to Italian guidelines, flexural design at ULS requires
that the design ultimate moment MSd (i.e., the design load effect,
Ld) and the design flexural capacity MRd (i.e., the design value of
resistance, Rd) of the FRP-RC element to satisfy as follows:

MSd 6 MRd ð19Þ

Referring to Fig. 3, it is assumed that failure occurs when one
the following conditions is met:

1. the maximum concrete compressive strain ecu (equal to 0.0035)
is reached, while the ultimate strain of FRP has not been
attained yet;

2. the maximum FRP tensile strain efd is reached. efd is computed
from the characteristic tensile strain (i.e., having a 95% proba-
bility of exceedance according to material specifications), efk,
as in Eq. (20).

efd ¼ 0:9 � ga �
efk

cf
ð20Þ

The coefficient 0.9 in Eq. (20) accounts for the lower ultimate
strain of bars embedded in specimens subjected to bending as
compared to bars subjected to standard uniaxial tensile tests; ga

is an environmental factor (it is analogous to CE in ACI guidelines)
also depending on the fiber type (for concrete exposed to moisture
and reinforced with GFRP bars ga = 0.7); cf is the material partial
safety factor equal to 1.5 for ULS, analogous to /r in Eq. (9).

Design flexural capacity, MRd, can be determined based on
strain compatibility, internal forces equilibrium and the control-
ling mode of failure. According to the current NIBC (to which
CNR refers), design at ULS can assume a simplified distribution of
the normal stress for concrete (i.e., stress-block) for elements
whose failure is initiated either by crushing of concrete or rupture
of FRP bars, leading to design equations similar to Eqs. (16) and
(17), provided that design values of materials strength are used
(i.e., fifth percentile values divided by the material safety factors,
and amplified by 0.9 times ga in the case of GFRP). The partial
safety factor cc = 1.5 prescribed by the NIBC shall be assigned to
concrete; analogous to /c in Eq. (9).
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3.3. Canadian guidelines

The Canadian Standard Association (CSA) design guidelines
CAN/CSA-S806-02 [11] were approved in 2004 as a national stan-
dard. The approach is similar to the Italian one and it considers par-
tial safety factors applied to materials to get a conservative
sectional strength. However, all FRP reinforced concrete sections
shall be designed in such a way that failure of the section is initi-
ated by crushing of concrete; i.e., tensile fracture of the reinforce-
ment is not allowed.

The design tensile strength of FRP bars, ffu, may be determined
by Eq. (21) where /f is the strength reduction factor of FRP rod and
it is depending on the fiber type, f �fu is the manufacturer-warranted
tensile strength of an FRP bar and it must have 95% probability of
exceedance (i.e., 5th percentile of material strength distribution).
The partial factor /f is equal to 0.75 for GFRP reinforcement. The
strength reduction factor of concrete, /c, is equal to 0.65.

ffu ¼ /f � f �fu ð21Þ
Table 2
Summary of resistance and load statistics and distribution models.

Category Variable Bias CoV
(%)

Distribution

Material Concrete strength (fc) 1.05 10 Normal
GFRP strength (fr) 1.20 7 Normal
Steel strength (fy) 1.10 5 Normal

Load Dead load (MD) 1.05 10 Normal
Live load (ML) 1.00 25 Gumbel

Geometry Width of beam (b) 1.10 4 Normal
Effective depth of beam (d) 0.99 4 Normal
Reinforcement area (Af) 1.00 5 Normal

Model Concrete crushing (GFRP
reinforcement)

1.10 9 Normal

Concrete crushing (steel
reinforcement)

1.01 10 Normal

GFRP fracture 1.11 9.5 Normal

Table 3
Basic load partial factors.

Code cL cD

ACI 1.6 1.2
4. Design of case studies

In order to introduce the case studies analyzed in the following,
in Fig. 4 parametric examples of design according to the considered
codes are given. In particular, the trends of the balanced d

b ratio and
the balanced reinforcement ratio, qfb, as a function of / for the US
guidelines (Fig. 4a and b), cf for the Italian guidelines (Fig. 4c and
d), and /f for the Canadian guidelines (Fig. 4e and f), are reported
for four different values of design bending moment, Ld; i.e. 50,
100, 150 and 200 kNm. For comparison, design of steel-reinforced
sections according to NIBC is also reported in Fig. 4g and h.

In designing the sections, based on equilibrium equations,
material properties (in terms of ultimate strains and strengths)
were selected a priori, leaving the area of longitudinal reinforce-
ment Af (and consequently qfb), and the effective depth, d, as the
design variables. More specifically: b was assumed equal to
300 mm, concrete characteristic cylindrical compressive strength
(hereafter, the term characteristic refers to values of material prop-
erties having a 95% probability of exceedance according to material
specifications) equal to 25 MPa, GFRP characteristic strength equal
to 916 MPa (a guaranteed tensile strength of 855 MPa according to
ACI guidelines), GFRP characteristic tensile rupture strain equal to
1.9% (a guaranteed rupture strain of 1.8% according to ACI guide-
lines), and a GFRP modulus of elasticity equal to 46 GPa (see [20]
for further details). Reinforcing steel characterized by a character-
istic yield stress of 450 MPa (B450C reinforcing bars, according to
NIBC) was considered (the balanced failure for steel RC is based
on an steel ultimate strain equal to 1%3; the actual–experimental–
steel ultimate strain is much larger, even by one order of magnitude)
leading to cross section characterized always by concrete crushing.
Ld was assumed equal to Rd, which is / �Mn in the case of ACI, and
MRd in the case of Italian and Canadian guidelines. The balanced
reinforcement ratio is influenced by both strength and tensile ulti-
mate strain of GFRP; it varies between 0.5% and 1.5% when cf varies
between 1 and 2 (Italian guidelines), between 0.7% and 0.2% when /f

varies between 0.5 and 1 (CAN guidelines). According to ACI guide-
lines, qfb is independent on /, Eq. (13).

Fig. 4h indicates that, in the case of steel reinforcing bars, the
balanced reinforcement ratio is linearly dependent on cs as the
conventional ultimate deformation assumed for steel is indepen-
dent on cs and, then, only the material strength (dependent on
cs) affects qfb. Fig. 4g indicates that, in the case of steel reinforcing
bars, the balanced d

b ratio is constant as the conventional tensile
3 In this way, the reinforcement yields well before the concrete crushes.
ultimate strain assumed for steel is independent on cs. In the case
of ACI, the safety factor acts directly on the factored moment
increasing it, and then the cross-section geometry increases. Both
CNR and CAN apply the SF to the materials’ property, reducing
the GFRP ultimate strain, the design results in larger value of the
reinforcement area in smaller cross-section dimensions.

In order to compare the safety levels implicit to the analyzed
codes, six case study sections were designed assuming a value of
the design moment Ld equal to 100 kNm and with one layer of rein-
forcement in tension. Both possible failure modes were considered
in design according to ACI and CNR guidelines; for CAN guidelines,
the cross section was designed in such a way that failure of the sec-
tion is initiated by crushing of concrete. Sections are reinforced by
GFRP bars with a diameter of 12.5 mm (i.e., the effect of discrete
bar size was explicitly considered), and the same values described
above were used for the width of sections and material strengths.
Table 1 lists the geometrical properties for all case study cross sec-
tion and the corresponding value of bending moment capacity, Rd.

Although this study aims at determining the structural reliabil-
ity implied by flexural strength equations, it was mentioned in Sec-
tion 3, that serviceability limit states, such as crack-width, may
control design of FRP reinforced concrete. Therefore, it was verified
the case-study cross sections satisfy the serviceability limit states
checks according to the considered codes.

For comparison, design of steel-reinforced sections according to
the recent Italian code is also considered in Table 1. Reinforcing
steel is characterized by a specified yield stress of 450 MPa (as dis-
cussed above) and a steel partial safety factor equal to 1.15 is as-
sumed. An elastic-perfectly-plastic stress–strain diagram for steel
with 7% ultimate strain warrants the failure of the section always
occurs due to concrete crushing, therefore case study refers to just
one failure mode.

As shown in Table 1, given the strength, for the sections experi-
encing GFRP bars’ failure, the dimensions are larger (about 60% in
the case of ACI guidelines and about 50% in the case of CNR guide-
lines) with respect to the case when concrete is crushing (in this
latter case, the geometry of the cross sections is almost the same
CNR, NIBC 1.5 1.3
CAN 1.5 1.25



(b)(a)

(d)(c)

(f)(e)

Fig. 5. Distribution of MR obtained using Montecarlo simulation and superimposed normal PDFs. (a) ACI guidelines, GFRP fracture; (b) ACI guidelines, concrete crushing; (c)
CNR guidelines, GFRP fracture; (d) CNR guidelines, concrete crushing; (e) CAN guidelines, concrete crushing (f) NIBC (steel), concrete crushing.
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across the considered guidelines). For ACI guidelines, this larger
difference in the concrete geometry is due to the strong reduction
of the nominal flexural strength when GFRP bars’ rupture occurs,
Eq. (18), and to the lower percentile used in defining the nominal
strength of GFRP bars with respect to CNR guidelines, Eq. (15).

In the case of the CAN guidelines, the absence of an environ-
mental factor and the smaller value of the safety factor for GFRP
strength, lead to a larger value of the nominal strength of GFRP
bars and, then, to a reinforcement area smaller with respect to con-
crete crushing in the other codes. The same conclusion holds for
the steel-reinforced concrete due to the smaller value of the partial
safety factor used for steel; however, with respect to the Canadian
guidelines, the area of steel reinforcement is larger because the
conventional value for steel tensile design ultimate strain is equal
to 1% (less than the design ultimate strain for GFRP bars).
4 It is to note that also the Weibull distribution is also often used to describe the
strength of FRP composites (e.g., [22]).
5. Uncertainty characterization

A literature review was carried out to select the statistical char-
acterization for each RV referring to materials, loads, geometry and
models. The resulting assumptions are summarized in Table 2 and
described in the following sub-sections. All RVs were considered as
stochastically independent.
5.1. Materials

Statistical properties of concrete and steel are comprehensively
documented in [14,21]. The parameters given in Table 2 are the
bias (the ratio between the mean of a random variable and the
nominal value), and the coefficient of variation (CoV) defined as
the ratio of the standard deviation to the mean.

The random variables describing the compressive strength of
concrete, fc, and the yielding stress of steel, fy, are assumed to be
normally distributed. Also the random variable describing the ten-
sile strength of GFRP reinforcement, fr (ffu defined above, repre-
sents a given percentile of its PDF), is assumed to follow the
normal model.4 This assumption is well established in literature
and in codes (e.g., in ACI guidelines) and has been verified experi-
mentally through tests of composite specimens with different size
and nominal strength.

GFRP data are from [20]. The modulus of elasticity of GFRP, Ef, is
taken as deterministic. Strength changes of concrete and GFRP due
to aging and/or creep were ignored.



Table 4
Summary of statistics for MS.

Code Ln/Dn Mean (kNm) Bias CoV

ACI 0.5 77.50 0.78 0.11
1.0 73.21 0.73 0.13
1.5 70.83 0.71 0.15
2.0 69.32 0.69 0.17
2.5 68.27 0.68 0.18

CNR, NIBC 0.5 75.66 0.76 0.11
1.0 73.17 0.73 0.13
1.5 71.80 0.72 0.15
2.0 70.94 0.71 0.17
2.5 70.33 0.70 0.18

CAN 0.5 77.51 0.78 0.10
1.0 74.58 0.75 0.13
1.5 72.88 0.73 0.15
2.0 71.71 0.72 0.17
2.5 71.05 0.71 0.18

5 From a practical point of view, computations have been performed subtracting
the distribution of soliciting moment due to dead loads to the resisting moment, i.e.,
MR–MD, the difference of which is still Gaussian, and considering the distribution of
the soliciting moment as Gumbel distributed, ML.
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5.2. Loads

The combination of dead and live loads, as in Eq. (22), was con-
sidered to determine sectional bending design demand

cL � Ln þ cD � Dn ¼ Ld ð22Þ

In Eq. (22), Ln and Dn are the nominal values of load effects, in
terms of bending moments, caused by live and dead loads, respec-
tively. Since the focus of this paper is on the resistance aspects of
the flexural ultimate limit state, the only load combination that
is treated is that which involves dead and occupancy live loads. Ta-
ble 3 lists basic load partial factors (cL for live load and cD for the
dead load) in the considered codes for ULS.

The RV describing the dead load (i.e., the gravity load due to the
self-weight of the structure), MD, is usually considered as a nor-
mally distributed. Ellingwood et al. [14] suggest a bias of 1.05
and a CoV of 10%. For the random variable describing live loads,
ML, a Gumbel-type [23] distribution was chosen, bias is equal to
1.0 and the CoV is 25%.

5.3. Sectional geometry

Geometry uncertainties account for the heterogeneity in
dimensions of the considered structural element due to construc-
tion quality. The considered statistical parameters are still based
on [14]. In particular, for the dimensions of concrete beams in
bending, the bias factor was assumed equal to 1.01 for the width
with a CoV of 4%, and equal to 0.99 for the effective depth with a
CoV of 4%. Normal model was assumed.

For GFRP reinforcing bars, the bias factor of dimensions was se-
lected as 1.0 with a coefficient of variation equal to 5% in a Normal
model.

5.4. Mechanical models

Model uncertainties characterize heterogeneity in sectional
capacity estimation due to design equations. In fact, they are gen-
erally measured comparing the flexural capacity obtained in exper-
imental tests with the corresponding values obtained via analytical
formulations. Statistical properties of models are comprehensively
documented in [14] for steel reinforcement and in [9] for FRP rein-
forced concrete (the referenced study addresses reliability analysis
of beams reinforced with GFRP). In particular, the mean value for
the ratio of the test-to-predicted flexural strength for FRP-failing
beams was 1.11 with a 9.5% CoV, while a bias of 1.01 with a 9%
CoV was used in the concrete crushing case.
6. Methodology

Montecarlo sampling procedure was applied as the first step to accomplish the
reliability assessment for the case studies, which consisted of estimating the prob-
ability of the limit state function of Eq. (23) being non-positive

G ¼ MR � MD þMLð Þ ¼ MR �MS ð23Þ

In Eq. (23), MR is the random variable describing the bending capacity for each
case study of Table 1; MD and ML are the random variables describing load effects
caused by dead and live loads, respectively (as discussed in the previous section)
whose summation gives the total acting bending moment MS.

Eq. (23) allows to introduce the reliability index, as described in Eq. (24), in
which lG and rG are the mean and standard deviation of G. b, to be not confused
with the stress-block factor b1 discussed in preceding section, is a common measure
of reliability because it is proportional to the distance of the mean of R and L, and
inversely proportional to the combined standard deviation; i.e., it is related the
overlapping area in Fig. 1. Moreover, if G has a marginal Normal distribution it is
linked to the probability of failure via the Gauss function U; in fact, it is possible
to show that Pf is equal to U(�b) which means there’s a negative exponential rela-
tionship between the reliability index and the failure probability, Eq. (24).

Pf ¼ U � lR � lSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

R þ r2
S

q
0
B@

1
CA ¼ U �lG

rG

� �
¼ Uð�bÞ ð24Þ

In the case G has not a Normal distribution, Pf has to be computed in some other
way, as Eq. (24) does not hold. To this aim, herein, 5 � 104 of random samples for
MR were generated for each design case. Then, the definition of the analytical model
that better fits the flexural capacity, MR has been investigated by studying the sta-
tistical distribution obtained using the Montecarlo simulations (Fig. 5). It was pos-
sible to conclude that the Gaussian distribution (e.g., [24]) is appropriate, as also
confirmed via a Kolmogorov–Smirnov test [25] with a 5% significance level (some-
one would, more appropriately say, 95% significance level). Statistics for MR are re-
ported in Fig. 5. MS, the statistics of which as a function of Ln/Dn ratio are reported in
Table 4, is the sum of a Gumbel and Normal distributions and it may be hardly
approximated by a Gaussian PDF. In fact, Fig. 6a–e show an example of plot of ML

and MD distributions assuming a value of the design load Ld equal to 100 kNm
(the same value used in the design of the case studies cross sections) and the load
partial factors of Table 3 in ACI guidelines. It can be visually appreciated by Fig. 6f,
for one Ln/Dn value (i.e., 0.5), that the Gaussian badly approximates MS, especially, in
the right tail. The latter is important with respect to the failure probability, and
even apparently small misfits in this region may result in significant differences
in Pf (to follow).

Therefore, because G does not have a Gaussian distribution, the probability of
failure for each case study, are computed numerically as in Eq. (25), an application
of the total probability theorem, where FR(s) and fS(s) are the cumulative distribu-
tion function (CDF) of MR and the PDF of MS, respectively5 (e.g., [3]).

Pf ¼
Z 1

�1
FRðsÞ � fSðsÞ � ds ð25Þ
7. Results and discussions

As discussed in the previous section, Montecarlo simulation
combined with the numerical integration of Eq. (25), was applied
to calculate the failure probability for the designed cross sections
for five different load effect ratios; i.e., Ln/Dn = 0.5, 1, 1.5, 2 and
2.5. Although G does not have a Gaussian distribution, the failure
probabilities were be converted to reliability indices
(b = �U�1(Pf)), as this is a common way of comparing safety levels.
These are reported in Fig. 7 as a function of Ln/Dn, together with the
relationship between b and Pf, for readability. It is possible to infer
from the results that GFRP reliability indices are generally compa-
rable and higher than those referring to steel.

It is important to note that the probability of failure computed
considering normal distribution of for G (that is, for MS), may be
very different than those computed without (i.e., herein) such
strong assumption because of the different shape of the tail, which
at scale of small probabilities that are relevant for structural
engineering applications, may significantly affect the reliability



(b)(a)

(d)(c)

(f)(e)

Fig. 6. (a–e) Distribution of ML and MD for different values of Ln/Dn ratio; i.e., 0.5, 1.0, 1.5, 2.0, 2.5 (ACI guidelines); (f) example of distribution of MS for Ln/Dn ratio equal to 0.5
(ACI guidelines) and unsuitability of Gaussian approximation.
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assessment, as also pointed out in [22]. For example, for the case
where Ln/Dn = 0.5, using Eq. (24) and the statistics for MR in
Fig. 5b (ACI, concrete crushing), and the statistics for MS in the first
row of Table 4, b is equal to 4.5 and 4.4 with and without the
Gaussian assumption for MS, respectively. This small difference in
the b values, leads to a difference in the Pf values of about 30%.
For Ln/Dn = 1, or larger, differences of about 10% in the b values,
lead to differences in Pf of an order of magnitude6 (or larger).

Fig. 8 gives the reliability as a function of the central safety fac-
tor. In fact, even if none of the considered LRFD codes stipulates a
central factor of safety, [5] recommends this format as the one of
more direct interpretability. From the results it is also possible to
infer the central safety factor increases as the Ln/Dn ratio increase
due to the decrease of the mean of MS (Table 4). As expected, the
coefficient of variation of MS also increases as the Ln/Dn ratios in-
6 In the case of steel, given the small CoV of the MR distribution, looking at Ln/
Dn = 2.5, the Gaussian assumption for MS results (considering the statistics of Fig. 5f
and Table 4) in reliability index equal to about 4, while it is 3 from the more rigorous
analysis.
creases due to larger variability of live loads, and then b decreases
with Ln/Dn.

As shown in Fig. 5, the coefficient of variation of MR is constant
for all the considered FRP codes (13%) and comparable to the coef-
ficient of variation of MS for low to moderate values of Ln/Dn (i.e.,
until 1.5); this should explain why the reliability index is of mod-
erate sensitivity with respect to the Ln/Dn ratio (Fig. 7). This result
is consistent with the study [9] referring to US guidelines where
the reliability index decreases at a low rate as Ln/Dn ratio increases.

Generally, reliability indices corresponding to GFRP fracture are
larger than that corresponding to concrete crushing due to the
code-based conservative design formula for flexural capacity.

The assessment also indicates that ACI, when sectional failure is
due to composites, is especially conservative.7 This was expected as
ACI prescribes high strength to compensate for the lack of ductility
7 It is also to note that, failure probabilities computed herein are generally higher
than what prescribed for ULS, for example, by Eurocode [4] which suggests values of b
between 3.3 (ductile failure) and 4.3 (brittle failure) as minima for 50 yr as reference
periods.



Fig. 8. Reliability indexes as a function of the central safety factor.

Pf
1 1.6 10-01
2 2.3 10-02
3 1.3 10-03
4 3.2 10-05
5 2.9 10-07
6 9.9 10-10
7 1.3 10-12
8 6.2 10-16

Fig. 7. Reliability index as a function of Ln/Dn ratio.
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in the case of GFRP failure. In fact, the nominal value of bending mo-
ment of resistance is significantly reduced; e.g., by about 50%.
7.1. Sensitivity of reliability of design according to the Italian code to
SF

To assess sensitivity of reliability index to safety factor of rein-
forcement, 490 cross sections were designed according to the Ital-
ian guidelines by varying (i) the GFRP SF between 1 and 2, with a
0.25 step, (ii) cross section width between 300 mm and 600 mm,
with a step of 50 mm, (iii) cross sections height between 300 mm
and 600 mm, with a step of 50 mm, and (iv) considering two rela-
tive reinforcement ratio equal to 0.5 (GFRP fracture) and 1.5 (con-
crete crushing), making the assessment general and covering a
large number of possible design conditions.

The same procedure described above was applied to compute b,
assuming a load effect ratio equal to 1. In Fig. 9a results are shown
as a function of cf (averaging the safety indexes of the cross sec-
tions with the same value of the GFRP partial safety factor). It ap-
pears that, for the design cases corresponding to GFRP fracture, the
reliability index increases at a low rate as cf increases (Fig. 9a),
while for the design cases corresponding to concrete crushing,
the reliability index is nearly constant and equal to 3.8 and then
((a)

Fig. 9. (a) Reliability index as a function cf for case study cross sections governed by GFRP
sections governed by GFRP fracture.
independent on the material partial safety factor. This seems con-
sistent with the results of [8,9] and it is consistent with the design
equations discussed in the previous sections, according to which,
in the case of concrete crushing, MRd is independent of ffu and then
the influence of cf could be neglected.

Pilakoutas et al. [8] conclude that, provided that flexural failure
occurs due to concrete crushing, the use of cf to account for the
uncertainties in the mechanical characteristics of the FRP rein-
forcement is not vital, since the flexural reliability is not affected
by cf. Based on this finding, they propose that the uncertainties rel-
evant to mechanical characteristics of the flexural reinforcement
should be incorporated into the concrete partial safety factor,
eventually modifying the currently used value for it in flexural lim-
it state design.

Finally, it is known that both mean tensile strength and its coef-
ficient of variation vary (decreases) with the cross sectional dimen-
sions of the bar, that is, size-effect (e.g., [20]). To investigate size-
effect with respect to reliability, a subset of 98 cross sections of
the 490 described above were considered; i.e., those corresponding
to cf equal to 1.5.

For each case, the reliability index was computed for a load ef-
fect ratio equal to 1 by varying the bar size between #2 (i.e., diam-
eter equal to 6 mm) and #10 (i.e., diameter equal to 32 mm).
Statistics reported in [26], which change as a function of the size,
were used for the reliability assessment.

For the design cases corresponding to GFRP fracture, all the in-
dexes were plotted in Fig. 9b as a function of bar size showing that
the reliability index is almost constant. Same trends, yet smaller
values of reliability index (i.e., about 3.9), have been found in the
case of concrete crushing.

Analyses indicate that bar size appears to be not important with
respect to reliability; however, FRP reinforcing bars with large
dimensions may affect the bonding with concrete.
8. Conclusions

Currently, noncorrosive and nonconductive FRP bars are emerg-
ing as an alternative to conventional steel reinforcement for struc-
tural concrete. In this paper, the conventional reliability (meaning
that failure probabilities are to be taken for comparative purposes
only and may not be interpreted as actual failure probabilities) im-
plied by design of FRP-reinforced sections in bending was
investigated.

ACI 440.1R-06 guidelines, CAN/CSA-S806-02 guidelines, and the
Italian guidelines CNR-DT 203/2006 were compared, with the aim
of investigating how the different design procedures and formats
affect the implicit design safety and whether it is similar among
international guidelines. As a benchmark, the design of steel-rein-
forced concrete cross sections, according to the recent Italian code,
was also considered.
b)

fracture; (b) reliability index as a function of the bars’ diameter for case study cross
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The study focused exclusively on the flexural behavior of GFRP-
RC sections. It was found that, although design formats are quite
different, codes lead to generally comparable reliability indices
(which, however, have an exponential link with the probability
of failure) among codes and relatively high with respect to con-
crete reinforced with steel. ACI may be relatively conservative
when sectional failure is due to FRP.

The parametric study for the Italian guidelines, indicates that
for the design cases corresponding to GFRP fracture, the reliability
index increases at a low rate as cf increase, while for the design
cases corresponding to concrete crushing, as found in other similar
studies, the conservative partial safety factor for FRP reinforcement
has little influence on the safety of cross sections.

The issue of size-effect in FRP strength was also investigated in
the structural reliability framework; analyses seem to suggest that
bar size appears to be not important with respect to reliability,
although, FRP reinforcing bars with large dimensions may affect
the bonding with concrete.
Acknowledgement

The authors want to thank Racquel K. Hagen of Stanford Univer-
sity for proofreading the manuscript.
References

[1] Ellingwood BE, MacGregor JG, Galambos TV, Cornell CA. Probability-based load
criteria: load factors and load combinations. J Struct Div, ASCE
1982;108(5):978–97.

[2] Benjamin JR, Cornell CA. Probability, statistics and decision for civil
engineers. New York: McGraw-Hill; 1970.

[3] Pinto PE, Giannini R, Franchin P. Seismic reliability of structures. Pavia,
Italy: IUSS Press; 2004, ISBN 88-7358-017-3.

[4] CEN, European Committee for Standardisation (CEN). Eurocode: basis of
strucutral desing, EN 1990; 2002.

[5] Cornell CA. A probability-based structural code. ACI Struct J
1969;66(12):974–85.

[6] Cornell CA. Probability bases for structural design. In: Ghiocel D, Lungu D,
editors. Wind snow and temperature effects on structures based on
probability. UK: Abacus Press; 1976.

[7] Monti G, Santini S. Reliability-based calibration of partial safety coefficients for
fiber-reinforced plastic. J Compos Constr 2002;6(3):162–7.
[8] Pilakoutas K, Neocleous K, Guadagnini M. Design philosophy issues of fiber
reinfored polymer reinforced concrete structures. J Compos Constr
2002;6(3):154–61.

[9] He Z, Qiu F. Probabilistic assessment on flexural capacity of GFRP-reinforced
concrete beams designed by guideline ACI 440.1R-06. Constr Build Mater
2010;25(4):1663–70.

[10] American Concrete Institute (ACI) Committee 440. ACI 440.1R-06: Guide for
the design and construction of structural concrete reinforced with FRP bars;
2006.

[11] Canadian Standards Association (CSA). CSA-S806-02: Design and construction
of building components with fibre-reinforced polymers; 2002.

[12] Consiglio Nazionale delle Ricerche (CNR). CNR-DT 203/2006: Guide for the
design and construction of concrete structures reinforced with fiber-
reinforced polymer bars; 2006.

[13] CS.LL.PP. Decreto Ministeriale 14 Gennaio 2008: Norme tecniche per le
costruzioni. Gazzetta Ufficiale della Repubblica Italiana, no. 29, 4 febbraio
2008, Suppl. Ordinario no. 30; 2008 [in Italian].

[14] Ellingwood B, Galambos TV, MacGregor JG, Cornell CA. Development of a
probability based load criterion for American national standard A58 building
code requirements for minimum design loads in buildings and other
structures, Special Publication 577. Washington (DC, USA): US Department
of Commerce, National Bureau of Standards; 1980.

[15] Cosenza E, Iervolino I. Case study: seismic retrofitting of a medieval bell tower
by FRP. J Compos Constr 2007;11(3):319–27.

[16] Pecce M, Manfredi G, Cosenza E. Experimental response and code models of
GFRP RC beams in bending. J Compos Constr 2000;4(4):182–90.

[17] Nanni A. North American design guidelines for concrete reinforcement and
strengthening using FRP: principles, applications and unresolved issues.
Constr Build Mater 2003;17(6–7):439–46.

[18] American Concrete Institute (ACI) Committee 318, 20022005. ACI 318-0205:
Building code requirements for structural concrete and commentary.

[19] Consiglio Nazionale delle Ricerche (CNR). CNR-DT 200/2004: Guide for the
design and construction of externally bonded FRP systems for strengthening
existing structure; 2004.

[20] Kocaoz S, Samaranayake VA, Nanni A. Tensile characterization of glass FRP
bars. Compos B Eng 2005;36(2):127–34.

[21] Nowak AS, Szerszen MM. Calibration of design code, for buildings (ACI318):
Part 1 – statistical models for resistance. ACI Struct J 2003;100(3):377–82.

[22] Zureick AH, Bennett RM, Ellingwood BR. Statistical characterization of FRP
composite material properties for structural design. J Struct Eng
2006;132(8):1320–7.

[23] Gumbel EJ. Probabilistic analysis of loads. In: Ghiocel D, Lungu D, editors. Wind
snow and temperature effects on structures based on probability. UK: Abacus
Press; 1976.

[24] Fico R. Limit states design of concrete structures reinforced with FRP bars. PhD
thesis, Univ. of Naples, Italy; 2007. p. 167.

[25] Mood MA, Graybill FA, Boes DC. Introduction to the theory of statistics. 2nd
ed. New York: McGraw-Hill; 1974.

[26] Kulkarni S. Calibration of flexural design of concrete members reinforced with
FRP bars. MSc Thesis, Louisiana State University and Agricultural and
Mechanical College; 2006.


	Comparative assessment of load–resistance factor design of FRP-reinforced  cross sections
	1 Introduction
	2 Basics of load–resistance factor design
	3 Design of FRP-reinforced concrete
	3.1 US guidelines
	3.2 Italian guidelines
	3.3 Canadian guidelines

	4 Design of case studies
	5 Uncertainty characterization
	5.1 Materials
	5.2 Loads
	5.3 Sectional geometry
	5.4 Mechanical models

	6 Methodology
	7 Results and discussions
	7.1 Sensitivity of reliability of design according to the Italian code to SF

	8 Conclusions
	Acknowledgement
	References


