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SUMMARY 

 
In countries with an advanced seismic technical culture, where best-practice probabilistic hazard 
studies are available along with dense seismic networks, there is an increasing interest in 
validation of hazard maps. This, basically, means trying to quantitatively understand whether 
probabilities estimated via hazard analysis are consistent with observed frequencies of 
exceedance of ground motion intensity thresholds. Because the exceedance events of interest are 
typically rare with respect to the time span covered by data from seismic monitoring networks, a 
common approach underlying these studies is to pool observations from different sites. The main 
reason for this is to collect a number of data large enough to convincingly perform a statistical 
analysis. However, this is often done neglecting the intrinsic stochastic dependence affecting 
observations at different sites in the same earthquake. On these premises, the presented study 
demonstrates how this may lead to potentially fallacious conclusions about inadequateness of 
probabilistic seismic hazard assessment. The study refers, as an example, to an ideal seismic 
source zone and some recording sites. It is shown, how accounting for the dependence of 
intensity on magnitude and source to site distance, may change the results of validation from fail 
to pass. Some considerations with respect to other studies, attempting to validate Italian data via 
thirty years of seismic observations all across the country, are also made. 
 
Keywords: Probabilistic seismic hazard analysis, Validation, Disaggregation, Binomial 
distribution. 
 

 
 

1. INTRODUCTION  
 
Due to their underlying predictive meaning, probabilistic seismic hazard analysis or PSHA (e.g., 
Cornell, 1968; Reiter, 1990) studies are debated and often questioned (e.g., Hanks et al., 2012, 
Kossobokov and Nekrasova, 2012, Stein et al., 2011 and 2012, Stirling, 2012). Italy is not an 
exception in this sense; indeed, in the country there is a constant debate on the consistency and 
adequacy of the national hazard map (Stucchi et al., 2011), which serves as a basis for the 
definition of seismic actions for structural design according to the current building code 
(CS.LL.PP., 2008).  
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A number of studies tried to quantitatively confirm or disprove probabilistic seismic hazard 
estimates via observed ground motions over the years (e.g., Albarello and D’amico, 2008). The 
soundest studies, attempting to validate hazard maps, are based on the theory of hypothesis 
testing or confidence intervals (e.g., Mood et al., 1974). In fact, these studies recognize that 
validating hazard at a single site requires a large number of earthquake observations, which is 
seldom available due to very long time (on average) required to collect those (e.g., Iervolino, 
2013). Therefore, they tend to pool together seismic records at different sites, in the same time 
span, to create a sample of sufficiently large size to make the formal comparison with PSHA. 
However, it seems that, in these exercises, the effect of stochastic dependency of observations at 
different sites, yet in the same earthquake, is often overlooked. The consequent risk is that of 
being led to fallacious conclusions, labelling seismic hazard estimates from PSHA as erroneous 
(often claimed not conservative). 

Hazard maps are usually a collection of ground motion intensity measures (IMs) values, 
corresponding to percentiles of site-specific marginal IM distributions. This is because the civil 
structures are typically point-like, and therefore codes require location-specific SPHA. The aim of 
this paper is to recall that, due to certain basic aspects of PSHA, in the case the same earthquake 
affects more than one site, recordings are not independent and therefore the observed IM 
exceedances should be cautiously compared to hazard maps. The cause for stochastic dependency 
is twofold: (i) there’s stochastic dependency carried by the ground motion prediction equation or 
GMPE, as hazard disaggregation shows (e.g., Iervolino et al., 2011); (ii) there may be also spatial 
correlation of GMPE’s intraevent residuals (e.g., Esposito and Iervolino, 2011). This study will 
focus on (i) as it is sufficient to prove the argument that spatial dependency of observation in a 
single seismic event must be take into account in PSHA validation attempts. Other forms of 
dependency, such as spatial clustering of exceedances, are also neglected. 

To this end the remainder of the paper is organized such that a brief review of site-specific 
and regional PSHA, is initially given. Then, simple examples of how hazard validation would 
quantitatively change if the dependency of observations were accounted for, are discussed. 
Finally, some recommendations for comparison of hazard and observed ground motions are 
addressed with respect to one of the approach to PSHA validation found in literature.  
 
 

2. SITE-SPECIFIC AND REGIONAL PSHA ESSENTIALS 
 
In its standard form, PSHA consists of the estimate of the mean rate (e.g., annual) of exceedance 
of a given value of an IM, for example peak ground acceleration or PGA, at a site of interest (e.g., 
the location where a building under design is to be constructed). The computation of this rate, 
which can be represented as λIM, is often carried out considering: at first the rate of earthquake 
occurrence on the source, ν ; then the conditional probability of IM exceedance given event 
magnitude (M) and source-to-site distance (R), as well as other parameters; and finally by 
averaging over all possible events via the joint distribution of M and R, as in Equation (1).1  

This articulation, is only for convenience, because the [ ]|P IM im m r≥ ∩  term is obtained 

from GMPEs, while ν  and [ ]P M m R r= ∩ = , the latter being the joint probability of M and R, 
are provided based on seismicity – historical or instrumental – and geological information about 
the source. 

[ ] [ ]
,

   IM
m r

P IM im P IM im m r P M m R rλ ν ν ⎡ ⎤= ⋅ > = ⋅ > ∩ ⋅ = ∩ =⎣ ⎦∑  (1) 

                                                
1 For the sake of simplicity in this illustration, the probabilities are expressed for discrete random variables 
while, strictly speaking, these should be considered continuous. In fact, sums and probabilities should be 
replaced by integrals and probability density function, respectively. 
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In fact, it is possible to show that, if the occurrence of earthquakes on the source follows a 
homogeneous Poisson processes (HPP) with rate ν , then also the process describing the 
occurrence of events determining exceedance of the IM at the site of interest, follows a HPP. 
Furthermore, the rate of the latter depends on that of the former as per Equation (1). It is a filtered 
process; the occurrence of earthquakes on the source is filtered by the probability that the 
resulting ground motion will cause the exceedance of the im intensity level in question at the site. 
In other words, among all the earthquakes occurring on the fault, retaining only those causing the 
considered effect at the site, the occurrence of events belonging to this random selection is still 
described by a HPP. 

If the analysis as per Equation (1) is repeated for all IM-values in a range of interest, a curve 
for IMλ , as a function of im, is obtained. It is termed hazard curve, and for each IM-value 
provides the rate of the specific HPP regulating its exceedance at the site of interest.  

One important consequence of the HPP assumption for earthquake occurrence2 is that the 
random time elapsed between two consecutive events (i.e., the interarrival time), is characterized 
by the exponential distribution. Therefore, the probability that the time between two events 
causing the exceedance of the IM-value of interest at the site, ( )T im , is lower than t, is given by 
Equation (2). The same distribution also provides the probability to observe at least one 
exceedance of im during t years.  

[ ] ( ) 1 IM tP at least one exceedance of im during t P T im t e λ− ⋅= ⎡ ≤ ⎤ = −⎣ ⎦  (2) 

In the case of regional seismic hazard, one may want to calculate, for example, the ground 
motion intensity, which has a specific annual rate of exceedance in at least one of several sites of 
interest. Let the objective of regional probabilistic seismic hazard analysis (e.g., Esposito and 
Iervolino, 2011) be to compute the annual rate of the event, which causes the exceedance of a 
certain IM-value in at least one of two sites, { }1,2 , in the same region. Such a calculation could 

be carried out by implementing Equation (3). In the equation { }1 2,R R  are the earthquake 
distances from sites 1 and 2 respectively. 

[ ] [ ]

1 2

1 2

1 1 2 2 1 2 1 1 2 2
, ,

1 |

IM IM

m r r

P IM im IM im m r r P M m R r R r

λ

ν

∪ =

⎧ ⎫⎪ ⎪= ⋅ − ≤ ∩ ≤ ∩ ∩ ⋅ = ∩ = ∩ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑
 (3) 

The need for the joint probability, [ ]1 1 2 2 1 2|P IM im IM im m r r≤ ∩ ≤ ∩ ∩ , in Equation (3), recalls 
that GMPEs always imply stochastic dependency of IMs at different sites. This is because the 
mean of IM at the two sites changes with the value of M and with the earthquake location, which 
affects the distances, and also because there could be spatial dependency of intraevent residuals 
of the ground motion prediction model (neglected in the rest of this paper, as mentioned earlier 
on).  

To understand this issue, in Figure 1 an ideal, 220 80 km× , seismic source is considered. It is 
discretized in sixty-eight possible earthquake source locations. It is also imagined that four 
recording stations are located in the sites indicated by triangles labeled 1-4 in the figure. It is 
assumed that event rate of earthquakes is [ ]1 events yrν = , globally over the source zone. The 

distribution of magnitude is a truncated exponential one, defined in the [ ]4.5,7  range. The b-

                                                
2 In this work, considerations regarding the choice – however frequent – of the HPP to model earthquake occurrence 
are omitted, as well as any discussion of possible alternatives. 
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value of the Gutenberg-Richter relationship is equal to one. The considered GMPE is that of 
Ambraseys et al. (1996).3  

For each (equally likely) possible earthquake location in the picture, 104 values of magnitude 
were generated via a montecarlo simulation. These simulations where used to compute the site-
specific hazard curves for sites { }1,2  via Equation (1), and the joint hazard via Equation (3). 
Resulting hazard curves are shown in Figure 2. It is to note that the joint hazard may not be lower 
than those corresponding to hazard for each individual site.  

 
Figure 1. Ideal seismic source zone and considered sites (distances in km). 

 
Figure 2. Site-specific (marginal) and regional (joint) hazard for sites 1 and 2 in Figure 1. 

Another, even more straightforward way to recall that IM observations at different sites, yet in the 
same earthquake event, cannot be considered independent random variables, is readily provided 
by the well-known tool of hazard disaggregation. Given a hazard curve for a specific site and a 

                                                
3 In fact, the considered GMPE uses fault distance, while herein it is used as if it was epicentral distance. 
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threshold in terms of IM, disaggregation results in a distribution that, given exceedance of the 
considered IM-level, provides the probability, for example, of each possible magnitude-distance 
being the causative event for such an exceedance at the considered location, 
P M m R r IM im⎡ ⎤= ∩ = >⎣ ⎦ . Such a distribution may be obtained via the Bayes’ theorem (Mood 

et al., 1974) as in Equation (4). As an example, Figure 3 shows disaggregation of the PGA with 
10% exceedance probability in thirty years, ( )10 / 30PGA , for sites 1 and 2.  

[ ]
IM

P IM im m r P M m R r
P M m R r IM im

ν
λ

⎡ ⎤⋅ > ∩ ⋅ = ∩ =⎣ ⎦⎡ ⎤= ∩ = > =⎣ ⎦    (4) 

  
Figure 3. 10% in 30 yr PGA hazard disaggregation for site 1 (left) and site 2 (right). 
Vertical axis is the probability of the M-R pair being causative for the exceedance. 

It follows from disaggregation, that once exceedance is observed at site 1 in one earthquake, then 
the probability of exceedance of site 2 changes with respect to the hazard curve for the site, which 
is the definition of stochastic dependency, Equation (5). As it will be clarified in the following, 
this has important reflections on validation of a hazard map, which includes both sites 1 and 2. 

  

P IM2 > im2 IM1 > im1
⎡⎣ ⎤⎦ =

=
m,r
∑P IM2 > im2 IM1 > im1 ∩m∩ r⎡⎣ ⎤⎦ ⋅P M = m, R = r IM1 > im1

⎡⎣ ⎤⎦ ≠ 

≠ P IM2 > im2⎡⎣ ⎤⎦ =
m,r
∑P IM2 > im2 m∩ r⎡⎣ ⎤⎦ ⋅P M = m∩ R = r⎡⎣ ⎤⎦

 (5) 

In fact, on the basis of results obtained via the montecarlo simulation described above, it is 
possible to calculate the probability that a generic earthquake causes exceedance of specific 
values of intensity, 1im  and 2im , at the sites 1 and 2. For example, 1im  and 2im  may be set equal 
to ( )1 10 / 30PGA  and ( )2 10 / 30PGA , respectively; i.e., the values of PGA which corresponds a 
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10% exceedance probability at each of the sites.4 More specifically, it is possible to compute: the 
probability, 0P , that in one (generic) event none of the two sites experiences exceedance; the 
probability, 1P , to observe exceedance in (exactly) one of the two sites; and the probability, 2P , 
of observing an exceedance in both the sites. Then, it is easy to verify that the simulation leads to 
different results with respect to those one obtains in the case it is assumed that exceedances at the 
two sites (in a generic event) are stochastically independent. In fact, under this hypothesis, the 
number of exceedances of ( )1 10 / 30PGA  and ( )2 10 / 30PGA , being the sum of independent and 
equally distributed Bernoulli random variables, can be considered (by definition) a binomial, 
( ),B n p , random variable with 2n =  and   p = 0.003512 . In fact, the mean and the variance of 

the total number of exceedances in t years of ( )10 / 30iPGA , for both the dependent and the 
independent case, may be computed as in Equations (6). 

  

µ t( ) = ν ⋅ t ⋅ i ⋅Pi
i=0

2

∑ = ν ⋅ t ⋅ 0 ⋅P0 +1⋅P1 + 2 ⋅P2( )

σ 2 t( ) = ν ⋅ t ⋅ i2 ⋅Pi
i=0

2

∑
⎛

⎝
⎜

⎞

⎠
⎟ = ν ⋅ t ⋅ 02 ⋅P0 +12 ⋅P1 + 22 ⋅P2( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (6) 

Means and variances obtained for 1t =  and 1ν =  using the distribution obtained via montecarlo 
simulation, for different pairs of sites in Figure 1, and those obtained using the binomial 
distribution, are reported in the following Table 1. For the pairs in the second and third columns, 
the values considered for the ( )3 10 / 30PGA  and ( )4 10 / 30PGA  as well as the values of 
probability 0P , 1P , and 2P  are obtained adopting the same approach used for sites 1 and 2 in the 
example above.  
 
Table 1. Mean and variance of the random variable counting the number of exceedances in 

one year for pairs of sites. 

 Sites 1,2 Sites 1,4 Sites 2,3 Any two sites considered independent 
Mean 0.0070 0.0070 0.0070 0.0070 

Stand. Dev. 0.0839 0.0838 0.0853 0.0840 
 
Results show that, as expected, the binomial model allows to calculate correctly the mean number 
of exceedances (which is the same for sites { }1,2 , { }1,4 , and { }2,3 ), yet it does not allow to 
calculate the exact (i.e., according to the considered assumptions) value of the variance, which 
from simulation results larger considering the pair of sites { }2,3  and smaller for { }1,4  and about 

equal for { }1,2 . This result is due to the fact that the binomial model is not able to account for the 

negative correlation that exist between exceedances in sites { }1,4 , which are relatively far from 

each other, and the positive correlation between exceedances in sites relatively close, { }2,3 . It 

only approximates the results for sites { }1,2 , at an intermediate distance. 
 

                                                
4 

  
PGA 10 / 30( )  implies probability of exceedance in one event equal to 0.003512. Indeed, from Equation (2): 

  
P T PGA 10 / 30( )⎡⎣ ⎤⎦ ≤ 30{ } = 1− e−1⋅P PGA>PGA 10/30( )⎡⎣ ⎤⎦⋅30 = 0.1 , from which ( )10 / 30 0.003512P PGA PGA⎡ > ⎤ =⎣ ⎦  

derives. 
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3. THE EFFECT OF REGIONAL HAZARD ON SITE-SPECIFIC HAZARD TESTING 
 

In order better clarify the importance of the arguments discussed so far, it can be worthwhile to 
illustrate the implications they can have in practical applications. To do so, in the next section, 
mathematical and conceptual details of the validation study discussed in Albarello and D’amico 
(2008) are recalled. Subsequently, it is finally shown how neglecting stochastic dependence can 
lead to erroneous conclusions. 
 
3.1. An Italian Hazard Validation Study 
 
In Albarello and D’amico (2008) interesting validation problem is discussed. The aim of the 
study was to validate the 10% in 30 yr PGA hazard from the official nationwide hazard map. To 
this aim, the authors gathered data from sixty-eight seismic station operating during a thirty years 
period across the entire Italian territory. In fact, for these stations, which recorded thirty-eight 
earthquakes, according to the Italian accelerometric archive or ITACA (http://itaca.mi.ingv.it/), it 
was observed that thirteen times (collectively) the PGA with a 10% in 30 years exceeding 
probability according to the hazard map of Stucchi et al. (2011), was actually exceeded. In Figure 
4 the map with the stations as well as the location and year of earthquake occurrence and/or of 
exceedance is given. 

 

 
 

Figure 4. Seismic stations operating in a thirty years time frame, earthquake date and 
exceedance of PGA(10/30) indicated with crosses. 

In the cited study, in order to perform the requested statistical test, authors adopt two approaches, 
both based on the hypothesis that exceedances in different sites, 
 given that these are sufficiently far away from each other, can be considered stochastically 
independent. In particular, in the first approach, termed the counting approach, the event of 
exceedance of PGA with 10% in 30 years exceeding probability at each site i, is modeled as a 
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Bernoulli random variable which assumes value 0 if exceedance is not observed, and value 1 if 
( )10 / 30iPGA is exceeded at least once in thirty years at site i.5 This random variable is 

characterized by 0.1 probability of observing the exceedance, which is a direct consequence of 
definition of ( )10 / 30iPGA .6 Indeed, Bernoulli variables counting the exceedance of 

( )10 / 30iPGA  at least once in in thirty years at different sites are equally distributed with 
0.1p = . Then, under the independence hypothesis, the probability to observe k exceedances in 

thirty years over the sixty-eight stations is given by the binomial distribution ( ),B n p  in Equation 
(7), where the number of trials, n, is 68 and 0.1p = . 

( ) 6868
10 / 30 68 30 0.1 0.9k kP k exceedances of PGA across stations in yr

k
−⎛ ⎞

⎡ ⎤ = ⋅ ⋅⎜ ⎟⎣ ⎦
⎝ ⎠

 (7) 

Consequently, they computed the mean and the variance of the number of sites in which at least 
an exceedances in thirty years is observed as 68 0.1 6.8n p⋅ = ⋅ =  and 

( )1 68 0.1 (1 0.1) 6.12n p p⋅ ⋅ − = ⋅ ⋅ − =  respectively. Finally, they performed a formal statistical 
test to check the (null) hypothesis that the exceedances probability at the generic site is 0.1, as 
suggested by the Italian hazard map, against the (alternative) hypothesis that this probability is 
probability larger than 0.1. In fact, considered that from available data it results that in 30 years 
the discussed exceedance has been observed in thirteen of the sixty-eight sites and noted that for 
the central limit theorem it can assumed that:  

  6.8 1.96 6.12 0.05P number of exceedances⎡ ⎤− > ⋅ ≅⎣ ⎦   (8) 

they concluded that, being 13 6.8 6.2 1.96 6.12 4.85− = > ⋅ = , the observed number of 
exceedances, give evidence (at 0.05 significance level) that the real value of the exceedances 
probability at the generic site is larger than 0.1. 

 
3.2. Results obtained accounting for stochastic dependence 
 
In this section it is shown how the presence of stochastic dependency among exceedances at 
different sites can invalidate decisions taken on the basis of Equation (8). In fact, the use of the 
binomial model in presence of the discussed form of stochastic dependency, which, ultimately, 
depends on the spatial distribution of the considered sites with respect to the sources zone, can 
give a value of the variance that can differ from the exact one in a way to change the result of a 
hypothesis test. 

To further illustrate this issue, let consider the ideal seismic source introduced in Figure 1. In 
this case it is supposed that sixty-eight sites exist (Figure 5). The simulation in this case is 
performed adopting the same numerical approach and source features previously listed. For each 
of the 104 value of M and for all possible event locations (which are also sixty-eight), the PGAs at 
each of the sites were simulated. The obtained set of 468 10⋅  observations was used to compute 
the values of ( )10 / 30iPGA ,   i = 1,2,...,68{ } , as well as the values of probabilities   P0 , P1,..., P68{ }  

                                                
5 Note that, obviously, each of the sites has different values of 

  
PGA 10 / 30( )  corresponding to the same exceedance 

probability. 
6 This result, that rigorously applies under the common hypotheses of PSHA, neglects the case of exceedance in 
aftershock sequences; e.g., Iervolino et al., 2014). 
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that a single, generic, event causes exceedances of ( )10 / 30iPGA  at any given number of sites 
simultaneously.  

In Figure 6 the probabilities obtained from the simulations are compared to the case it is 
assumed independence of exceedance events; i.e., in the case number of exceedance in a single 
event is modeled as a binomial ( ),B n p  random variable with 68n =  and 0.003512p = .  

 
Figure 5. Ideal seismic source zone and sites (distances in km). 

 
Figure 6. Distributions, in one year, of the number of sites with contemporary exceedance of 

the PGA with 10% exceedance probability in 30 years. 

It may be seen that the spatial dependency of ground motions significantly affects the 
distributions. Indeed, from Equation (6), Equations (9) results. The mean computed adopting the 
binomial model (i.e., 68 0.003512 30 7.16⋅ ⋅ = ) coincides, as expected, with the mean calculated 
using the simulation, whereas a difference exists between the variances, which result equal to 
8.85  and 26.54  for the binomial model and for the model obtained via simulation, respectively. 
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µ t( ) = ν ⋅ t ⋅ 0 ⋅P0 +1⋅P1 + ....+ 68 ⋅P68( )
σ 2 t( ) = ν ⋅ t ⋅ 02 ⋅P0 +12 ⋅P1 + ...+ 682 ⋅P68( )
⎧
⎨
⎪

⎩⎪
 (9) 

At this point, re-applying Equation (8), on the basis of these results, the decision rule in Equation 
(10) is obtained. 

:   7.16 1.96 26.54 0.05

:   7.16 1.96 8.85 0.05

Simulation P number of exceedances

Independent P number of exceedances

⎧ ⎡ ⎤− > ⋅ ≅⎪ ⎣ ⎦
⎨

⎡ ⎤− > ⋅ ≅⎪ ⎣ ⎦⎩

 (10) 

Supposing that in thirty years thirteen exceedances have been observed over sixty-eight sites, 

because 13 7.16 5.84− =  and 1.96 8.85 5.83⋅ = , adopting the binomial model would lead to 
conclude, that at the significance level 0.05α = , data give evidence that the true p is different 

from 0.1. On the other hand, because 1.96 26.54 10.1⋅ = , the simulations allow to verify that in 
the considered case the observed number of exceedance is consistent (at the same significance 
level) with the (null) hypothesis that the exceedance probability at the generic site is 0.1, as 
suggested by PSHA.7 
 
 

4. CONCLUSIONS 
 

The paper discussed some arguments, which should be taken into consideration when attempting 
to validate probabilistic seismic hazard studies versus observed earthquakes. In particular, it was 
discussed that ground motion intensity records at different seismic stations in the same 
earthquake are not independent. Such a form of spatial stochastic dependence arises, primarily 
but not only, from the ground motion prediction equation, and is confirmed by seismic hazard 
disaggregation. Indeed, given that the exceedance at one site is observed, the probability of 
exceedance at another site changes with respect to the hazard curve. As a consequence, the test 
statistic to validate hazard cannot rely on models that are not able to account for these form of 
dependence. 

To quantitatively evaluate the effect of such a dependence on possible observed samples of 
ground motion exceedances, some simple examples were set up. They consisted of an ideal 
seismic source and some sites affected by its seismicity. It was shown that the variance of the 
number of exceedances may results larger than that obtained under the hypothesis that 
exceedance in different sites are independent. It is also shown, how accounting for this 
dependence may change the results of statistical tests adopted in validation study from reject to 
not-reject the hypothesis that observations are consistent with the probabilistic seismic hazard 
map.  

It is believed that these arguments, very simple from the statistical point of view, can help the 
future validations of hazard studies, a field of commendable effort for earthquake engineers and 
engineering seismologists. 

 

                                                
7 Here attention is focused on the total number of exceedance in thirty years. Hence a little difference is obtained in 
terms of both mean and variance with respect to results obtained by Albarello e D’amico (2008), where it is considered 
the number of sites in which at least one exceedance is observed. This little difference doesn’t affect the validity of the 
results obtained in this section. 
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