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Abstract
Calibrating parametric fragility curves via empirical damage data is one of the
standard approaches to derive seismic structural vulnerability models. Fragili-
ties based on empirical data require the characterization of the ground motion
(GM) intensity at the building sites in the area affected by the earthquake produc-
ing the observed damages. This is commonly conducted via ShakeMap, that is, a
map of the expected values of a Gaussian random field (GRF) of the logarithms
of a GM intensity measure conditional to magnitude, location, and possibly a
set of recordings of the earthquake. Once that intensity and damage data at the
same sites are available, the typical approach calibrates a two-parameter fragility
model. However, ShakeMap estimates are affected by uncertainty deriving from
that of the GM model used to characterize it. Furthermore, such an uncertainty
can be reduced by building damage data, which provide information on the shak-
ing intensity at the sites where damage is observed. It is shown herein that if this
uncertainty is not addressed, also considering the shaking information provided
by damage, the estimates of the fragility parameters obtained using a median
ShakeMap only can be biased, and a recommended maximum likelihood esti-
mation procedure – which exploits the expectation maximization algorithm – is
provided. These arguments are illustrated via an application considering damage
data from the 2009 L’Aquila earthquake in central Italy.
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1 INTRODUCTION ANDMOTIVATION

One of the approaches to derive seismic fragility curves for structures is based on damage data observed in earthquakes.
Although this approach inherently derives a vulnerability model describing the average behavior of a population of struc-
tures, typically referred to as a typology, it is seen as an alternative to the simulation-based approach that entails solving
the equation of motion for nonlinear structural models representing specific constructions.1 The observed-damage-based
approach to derive fragility curves is sometimes considered especially appealing, because of its semi-empirical nature.
Herein, semi-empirical refers to observed damage calibrating a parametric fragility model, to distinguish from empirical
fragilities, which are non-parametric models.2
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The derivation of fragility curves boils down to obtain the probability of observing some structural performance of inter-
est (i.e., exceedance of a structural damage level) conditional to the values of a ground motion (GM) intensity measure
(IM). In the probabilistic context, conditional means that the IM is assumed known with certainty. However, one of the
distinctive features of this approach is that the GM intensity, at the sites where damage is observed, is – in most cases –
not directly available. (This is not an issue in numerical fragility curves, which are developed subjecting the structural
model to a sample of assigned GMs with known features.3) In the context of semi-empirical fragility, the IMs at the dam-
age sites where seismic stations are missing are often obtained via the ShakeMap4 developed for the earthquake which
produced these damages.4 The information employed to develop ShakeMap is classically made of earthquake magnitude
and location, as well as recordings available at a few sites. In recent ShakeMap implementations,4 the logarithms of IMs
in the area affected by the earthquake are assumed to form a Gaussian random field (GRF). Therefore, the joint distribu-
tion of IMs is specified by the mean vector and the covariance matrix, which are obtained by a GM model, for example
a ground motion prediction equation (GMPE) and a spatial correlation model for its intra-event residuals. Despite rules
of risk analysis5 requiring that no information is neglected in evaluating the fragility parameters, in most cases only the
ShakeMap collecting the mean of the logarithms of the IMs, hereafter referred to as median ShakeMap, is considered in
literature.6–12
Once it is recognized that intensities from ShakeMap are affected by uncertainty that should be accounted for in

semi-empirical (also referred to as observational) fragility curve derivation, it must be acknowledged that damage data
also provide information about the shaking intensity in the area where such damages are observed. Given earthquake
magnitude and source-to-site distance, observing damage [no damage] on a building suggests that intensity at that
site was more likely large [low] compared with the case in which the damage information at that site was not avail-
able. In other words, each building in an earthquake works as a seismic station in which the ground shaking record
at the site is measured in terms of observed damage levels that – in turn – can be used to inform the ShakeMap for the
event.
In general terms, the problem at hand consists in determining the fragility curve from a set of data where the shaking

intensity at the damage sites are replaced by estimates. This is a problem known in statistics asmissing-data,13 that can be
effectively addressed in a number of ways. One of them, particularly efficient on the computational side, is the maximum
likelihood estimation via the expectation maximization (EM) algorithm. In this context, the scope of the study presented
in the following was threefold: (i) to provide a EM-based procedure to account for shaking uncertainty in semi-empirical
fragility calibration, also considering the information damage data provide toGM in the area of interest; (ii) to demonstrate
that the parameters of the fragility curve obtained considering only themedian ShakeMap – that is the typical approach in
literature – can be different from those obtained considering shaking estimation uncertainty; and (iii) to show that GRF
modelling of IMs, which includes the uncertainty in the GMmodel as informed only by the recordings available, as done
in some studies,14 without considering the information provided by damage, still leads to biased estimation of the fragility
curves parameters.
The remainder of this paper is structured briefly recalling first the modelling of fragility based on logistic regression,

which is considered especially suitable in the case of observed damages. Second, the conditional GRF approach to model
GM intensity is recapped. Third, the question of why damage data informs the shaking estimates is addressed, as well
as how to account for such information, in the context of maximum likelihood estimation of fragility parameters. Then,
the procedure is applied to the case-study of fragility assessment based on a few thousand observations of damage data of
reinforced concrete buildings affected by the 2009 L’Aquila earthquake in central Italy. The discussion of the results and
the simulation-based validation of the approach precede some final remarks.

2 LOGISTIC REGRESSION FOR FRAGILITY ASSESSMENT

When determining a semi-empirical fragility curve, data about a set of buildings hit by an earthquake are available. The
performance of each building can be seen as the realization of a Bernoulli random variable (RV), where the outcome is
one if the damage exceeds the threshold related to the damage state (DS) of interest, and zero otherwise; the exceedance
of the damage threshold will be conventionally indicated hereafter as failure.
If the constructions all match a taxonomy, the observations of the performances of buildings experiencing the same

IM can be seen as the outcomes of the repetition of the same random trial. If damage data are indicated as {𝑦1, 𝑦2, … , 𝑦𝑘},
where 𝑦𝑗 is equal to 1 if there is damage in the j-th structure (i.e., building) and 0 otherwise, and the shaking intensities
{𝑖𝑚1, 𝑖𝑚2, … , 𝑖𝑚𝑘} experienced by the k buildings are also available, it is possible to link the probability of failure to the
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3516 IERVOLINO et al.

GM, 𝜋 (𝑖𝑚) = 𝑃[𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝐼𝑀 = 𝑖𝑚], via, for example, a generalized linear model (GLM):15

log

[
𝜋 (𝑖𝑚)

1 − 𝜋 (𝑖𝑚)

]
= 𝛽0 + 𝛽1 ⋅ log (𝑖𝑚) (1)

where {𝛽0, 𝛽1} are the parameters to be determined. The application of the model in Equation (1) is defined as logistic
regression, and the fragility function obtained has the shape of the cumulative distribution function of a logistic RV:

𝜋 (im) = 𝑃 [failure |IM = im ] =
1

1 + 𝑒−[𝛽0+𝛽1⋅log(im)]
. (2)

The logistic model will be considered in the following to represent the fragility, although the same reasoning applies
to any semi-empirical model analogously. It is useful to recall the likelihood, 𝐿(𝛽0, 𝛽1), associated to this model, which is
function of the sample {𝑦𝑗, 𝑖𝑚𝑗}, 𝑗 = 1, 2, … , 𝑘:

𝐿(𝛽0, 𝛽1) =

𝑘∏
𝑗=1

[𝜋(𝑖𝑚𝑗)]
𝑦𝑗 ⋅ [1 − 𝜋(𝑖𝑚𝑗)]

1−𝑦𝑗 , (3)

where 𝜋(𝑖𝑚𝑗) is computed according to Equation (2). The corresponding log-likelihood is:

log[𝐿(𝛽0, 𝛽1)] =

𝑘∑
𝑗=1

{𝑦𝑗 ⋅ log[𝜋(𝑖𝑚𝑗)] + (1 − 𝑦𝑗) ⋅ log[1 − 𝜋(𝑖𝑚𝑗)]}. (4)

In fact, in the context of semi-empirical fragility, the {𝑦1, 𝑦2, … , 𝑦𝑘} damage data are available, yet the {𝑖𝑚1, 𝑖𝑚2, … , 𝑖𝑚𝑘}

intensity values at the building sites are not (usually for none of them), while estimates (e.g., via ShakeMap) are usually
used instead. However, treating the estimates as the true intensity values leads to a biased assessment of the fragility
parameters, that is, {𝛽0, 𝛽1}, while the uncertainty on {𝑖𝑚1, 𝑖𝑚2, … , 𝑖𝑚𝑘} must be characterized based on all information
available.

3 CONDITIONAL GRF GROUNDMOTIONMODELLING AND SHAKEMAP

For seismic vulnerability assessment, the effect of earthquake 𝑖 at the sites, 𝑠 in number, where buildings are located, can
be defined as the vector collecting the (logarithms of) the IMs it produces, {log(𝐼𝑀1,𝑖), log(𝐼𝑀2,𝑖), … , log(𝐼𝑀𝑠,𝑖)} at those
sites. Most GMPEs model the logarithm of IM at the generic site 𝑗 = 1,… , 𝑠 due to earthquake i, as:

log(𝐼𝑀𝑗,𝑖) = E[log(𝐼𝑀𝑗,𝑖)|𝑚𝑖,𝑟𝑗,𝑖 , 𝜃𝑗] + 𝜂𝑖 + 𝜀𝑗,𝑖 (5)

where 𝐸[log(𝐼𝑀𝑗,𝑖)|𝑚𝑖, 𝑟𝑗,𝑖 , 𝜃𝑗] is the mean of log(𝐼𝑀𝑗,𝑖) conditional to earthquake magnitude, 𝑚𝑖 , source-to-site dis-
tance, 𝑟𝑗,𝑖 , and one or more other factors, such as the local soil site condition, indicated as 𝜃𝑗 (other factors, such as
the faulting style, can also be represented by similar terms). The term 𝜂𝑖 is the inter-event residual, which is com-
mon to all sites in the i-th event, while ε𝑗,𝑖 is the intra-event residual of the logarithms of IM at site 𝑗 in earthquake
𝑖. At each site, inter-event and intra-event residuals are assumed to be normally distributed stochastically indepen-
dent RVs. Both have zero mean and variance denoted as 𝜎2

𝑖𝑛𝑡𝑒𝑟
and 𝜎2

𝑖𝑛𝑡𝑟𝑎
, respectively. Thus, log(𝐼𝑀𝑗,𝑖), at site j

and conditional to {𝑀 = 𝑚𝑖 , 𝑅 = 𝑟𝑗,𝑖 }, is a Gaussian RV, with mean 𝐸[log(𝐼𝑀𝑗,𝑖)|𝑚𝑖, 𝑟𝑗,𝑖 , 𝜃𝑗] and variance 𝜎2 = 𝜎2
𝑖𝑛𝑡𝑒𝑟

+ 𝜎2
𝑖𝑛𝑡𝑟𝑎

.
By extension, state-of-the-art of multi-site probabilistic seismic hazard analysis16 assumes that

{log(𝐼𝑀1,𝑖), log(𝐼𝑀2,𝑖), … , log(𝐼𝑀𝑠,𝑖)} form a GRF; that is, the logarithms of the IMs jointly have a multivariate nor-
mal distribution conditional to the features of the i-th earthquake. The mean vector, {𝜇} and the covariance matrix, [Σ]
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IERVOLINO et al. 3517

are:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

{𝜇} = {𝐸[log(𝐼𝑀1,𝑖) ||𝑚𝑖, 𝑟1,𝑖 , 𝜃1 ], 𝐸[log(𝐼𝑀2,𝑖) ||𝑚𝑖, 𝑟2,𝑖 , 𝜃2 ], … , 𝐸[log(𝐼𝑀𝑠,𝑖) ||𝑚𝑖, 𝑟𝑠,𝑖 , 𝜃𝑠 ]}
𝑇

[Σ] = 𝜎2
𝑖𝑛𝑡𝑒𝑟

⋅

⎡⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1

1 1 ⋯ 1

⋮ ⋮ ⋱ ⋮

1 1 ⋯ 1

⎤⎥⎥⎥⎥⎥⎦
+ 𝜎2

𝑖𝑛𝑡𝑟𝑎
⋅

⎡⎢⎢⎢⎢⎢⎣

1 𝜌1,2 ⋯ 𝜌1,𝑠

𝜌2,1 1 ⋯ ⋮

⋮ ⋮ ⋱ ⋮

𝜌𝑠,1 𝜌𝑠,2 ⋯ 1

⎤⎥⎥⎥⎥⎥⎦
(6)

where, 𝜌𝑗,ℎ, is the correlation coefficient between intra-event residuals at two generic sites {𝑗, ℎ}, which is typically func-
tion of the sites’ distance.17 (In Equation (6), subscript 𝑖 was dropped because, according to most GMPEs, variances and
covariances of the residuals do not depend on magnitude and location of the earthquake.)
Themain advantage of the GRF assumption is that Equation (6) completely specifies the stochastic model of GM inten-

sity in one earthquake and that the IMs at a subset of the sites, and/or conditional to the intensities at other sites, still
follow a multivariate Gaussian model. If the IMs are known for 𝑠 − 𝑘 of the sites (𝑘 < 𝑠), for example because some seis-
mic monitoring stations recording the earthquake of interest were operating at the time of the event, then the IMs at the
remaining 𝑘 sites, where damages are observed, still form a GRF. Renaming the IMs such as to split the vector of the
logarithms to obtain two sub-vectors collecting the k sites first and the 𝑠 − 𝑘 sites then, Equation (6) reads:

⎧⎪⎪⎨⎪⎪⎩
{𝜇} =

{
{𝜇}𝑘, {𝜇}𝑠−𝑘

}𝑇
[Σ] =

[
[Σ]𝑘,𝑘 [Σ]𝑘,𝑠−𝑘

[Σ]𝑠−𝑘,𝑘 [Σ]𝑠−𝑘,𝑠−𝑘

]
, (7)

where, {𝜇}𝑘 = {𝐸[log(𝐼𝑀1,𝑖)|𝑚𝑖, 𝑟1,𝑖 , 𝜃1], … , 𝐸[log(𝐼𝑀𝑘,𝑖)|𝑚𝑖, 𝑟𝑘,𝑖 , 𝜃𝑘]}
𝑇 , while {𝜇}𝑠−𝑘 = {𝐸[log(𝐼𝑀𝑘+1,𝑖)|𝑚𝑖, 𝑟𝑘+1,𝑖 , 𝜃𝑘+1],

… , 𝐸[log(𝐼𝑀𝑠,𝑖)|𝑚𝑖, 𝑟𝑠,𝑖 , 𝜃𝑠]}
𝑇 ; [Σ]𝑘,𝑘 and [Σ]𝑠−𝑘,𝑠−𝑘 are the covariance submatrices referring to the former and latter subset

of sites, respectively, while [Σ]𝑠−𝑘,𝑘 = [Σ]𝑇
𝑘,𝑠−𝑘

are the submatrices relating the two subsets. Then, the mean vector, {𝜇}′
𝑘
,

and covariance matrix, [Σ]′
𝑘
, for the k sites, conditional on earthquakemagnitude, location, and also to the measurements

at the 𝑠 − 𝑘 sites,* can be readily obtained by those in Equation (6):{
{𝜇}′

𝑘
= {𝜇}𝑘 − [Σ]𝑘,𝑠−𝑘 ⋅ [Σ]

−1
𝑠−𝑘,𝑠−𝑘

⋅ [{𝜇}𝑠−𝑘 − {log(𝑖𝑚)}𝑠−𝑘]

[Σ]′
𝑘
= [Σ]𝑘,𝑘 − [Σ]𝑘,𝑠−𝑘 ⋅ [Σ]

−1
𝑠−𝑘,𝑠−𝑘

⋅ [Σ]𝑠−𝑘,𝑘
, (8)

where {log(𝑖𝑚)}𝑠−𝑘 = {log(𝑖𝑚𝑘+1,𝑖), log(𝑖𝑚𝑘+2,𝑖), … , log(𝑖𝑚𝑠,𝑖)}
𝑇 is the vector collecting the IMs values available for the

s-k sites providing the records for the i-th earthquake. This approach is exploited in the recent versions of ShakeMap,4
providing {𝜇}′

𝑘
in the area affected by the earthquake. The covariance matrix in Equation (8) describes the uncertainty

in the ShakeMap estimates. Such an uncertainty depends on that of the considered GM model (i.e., GMPE), although
modified in virtue of the information provided by the 𝑠 − 𝑘 sites where IM measurements are available.

4 DAMAGE-INFORMED SEMI-EMPIRICAL FRAGILITY CALIBRATION VIA
EXPECTATIONMAXIMIZATION

The uncertainty around ShakeMap intensity values should be accounted for in the fragility calibration. This is because
the median estimates (i.e., mean of the logarithms), from the first of Equation (8), is only one of the possible realizations
of the random field, and to use the median IM values in Equation (1) neglects the fact that any other realization of the
GRF would lead to a different estimate of {𝛽0, 𝛽1}, which therefore, are factually subjected to the propagation, through the
logistic regression, of the uncertainty in the (unobserved) IM values at the damage sites.
A second, equally relevant, issue is that the damages {𝑦1, 𝑦2, … , 𝑦𝑘} provide information about the {𝑖𝑚1, 𝑖𝑚2, … , 𝑖𝑚𝑘}

values, thus affecting the uncertainty, in a very analogous manner as the earthquake magnitude, location, and the
{𝑖𝑚𝑘+1, 𝑖𝑚𝑘+2, … , 𝑖𝑚𝑠} values at the recording stations. To understand this issue, the reader has to just consider the IM
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3518 IERVOLINO et al.

occurred during a given earthquake at a given site. If no further information is provided, and if no recording stations were
present at the site, such IM is a Gaussian RV specified as per Equation (8). However, if now one adds the information that
at the site there was a building for which damage exceeded [not exceeded] a given threshold, then one must gain belief
that the im occurred must have been relatively strong [weak] to cause [not to cause] such damage level.† In other words,
the building experiencing or not experiencing the damage at the site has worked as a recording station measuring the IM
in terms of observed structural response; that is, the {𝑖𝑚1, 𝑖𝑚2, … , 𝑖𝑚𝑘} values are actually damage-informed. In fact, due
to the spatial correlation of the IMs in one given earthquake, also the damages at the other sites provide information about
the IM at the site of interest. Such information, must be thus considered in the fragility calibration to get a probabilistically
consistent evaluation of the fragility parameters {𝛽0, 𝛽1} of Equation (1). A straightforward way to consistently account
for these issues in the fragility calibration is to maximize the following likelihood function:

𝐿 (𝛽0, 𝛽1) ∝

+∞

∫
−∞

⋯

+∞

∫
−∞

{
𝑘∏
𝑗=1

[𝜋(𝑖𝑚𝑗)]
𝑦𝑗 ⋅ [1 − 𝜋(𝑖𝑚𝑗)]

1−𝑦𝑗

}
⋅ 𝑓 𝐼𝑀1,…,𝐼𝑀𝑘|𝐼𝑀𝑘+1,…,𝐼𝑀𝑠

(𝑖𝑚1, … , 𝑖𝑚𝑘
||𝑖𝑚𝑘+1, … , 𝑖𝑚𝑠 ) ⋅

𝑑(𝑖𝑚1)… ⋅ 𝑑(𝑖𝑚𝑘). (9)

In the equation, which reduces to Equation (3) when the IMs at the building sites are known, 𝑓𝐼𝑀1,…,𝐼𝑀𝑘|𝐼𝑀𝑘+1,…,𝐼𝑀𝑠
is

the joint distribution at the 𝑘 sites, conditional on the magnitude and location of the earthquake, as well as the data from
the available recording stations. In the considered context, this latter distribution, when passing to the logarithms of IMs,
becomes Gaussian with mean vector and covariance matrix by Equation (8). However, as illustrated in the application,
the sites of interest can be some thousands and therefore to determine {𝛽0, 𝛽1}, directly maximizing Equation (9), can be
computational challenging, if not unfeasible. A computationally efficient strategy that literature has already proven to
provide the same result as the direct maximization of the likelihood function is by the EM algorithm,13 the application
of which requires to distinguish available and missing data: the available data are {𝑦1, 𝑦2, … , 𝑦𝑘, 𝑖𝑚𝑘+1, … , 𝑖𝑚𝑠} and those
missing are {𝑖𝑚1, … , 𝑖𝑚𝑘}.‡ The EM algorithm implemented here is an iterative procedure based on sequential sampling.
Its steps are listed in the following.

1. Assign tentative fragility parameters {𝛽(𝑧)
0
, 𝛽

(𝑧)
1
}, where 𝑧 = 0 indicating the first iteration of the procedure.

2. Select a number ℎ ≥ 1 (the lower ℎ is, the better) of sites among the k damage sites (for which intensity is not avail-
able), and sample 𝑙 times the GM distribution 𝑓𝐼𝑀1,…,𝐼𝑀ℎ|𝐼𝑀𝑘+1,…,𝐼𝑀𝑠

, which is the joint IM distribution conditional to
magnitude, location, and the available earthquakemeasurements (that is corresponding to a GRFmodel characterized
by equations analogous to (8)). This enables obtaining 𝑙 realizations of the IMs at the h selected sites:

{𝑖𝑚1, … , 𝑖𝑚ℎ}𝑖, 𝑖 = 1, 2… , 𝑙. (10)

For each of these samples, compute the following weight (where r is not to confuse with source-to-site distance):

𝑟𝑖

(
𝛽
(𝑧)
0
, 𝛽

(𝑧)
1

)
=

𝑓𝑌1,⋯,𝑌ℎ|𝐼𝑀1,⋯,𝐼𝑀ℎ

(
𝑦1,⋯, 𝑦ℎ|{𝑖𝑚1,⋯, 𝑖𝑚ℎ}𝑖

)
∑𝑙

𝑖=1
𝑓𝑌1,⋯,𝑌ℎ|𝐼𝑀1,⋯,𝐼𝑀ℎ

(
𝑦1,⋯, 𝑦ℎ|{𝑖𝑚1,⋯, 𝑖𝑚ℎ}𝑖

) , 𝑖 = 1, 2,⋯, 𝑙, (11)

where 𝑓𝑌1,…,𝑌ℎ|𝐼𝑀1,…,𝐼𝑀ℎ
(𝑦1, … , 𝑦ℎ|{𝑖𝑚1, … , 𝑖𝑚ℎ}𝑖) =

∏ℎ

𝑗=1
[𝜋({𝑖𝑚𝑗}𝑖)]

𝑦𝑗 ⋅ [1 − 𝜋({𝑖𝑚𝑗}𝑖)]
1−𝑦𝑗 ; that is, the fragility like-

lihood for the selected sites, when {𝛽(𝑧)
0
, 𝛽

(𝑧)
1
} are the parameters. Use the weights 𝑟𝑖(𝛽

(𝑧)
0
, 𝛽

(𝑧)
1
), 𝑖 = 1, 2, … 𝑙 to resample

with replacement {𝑖𝑚1, … , 𝑖𝑚ℎ}𝑖 , 𝑖 = 1, 2… 𝑙, to obtain a population where each of them is represented proportionally
to its weight.

3. Select the next ℎ damage sites (different to those in step #2), and generate 𝑙 realizations of the IM at these sites sampling
from the distribution 𝑓𝐼𝑀ℎ+1,…,𝐼𝑀2⋅ℎ|𝐼𝑀1,…,𝐼𝑀ℎ,𝐼𝑀𝑘+1,…,𝐼𝑀𝑠

(𝑖𝑚ℎ+1, … , 𝑖𝑚2⋅ℎ|{𝑖𝑚1, … , 𝑖𝑚ℎ}𝑖, 𝑖𝑚𝑘+1, … , 𝑖𝑚𝑠). When passing
to the logarithms, this is a GRF conditional to magnitude, location, and measurements of the earthquake, as well as
the simulated (and resampled) data at the first ℎ sites from step #2, which account for the effect of damage. This enables
obtaining:

{𝑖𝑚ℎ+1, … , 𝑖𝑚2⋅ℎ}𝑖, 𝑖 = 1, 2… , 𝑙. (12)
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IERVOLINO et al. 3519

For these realizations, compute the weights in analogy with Equation (11):

𝑟𝑖

(
𝛽
(𝑧)
0
, 𝛽

(𝑧)
1

)
=

𝑓𝑌ℎ+1,⋯,𝑌2⋅ℎ|𝐼𝑀ℎ+1,⋯,𝐼𝑀2⋅ℎ

(
𝑦ℎ+1,⋯, 𝑦2⋅ℎ|{𝑖𝑚ℎ+1,⋯, 𝑖𝑚2⋅ℎ}𝑖

)
∑𝑙

𝑖=1
𝑓𝑌ℎ+1,⋯,𝑌2⋅ℎ|𝐼𝑀ℎ+1,⋯,𝐼𝑀2⋅ℎ

(
𝑦ℎ+1,⋯, 𝑦2⋅ℎ|{𝑖𝑚ℎ+1,⋯, 𝑖𝑚2⋅ℎ}𝑖

) , 𝑖 = 1, 2,⋯, 𝑙. (13)

Append the vectors {𝑖𝑚ℎ+1, … , 𝑖𝑚2⋅ℎ}𝑖 to the vectors {𝑖𝑚1, … , 𝑖𝑚ℎ}𝑖 , so as to obtain {𝑖𝑚1, … , 𝑖𝑚2⋅ℎ}𝑖, 𝑖 = 1, 2, … 𝑙, and
use the weights just computed to resample them with replacement. This will lead to a population of 𝑙 IMs realizations
at the 2 ⋅ ℎ sites where each of them is represented proportionally to the just computed weights.

4. In analogy with steps #2 and #3, generate 𝑙 realizations of the IMs at the next h sites sampling
𝑓𝐼𝑀2⋅ℎ+1,…,𝐼𝑀3⋅ℎ|{𝐼𝑀1,…,𝐼𝑀2⋅ℎ}𝑖 ,𝐼𝑀𝑘+1,…,𝐼𝑀𝑠

(𝑖𝑚2⋅ℎ+1, … , 𝑖𝑚3⋅ℎ|{𝑖𝑚1, … , 𝑖𝑚2⋅ℎ}𝑖, 𝑖𝑚𝑘+1, … , 𝑖𝑚𝑠). Then compute the weights
for these new realizations and resample with replacement the vectors {𝑖𝑚1, … , 𝑖𝑚3⋅ℎ}𝑖 , 𝑖 = 1, 2, … 𝑙. This sequential
sampling procedure proceeds until all 𝑘 damage sites are considered and 𝑙 realizations of the GM fields at the damage
sites, {𝑖𝑚1, … , 𝑖𝑚𝑘}𝑖, are obtained.

5. Formulate the likelihood of all (available and missing) data, 𝐿𝐶,𝑖(𝛽0, 𝛽1), 𝑖 = 1, 2, … 𝑙, as:

𝐿𝐶,𝑖 (𝛽0, 𝛽1) ∝ 𝑓𝐼𝑀1,…,𝐼𝑀𝑘|𝐼𝑀𝑘+1,…,𝐼𝑀𝑠

(
{𝑖𝑚1, … , 𝑖𝑚𝑘}𝑖

||𝑖𝑚𝑘+1, … , 𝑖𝑚𝑠

)
⋅

𝑘∏
𝑗 = 1

[
𝜋
({
𝑖𝑚𝑗

}
𝑖

)]𝑦𝑗
⋅
[
1 − 𝜋

({
𝑖𝑚𝑗

}
𝑖

)]1−𝑦𝑗
.

(14)
6. Compute the conditional expectation, 𝑄(𝛽0, 𝛽1|𝛽(𝑧)0

, 𝛽
(𝑧)
1
), of the log-likelihood with respect to missing data, given the

available data:

𝑄
(
𝛽0, 𝛽1

|||𝛽(𝑧)0
, 𝛽

(𝑧)
1

)
≈
1

𝑙
⋅

𝑙∑
𝑖 = 1

log
(
𝐿𝐶,𝑖

)
. (15)

7. Maximize 𝑄(𝛽0, 𝛽1|𝛽(𝑧)0
, 𝛽

(𝑧)
1
), with respect to {𝛽0, 𝛽1}, to obtain a new set of tentative estimates {𝛽(𝑧+1)

0
, 𝛽

(𝑧+1)
1

}:

{
𝛽
(𝑧+1)
0

, 𝛽
(𝑧+1)
1

}
= argmax

{𝛽0, 𝛽1}

[
𝑄
(
𝛽0, 𝛽1

|||𝛽(𝑧)0
, 𝛽

(𝑧)
1

)]
. (16)

8. Once {𝛽(𝑧+1)
0

, 𝛽
(𝑧+1)
1

} are found, one can return to step #2 and continue until the absolute value of the relative difference
between the fragility parameters (or likelihood estimates) in two subsequent iterations is less than a tolerance value.
Figure 1 provides an indicative flowchart of the EM algorithm as implemented herein.

It is to note that steps from #2 to #4 represent sequential sampling so as to generate realizations of GM compatible
with the damage as represented by the fragility function with the candidate parameters. This is not a strictly necessary
approach, and the EM algorithm can be applied generating 𝑙 samples at all k damage sites at once, directly by Equation (8),
at the beginning of each iteration of the procedure. Then the weight of each realization is computed based on the fragility
function adopted and the GRF. These weights provide a measure of the compatibility of each realization with respect
to damage. Nevertheless, it is easy to prove that the procedure based on sequential sampling is computationally more
efficient, which may be necessary in the case at hand where buildings/sites amount to thousands.

5 ILLUSTRATIVE APPLICATION

5.1 Damage data and earthquake information

The case study of the building damage in the 2009 L’Aquila earthquake (moment magnitude 6.1), in central Italy, is con-
sidered. The damage surveyed in this earthquake has been used in literature to derive semi-empirical fragility curves
already.8 The damage data are available from the Observed Damage Database or Da.D.O.18 The L’Aquila damage database
includes about forty thousand residential buildings, frommunicipalitieswith survey completeness ratio (i.e., number of sur-
veyed buildings over the total number of residential buildings from national building census) larger than ninety percent,
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F IGURE 1 Flowchart sketch for the determination of the distribution of the fragility parameters considering ShakeMap uncertainty and
the informative effect of damage on GM estimates.

F IGURE 2 (A) Considered damage data in the Abruzzo region, along with regional borders, source (rectangle) and epicenter (star) of
the 2009 L’Aquila earthquake. (B) Stations recording the earthquake used to inform the ShakeMap and local site conditions according to a
large-scale geological model (ID from https://itaca.mi.ingv.it/, last accessed Jan. 2024).

complemented by undamaged buildings from non-surveyed and partially surveyed municipalities in the Abruzzo region,
the most affected by the earthquake.
This application considers data referring to a single residential building typology, that is, mid-rise (three and four

storeys) reinforced concrete (RC) buildings, designed for seismic actions before 1981; that is, an obsolete code with respect
to the one currently enforced in the country. Such damage data are 5247 and distributed among 1058 sites, as shown in
Figure 2(A). Each building is assigned a level of damage compatible with the European Macroseismic Scale),19 account-
ing for what observed on both the vertical structure and masonry infills/partitions.8 (Different DS’ at the same site are
represented by overlapping markers in the figure.)
Figure 2(B) shows the recording stations conditioning the ShakeMap for the earthquake, they are sixty-four in num-

ber. In the figure, the local site conditions – according to Eurocode 820 – from a geology-based model used by the INGV
implementation of ShakeMap are also given; they are used to assign local conditions to recording and damage sites.
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IERVOLINO et al. 3521

F IGURE 3 (A) Median PGA, at damage sites, conditional to magnitude, location and IMs recorded close to the source of the earthquake.
(B) Fragilities obtained using different levels of information.

5.2 Ground motion model

Peak ground acceleration (PGA) is the selected IM to describe fragility. The GMPE to describe the GRF in the area is that
of Bindi et al.,21 complemented by the spatial correlation model of intra-event residual of Esposito and Iervolino.17 PGA
measurements from fifty-one, out of sixty-four stations mentioned in the previous section, were considered herein. Two
stations were excluded as it was not possible to retrieve recorded data, while eleven stations with Joyner & Boore distance22
exceeding 200 km were also further ruled out, as beyond the applicability limit of the selected GMPE. Figure 3(A) shows
themedianPGAs, according to the chosenGMPE (considering normal faulting style for the event), at the siteswith damage
data used to compute the fragility function (to follow);§ the figure also shows the PGAs at the stations in the epicentral
region (i.e., some of those in Figure 2B). In other words, it is the geographical representation of the conditional mean
vector {𝜇}′

𝑘
in Equation (8), which is equivalent to a (median) ShakeMap.

Figure 3(B) shows the calibrated fragility function of Equation (2) obtained from applying the logistic regression in
Equation (1) to the failure data, in terms of exceedance of damage level DS3 (black dashed line) from Figure 2(A) and
the median ShakeMap estimates of Figure 3(A), that is, the most common approach in literature. The figure also shows
the dots representing the realizations of failure data (zeros and ones) determining the logistic regression using median
ShakeMap. The other curves in the figure will be discussed later.

5.3 Propagation of ShakeMap uncertainty in fragility calibration

Given the damage data for the buildings at the sites, and the conditioning GM information that is, earthquakemagnitude,
location and recorded shaking at the stations, it is possible to appreciate how the ShakeMap uncertainty, represented by
the GRF of Equation (8) alone, reflects in the fragility assessment, which is also found in literature.14 In fact, one may fit
a fragility curve for any realization of the GRF according to the following procedure.

a. Evaluate the conditional mean vector of the IMs at the damage sites via the GMPE according to Equation (8).
b. With the GMPE and the spatial correlation model for intra-event residuals, evaluate the conditional covariance matrix

according to Equation (8). At this point the conditional GRF for the earthquake is fully characterized.
c. Generate a realization of the random field of the (logarithms) of PGA at the sites with damages sampling amultivariate

Gaussian function featuring mean and covariance matrix evaluated at steps a and b.
d. Use the damage data (i.e., a given building performance of interest) and the realization of the GRF from step c to fit a

fragility model according to a parametric model, for example, the GLM in Equation (1). This yields a realization of the
parameters, {𝛽0, 𝛽1}𝑖 , corresponding to the realization of the GRF used for the fit.

e. Repeat the last two steps as many times as deemed sufficient to characterize the variability of the parameters {𝛽0, 𝛽1}𝑖
reflecting ShakeMap uncertainty.

As an example, the results of the simulations are given for the L’Aquila data, referring to DS3, in Figure 3(B), where the
gray curves are the results of the fragility calibration per each simulated GRF (ten thousand simulations are represented
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3522 IERVOLINO et al.

TABLE 1 Number of buildings exceeding each damage level in the data and fragility parameters by different levels of information: (i)
median ShakeMap only, (ii) uncertainty in ShakeMap, (iii) uncertainty in ShakeMap, and observed damages.

Median ShakeMap ShakeMap uncertainty Damage-informed GMNo. of buildings
exceeding DS 𝜷𝟎 𝜷𝟏 𝜷𝟎 𝜷𝟏 𝜷𝟎 𝜷𝟏

DS1 1345 5.223 2.932 3.668 2.124 5.183 3.045
DS2 696 3.112 2.72 1.497 1.713 3.071 2.967
DS3 390 2.289 2.846 0.497 1.633 1.605 3.302
DS4 164 0.747 2.492 −0.772 1.464 0.651 3.746
DS5 30 −1.811 1.858 −2.813 1.241 −1.252 3.102

in the figure). In other words, the gray curves represent the population of fragility curves obtained considering ShakeMap
uncertainty. Because each curve corresponds to a pair of parameters {𝛽0, 𝛽1}𝑖 , Figure 3(B) also provides the fragility curve
(i.e., the continuous black line) featuring the mean parameters of the curves from the simulation. The difference between
the dashed and solid line curves is somewhat evident. Nevertheless, the solid line still does not contemplate the effect of
the damage information on the GRF.

5.4 EM-based fragility

To also include the information provided by damage to the IM random field in the fragility parameters calibration, the
procedure outlined in Figure 1 was implemented in MATHWORK-MATLAB R© (ver. 2022b).¶ The number of realizations
of IMs’ random fields was set equal to 𝑙 = 104. The stopping rule for the EM algorithm was the absolute value of the
relative differences in the fragility parameters, in two successive iterations, lower than 0.01. The resulting fragility is given
as the solid red line in Figure 3(B). It is apparent the difference with both the dashed black line, which is calibrated
considering only the median ShakeMap, and the solid black curve, which considers the ShakeMap uncertainty in terms
of the GRF determined by the GM model and the recording stations only, that is what discussed in the previous section,
yet neglecting damage information. The differences in the fragility curves show that neglecting the information on GM
provided by damages determines a bias in both 𝛽0 and 𝛽1, with the latter reciprocally related to the standard deviation of
the logistic model, that is the slope of the fragility curve, as also discussed in the following.
Figure 4 shows the results of the EM algorithm for all damage states observed in the data (see Figure 2A). (The starting

tentative parameters for each DS were obtained based on the EM algorithm without the sequential sampling considering
104 random field realizations of themodel in Equation (8)). Each row in the figure refers to oneDS (including DS3, already
shown), with the leftmost panel being similar to Figure 3(B) and providing: (i) the damage-informed fragility curve (red),
(ii) the fragility curve obtained considering ShakeMap uncertainty only (continuous black line) obtained averaging the
fragility parameters from the GRF samples (i.e., the gray curves in Figure 3(B), which are omitted for readability), and (iii)
the fragility based on median ShakeMap estimates (dashed black line). The same issues discussed for DS3 in Figure 3(B),
are observed for all damage states. From Figure 4 it is apparent that the red curves (i) are different than the corresponding
case (iii) and are steeper than case (ii). Both issues, which are more evident for the most severe DS’, are because of the
influence of damage information. The fragility parameters for all discussed cases are collected inTable 1,where the number
of buildings exceeding each DS are also reported.
To investigate how the damage informs the GM, Figure 4 features two additional panels for each DS. More specifically,

the average IMs at each of the damage sites, are obtained averaging the 𝑙 = 104 GM field realizations at convergence
of the EM algorithm. These average PGAs, which are compatible with the observed DS according to the algorithm, are
divided by the PGA from the median ShakeMap at the same site. Then these ratios are separated considering the sites
where only buildings with damage lower than the considered DS are present, from those where at least one building with
damage equal, or larger than the considered DS, is present. This criterion is to distinguish no damage sites from damage
sites. The resulting two PGA ratios distributions are shown in the central and right panels of Figure 4 (vertical lines are the
distribution medians). It is apparent that the PGAs at the damage sites are generally larger than those from the median
ShakeMap, indicating that the damage suggests intensity values larger than those estimated without such an information.
For the sites with no damage, the computed ratios tend to be lower than those at the sites with damages. The separation
between the two distributions increases with the severity of the DS.

 10969845, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.4184 by iunio iervolino - U

ni Federico Ii D
i N

apoli , W
iley O

nline L
ibrary on [12/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



IERVOLINO et al. 3523

F IGURE 4 (Left panels) Fragilities obtained considering: (i) the median ShakeMap (dashed black curve), (ii) uncertainty in ShakeMap
only, averaging the parameters from ten thousand GRF simulations (continuous black line), (iii) effect of the information provided by damage
on GM (red curve). (Center panels) Distribution of the expected PGAs from the EM algorithm divided by the median ShakeMap estimates at
sites without damage. (Right panels) Distribution of the ratios of the expected PGAs from the EM algorithm and the median ShakeMap
estimates at the sites with at least one damage. Grey histograms in the no damage [damage] sites panels represent the damage [no damage]
sites distribution, for comparison.
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3524 IERVOLINO et al.

F IGURE 5 (A) Selected ten sites and simulated damage data. (b) Fragility curves obtained for this case of simulated data.

6 VALIDATION

The algorithm validation can be carried out assuming a known fragility model. To reduce the computational effort, a
fictitious example was set up, where only ten sites are considered (shown in Figure 5A) among those in the illustrative
application of Section 5, and at each site five-hundred buildings are located. Then, the validation example refers to DS3
and proceeds as follows:

1. the fragility parameters {𝛽0 = 0.659, 𝛽1 = 2.024} are assumed for DS3, and five thousand PGA values for the fictitious
buildings are sampled from this model;

2. for the selected sites, a GRF realization of PGA values is generated via the model of Equation (8) adjusted for this case,
representing the true IMs the considered sites have experienced in the earthquakes;

3. the damage data are simulated comparing, for each building at each site, the PGA values from step #1 and those from
step #2: damage occurs if the PGA from the GRF at each site is larger than the one from the fragility, and does not occur
otherwise; the simulation results are shown in Figure 5(A), where the color of the markers of the sites represents the
fraction, over five-hundred, of the number of buildings at that site with damage equal to DS3 or worse;

4. the logistic regression in Equation (1) is applied to the simulated damage data and the fragility parameters are obtained
{𝛽0 = 0.983, 𝛽1 = 2.278}; such a curve, shown as the blue line in Figure 5(B), does not coincide with the assumed
fragility because of estimation uncertainty (damages are shown as squares)2;

5. then the EM algorithm is applied to the simulated damage data via 105 random field realizations, as in Section 5, and
the damage-informed fragility curve is obtained;

6. the fragilities considering the median ShakeMap, and only the uncertainty in the GMmodel, are also obtained for the
same simulated damage data.

The resulting curves are given in Figure 5(B). The EM algorithm, considering a relative difference between parameters
in successive iterations lower than 0.001 as the convergence criterion, returns a fragility {𝛽0 = 0.531, 𝛽1 = 1.849}. The
obtained fragility is similar to the logistic regression of the simulated data, which is the reference one for this exercise,
as it is obtained from the damage data if the IMs would be known at the sites, and performs apparently better than
considering the median ShakeMap or the uncertainty in the GMmodel only. Nevertheless, the algorithm does not exactly
returns the fragility curve fitted on the simulated data as there is always residual uncertainty in the IMs that caused the
damages the EM can reduce, yet not eliminate. (Repetitions of this damage simulation, not shown herein for brevity,
show consistent results.)

7 FINAL REMARKS

Semi-empirical fragility curves, obtained calibrating a parametric model via damage observations and GM intensity data
from earthquakes, are a common tool used to describe the seismic vulnerability of the built environment. Because, in
most of cases, the intensity recorded in the earthquake at the sites where damage data are collected is not available, such
an information is surrogated by ShakeMap estimates. In the typical approach, the uncertainty affecting these estimates
is neglected. The study presented herein aimed at investigating the effect of such an uncertainty on the semi-empirical
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fragility curves. It benefitted from the fact that the current ShakeMap approach describes the random field of (the loga-
rithms of) shaking intensity as a multivariate Gaussian distribution conditional to earthquake magnitude, location, and
possibly recordings by some seismic monitoring stations. The mean vector and the covariance matrix of such distribu-
tion can be characterized via a GM prediction equation and a spatial correlation model of its intra-event residuals. Most
importantly, the information the damage provides to the GM is also considered for the fragility parameters’ estimation,
via the expectation-maximization (EM) algorithm based on sequential sampling.
Using the data from the 2009 L’Aquila earthquake (central Italy), already used to derive semi-empirical fragility curves,

fragility curves for different damage states were derived considering increasing level of information on the GM estimates:
(i) median ShakeMap only; (ii) uncertainty in ShakeMap from the GM model and available recordings in the area; and
(iii) uncertainty in ShakeMap from the GMmodel, available recordings, and observed damages. It was found that:

∙ to consider only the median ShakeMap, that is (i), the most common approach in the literature, leads to bias in the
estimation of fragility parameters with respect to case (iii), that is, when modelling of GM intensity considers all the
information available;

∙ considering only the information provided by the GM model and shaking recordings (ii), which is also found in
literature, also causes bias with respect to (iii);

∙ the effect of damage information on GM is such that the ratio of the expected IMs at the sites with damages and what
predicted from the median ShakeMap tends to be larger than one and larger than the same ratio computed at the sites
without damage, an effect that increases with the severity of the damage state.

To validate the procedure, damage data at a few sites were simulated from an assumed fragility model showing that the
algorithm returns a curve similar to the fragility fitted on the simulated data, and performs better than the fragility curve
assuming only the median ShakeMap or only the uncertainty in the GM model, even if the EM-based fragility remains
affected by some – inevitable – residual uncertainty on the IMs that caused the damages.
Although left out from the scope of this study for simplicity, it is to remark that specific damage states (rather than

exceedance of damage levels as per common fragility curves), and damages to different typologies in the same earthquake,
can inform the fragility calibration of a given typology (e.g., damages to masonry buildings can inform RC fragility in the
same area). Moreover, in this work, fragilities for different damage states were treated separately, whereas an approach
which would further exploit the available data would be to estimate the parameters of all fragilities jointly, as this would
account for the exact damage state of each building rather than just using damage state exceedance information. Finally,
following the logic of this study, it can be argued that also ShakeMap for a given earthquake can be revised after the
damages are surveyed; this can be addressed maximizing a likelihood function that also includes, as arguments, the GM
model parameters.
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ENDNOTES
*The uncertainty in the measurement of the recording stations, is neglected, yet could be also accounted for. This also applies to the magnitude
attributed to an earthquake, which is also characterized by uncertainty.

†Building damage attribution is considered unaffected by uncertainty, which is the typical approach in semi-empirical seismic fragility
literature. Nevertheless, uncertain damage attribution could also be considered within the approach pursued herein.

‡The procedure is written considering one building per site for simplicity of notation. Nevertheless, according to equation (8), if multiple
buildings share the same site, the IMs correlation of the two is perfect and their IM is the same, and the algorithm perfectly contemplates the
(actual) case of multiple buildings at each site.

§Themap is in terms of maximum PGA of the horizontal components. Because the considered GMPE defines PGA in terms of geometric mean
of the horizontal components, the empirical correction by Beyer & Bommer23 is employed for the conversion.

¶ In fact, even in the context of the EM algorithm, the weights, 𝑟𝑖 , can be hard to evaluate numerically, due to the considerable size of the
building dataset, a common issue in computing likelihoods for large data samples. The artifact of introducing a scale factor, suitably applied
not to alter the results, enabled to overcome the issue.
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