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A B S T R A C T   

This technical note illustrates and makes available some simple procedures to assess the estimation uncertainty 
for the parameters of seismic fragility curves. The considered fragility fitting methods refer to the lognormal 
assumption and are supposed to be based on the results of multi-stripe dynamic analysis of a deterministic non- 
linear structural model, so that the uncertainty in the fragility parameters arises from the so-called record-to- 
record variability. The discussed procedures are based on the statistics approach of resampling with substitution, 
which is commonly referred to as bootstrap. It is also briefly discussed how the estimation uncertainty depends 
on the maximum value of the probability of failure given seismic intensity that is observed from structural 
analysis. This work may aid earthquake engineering practice because, both the curve fitting and estimation 
uncertainty algorithms are implemented in a major update of an application-ready software tool made available 
at https://www.reluis.it/it/progettazione/software/r2r-eu.html.   

1. Introduction 

Although not strictly required to evaluate the seismic reliability of 
structures (e.g., Ref. [1]), fitting a parametric fragility curve to the re-
sults of structural analysis might be convenient for several reasons, the 
most important of which is completely defining a surrogate vulnerability 
model for the structure in question via a few parameters. Among the 
different approaches possible, seismic fragility analysis is often based on 
simulations of the dynamic behavior of a non-linear structural model. 
These simulations are typically performed for some pre-defined values, 
hereafter referred to as stripes, of a ground motion intensity measure or 
IM. At each stripe the structural model is excited by a number of ground 
motions (GMs) sharing the same IM value. Based on the way GMs are 
selected and manipulated this kind of analysis is referred to as incre-
mental dynamic analysis (IDA) or multi-stripe analysis (MSA), the latter 
generally considered being more advanced than the former [2,3]. The 
measured structural response to each GM, which is expressed in terms of 
a so-called engineering demand parameter (EDP), is used to evaluate the 
seismic vulnerability at the investigated IM stripes and to eventually fit a 
parametric fragility curve. Literature provides a great deal of fitting 
methods, which however typically refer to the lognormal shape of the 
obtained curve. 

It has been discussed in literature that the sample of GMs used for the 
structural analysis and the limited explicative power of common IMs 

with respect to typical EDPs, let to arise an issue known as to record-to- 
record variability; i.e., records sharing the same IM value, determine 
different structural responses (EDP values). In statistical terms, this is 
referred to as sample-to-sample variability of response, which leads to 
estimation uncertainty in the fragility, and ultimately in the seismic 
structural reliability obtained after integrating the fragility with the 
hazard curve for the construction site; i.e., within the performance- 
based earthquake engineering framework (e.g., Refs. [4–6]). Possibly, 
this uncertainty can be considered large, and therefore should be 
quantified to gather meaningful insights on the derived fragility model. 

The objective of this technical note is to discuss simple procedures to 
get a glance of the estimation uncertainty for some possible fragility 
fitting methods referring to the lognormal assumption. It is assumed that 
the structural analysis is conducted within the MSA framework, given 
that other methods are somewhat addressed in the literature. Moreover, 
it is assumed that the fragility fitting approach is EDP-based, according to 
the terminology of [2]. Three procedures, based on: (i) maximum like-
lihood or ML (partly addressed in Ref. [7]); (ii) Gaussian probability plot 
or GPP; (iii) and minimum least squares or MLS, are considered. The 
estimation uncertainty algorithms for these fitting procedures are based 
on the statistics’ theory of resampling with substitution, or boot-
strapping [8], of structural analysis results. The contribution to earth-
quake engineering practice of this work is that the discussed fragility 
fitting and estimation uncertainty assessment procedures have been 
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coded in a major upgrade of the application-ready R2R-EU software [7], 
in particular (ii) and (iii) which are new with respect to implementation 
(see section 3). 

The remainder of the note is structured such that in the next section 
the EDP-based fragility assessment framework is recalled first. Then the 
equations for the lognormal fragility parameters are given for the three 
considered methods. Subsequently the resampling approaches to quan-
tify the estimation uncertainty are illustrated. It is also briefly discussed 
how the parameters’ uncertainty depends on the lumped fragility 
directly calculated from structural response data. Some final remarks 
conclude the note. 

2. Failures, collapse cases, and fragility, in the EDP-based 
approach 

In the EDP-based framework, for an IM stripe identified by im, the 
goal of fragility analysis is to evaluate the probability of structural 
failure given im, which can be indicated as P[f |IM = im]. In turn, failure 
is assumed to occur because an EDP exceeds a limit value, say edpf . It is 
also possible that failure is identified by convergence issues of the 
structural analysis or numerical instabilities, which are referred to as 
collapse cases [9]. In such cases an EDP value (i.e., a measure of struc-
tural response) is not available from the analysis, yet failure is assumed 
certain. An example of MSA, featuring ten stripes (i.e., ten IM-values) 
and twenty records per stripe, is given in Fig. 1 (left). In the figure the 

EDP is the demand-to-capacity ratio, so that edpf = 1, and the number 
above the plot indicates the number of collapse cases occurring at some 
stripes. 

If the collapse cases are indicated as C, fragility can be evaluated via 
an application of the total probability theorem: 

P[f |IM=im]=P[C|IM=im]+P
[
EDP≥edpf

⃒
⃒
⃒C,IM= im

]
⋅{1− P[C|IM=im]

}
,

(1)  

where P
[
EDP ≥ edpf

⃒
⃒
⃒C, IM = im

]
is the probability of failure given im 

when non-collapse occurs, while P[C|IM= im] is the probability of 
collapse given IM = im. If, at the stripe in question, structural simulation 
is carried out via a sample of GMs of size m, the terms appearing in 
equation (1) can be estimated, for example, via the frequentist approach: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P[C|IM = im] ≈
mC

m

P
[
EDP ≥ edpf

⃒
⃒
⃒C, IM = im

]
≈

1
m − mC

⋅
∑m− mC

j=1
Iedpj≥edpf

. (2) 

In this last set of equations, mC is the number of analyses leading to 
collapse and Iedpj≥edpf is an indicator function that, for each of the ana-
lyses providing meaningful structural response values, equals one if the 
EDP is larger than the failure threshold and zero otherwise. Clearly, 
replacing equation (2) in equation (1) yields a value of the fragility equal 
to the total number of failure observed at the stripe in question: 

P[f |IM = im] =
(

mC +
∑m− mC

j=1 Iedpj≥edpf

)/
m. The fragility values evalu-

ated in this way for the example of Fig. 1 (left) are given in Fig. 1 (right) 

as crosses. 
If the structural analyses are repeated for a number of different IM- 

stripes, n in number, this leads to a set of fragility values P[f |IM = imi],

i = 1,2,...,n, which can be collectively referred to as the lumped fragility 
of the structural model in question. These may be used to fit a contin-
uous and parametric fragility curve, as discussed in the next section. At 
this stage is it to note, however, that equation (2) only provides esti-
mates of the terms in equation (1) as it is expected that changing the 
sample of records used leads to variations of the estimates (i.e., sample- 
to-sample variability), which is at the roots of the estimation uncertainty 
of the fragility parameters discussed in section 4. 

3. Some lognormal fragility fitting methods 

3.1. Maximum likelihood 

Given that in MSA, at each of the n stripes, m structural analyses are 
conducted (for simplicity it is assumed that m is constant through 
the stripes), at the end of the analysis, vectors (samples) of the kind 
edpi = {edpi,1, edpi,2, ..., edpi,m}, i = {1,2, ..., n}, are available. Each of 
them can be partitioned in two: one with failure cases including 
numerical instabilities, of size mf ,imi , and one of non-failure cases, of size 
(m − mf ,imi ). The parameters of the lognormal fragility function, {η̂, β̂}, 
can be estimated, as developed in Ref. [10], maximizing the likelihood 
as:  

where Φ( ⋅) is the standard cumulative Gauss function and the hats on 
the parameters indicate that they are estimates of the true, unknown, 
parameters. The lognormal fragility can be expressed as P[f |IM = im] =

Φ{[ln(im) − η̂] /β̂}. The thick black line in Fig. 1 (right) is an example of 
fragility fitted via ML based on the data in Fig. 1 (left). 

3.2. Gaussian probability plot 

The ML approach has the advantage of not distinguishing between 
structural analysis when the EDP is available and collapse cases. How-
ever, it requires a certain number of failure cases be observed across the 
IM stripes (see Ref. [10] for a discussion). However, there are cases in 
which only a few failures, if any, are observed at each stripe, so that the 
ML fragility fitting is difficult (this may happen, for example, when the 
structural vulnerability is low compared to the seismic hazard at the site 
of interest; e.g., Ref. [11]). In this case, fragility analysis must be based 
mostly on the extrapolation of the structural response. In fact, provided 
that at each of the n stripes an EDP vector is available, the lognormal 
fragility can be fitted as follows:  

1. For each IM = imi, i = {1,2, …, n}, response data are divided in 
collapse cases, if any, and non-collapse cases, the count of which are 
mC,imi and mC,imi

; therefore, a vector of the kind edpi = {edpi,1, edpi,2,

..., edpi,mC,imi
}, i = {1,2,…, n} is available, 

2. The probability of failure based on the non-collapse cases is evalu-
ated, for example, based on the assumptions that EDP is distributed 
according to a lognormal model given IM = imi, so that: 

{
η̂, β̂
}
= argmax

η,β

[
∑n

i=1

(

ln
(

m
mf ,imi

)

+ mf ,imi ⋅ln
{

Φ
[

ln(imi) − η
β

]}

+
(
m − mf ,imi

)
⋅ln
{

1 − Φ
[

ln(imi) − η
β

]})]

, (3)   

I. Iervolino                                                                                                                                                                                                                                        



Soil Dynamics and Earthquake Engineering 152 (2022) 107068

3

P
[
EDP≥edpf

⃒
⃒
⃒C,IM= imi

]
=1− Φ

{[
ln
(
edpf

)
− μln(EDP)|C,imi

]/
σln(EDP)|C,imi

}
,

(4)  

where {μln(EDP)|C,imi
, σln(EDP)|C,imi

} are the mean and the standard devia-

tion of the logarithms of EDP when IM = imi, which can be frequent-
istically estimated as: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μln(EDP)|C,imi
≈

1
m − mC,imi

⋅
∑m− mC,imi

j=1
ln
(
edpi,j

)

σln(EDP)|C,imi
≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m − mC,imi − 1

⋅
∑m− mC,imi

j=1

[
ln
(
edpi,j

)
− μln(EDP)|C,imi

]2

√
√
√
√

; (5)    

a. The lumped fragility value for IM = imi is computed via equation (1), 
where P[C|IM = imi] = mC,imi /m;  

b. Alternatively, at each stripe, value equal to one can be assigned to 
those analyses leading to collapse and zero to the others, and logistic 
regression (e.g., Ref. [12]) can be performed to obtain the collapse 

probability as a continous function of IM: 

P[C|IM = im] = 1
/ [

1+ e− (α1+α2⋅im)
]
, (6)  

where {α1, α2} are the logistic regression coefficients (see the next sec-
tion for an example); 1 

3. Once all the terms of equation (1) are computed, n fragility values, 

P[f |IM = imi], i = 1, 2, ..., n, are available, and from them, the corre-
sponding ordinates of a GPP, {z1, z2,..., zn} can be obtained as in the 
following equation, where Φ− 1( ⋅) indicates the inverse Gauss function: 

ẑi =Φ− 1{P[f |IM = imi]}, i= 1, 2, ..., n; (7)    

a. At this point, ordinary least square regression of the {ln(imi), ẑi}, i =
1, 2, ..., n data, can be performed (e.g., Ref. [13]):    

In fact, this yields a line the slope of which is β̂
− 1 

and the intercept is 
− η̂/β̂, which are function of the fragility parameters.2 Fig. 2 (left) 
shows the GPP for the data of Fig. 1 (left), while Fig. 2 (right) shows the 
fitted fragility (thick black line). 

3.3. Minimum least-squares 

This method is similar to the previous one to the extent that steps 1-2 
are the same. However, once the P[f |IM = imi], i = 1, 2, ...,n, values are 
available, the fragility parameters are directly obtained minimizing the 
sum of squared errors [14] as:   

Fig. 3 (right) shows the fragility (thick black line), based on MSA of 
Fig. 1 (left) obtained via MLS.3 In this case, logistic regression was 
performed to obtain the collapse probabilities; the latter is given in Fig. 3 

No. of collapse cases

Fig. 1. Left: results of a representative MSA analysis with ten stripes and twenty records per stripe. Right: fragility obtained with ML estimation and distribution of 
fragilites obtained with five-hundred parametric resampling runs. 

{
η̂, β̂
}
= argmin

η,β

[
∑n

i=1

(

Φ− 1

{
mC,imi

m
+

[

1 − Φ

(
ln
(
edpf

)
− μln(EDP)|C,imi

σln(EDP)|C,imi

)]

⋅
(

1 −
mC,imi

m

)
}

−
ln(imi)

β
+

η
β

)2]

. (8)   

{
η̂, β̂
}
= argmin

η,β

(
∑n

i=1

{
mC,imi

m
+

[

1 − Φ

(
ln
(
edpf

)
− μln(EDP)|C,imi

σln(EDP)|C,imi

)]

⋅
(

1 −
mC,imi

m

)
− Φ

(
ln(imi) − η

β

)}2)

(9)   

1 There are alternative functions, other than the logistic, that can be 
employed to model the collapse probability. 

2 This equation features a frequentist estimate of the collapse probability; in 
the logistic case, 1 /[1 + e− (α1+α2 ⋅imi)]replaces mC,imi/m.  

3 The figure shows lumped fragility values somewhat different from the 
previous example because, in this case, the collapse probability is modelled via 
the logistic regression. 
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(left) for completeness. 

4. Assessment of estimation uncertainty 

4.1. ML 

The parameters evaluated in equation (3) (as well as those from GPP 
and MLS) are indicated as {η̂, β̂} because, due to record-to-record vari-
ability, they can be interpreted as only estimates of the true fragility 
parameters, {η, β}, which are unknown. The distribution of {η̂, β̂}
deriving from sample-to-sample variability of responses provides a 
measure of such estimation uncertainty. A possible procedure (also 
discussed in Ref. [4]) to derive a distribution of {η̂, β̂} and based on 
parametric resampling, would consist of the following steps:  

1 {η̂, β̂} are initially evaluated from equation (3) and are assumed 
equal to the true fragility parameters;  

2. At each stripe IM = imi, i = 1,2,…, n, a number of failures, m*
f ,imi

, 
among m cases is simulated (extracted) from a binomial distribution 
with parameter pi = Φ{[ln(imi) − η̂] /β̂};  

3. Step 2 also provides non-failure cases, which are necessarily equal to 
m − m*

f ,imi
;  

4. After steps 2-3 are repeated ∀i = {1,2,…,n}, that is, for the each of 
the n stripes at which MSA is performed, a vector of the kind {m*

f ,im1
,

m*
f ,im2

, ...,m*
f ,imn

} is obtained and equation (3) can be re-applied to 
obtain a new estimation of the fragility parameters that can be 

indicated as {η̂*
, β̂

*
};  

5. Repeating these steps (2-4) k times (an arbitrary number) gives a 
distribution of the parameters and then of the structural fragility. 

An example of the results of this procedure when k = 500 are given in 
Fig. 1 (right) as thin gray lines. 

4.2. GPP and MLS 

In this approach, to account for estimation uncertainty:  

1. The EDP vector for each stripe, edpi = {edpi,1,edpi,2, ...,edpi,mC,imi
}, i =

{1,2,…,n}, is resampled with substitution to obtain a new vector, edp*
i =

{edp*
i,1,edp*

i,2,...,edp*
i,mC,imi

};  

2. This data vector is used as the input of steps 1-2 of section 3.2 that 
ultimately lead to a new set of fragility function parameters, via 
either equation (8) or equation (9), that can be once again indicated 

as {η̂*
, β̂

*
};  

3. Repeating the resampling of edpi data an arbitrary number of times 
yields the same number of fragility functions, which can help getting 
a sense of estimation uncertainty involved in the fragility fitting 
procedure. 

Examples of the results when k = 500 are given is Fig. 2 (right) and 
Fig. 3 (right) as gray thin lines for GPP and MLS, respectively. Note that 
this is, factually, a non-parametric resampling plan, as opposite to the 
one of the previous section that can be considered parametric [4]. Also 
note that in this procedure, the number of collapse cases at each stripe is 
kept fixed to the value of the original data. However, in principle, this 
number can also be resampled considering the P[C|IM= im] values 
initially obtained. 

5. Estimation uncertainty and maximum lumped fragility 

The uncertainty in the fragility parameters shown in the previous 
section inherently depends on the structural response recorded at the 
MSA stripes. A proxy for the estimation uncertainty in the fragility pa-
rameters can also be the maximum value of the lumped fragility (lumped 
fragility maximum or LFM) estimated to according equations (1) and (2), 
that isLFM≜max{P[f |IM = im1],P[f |IM = im2], ...,P[f |IM = imn]}. In fact, 
as also discussed by literature (e.g., Refs. [10,15]), the fragility curve 

fragility (via GPP)

Resampling

Fig. 2. Left: example of Gaussian probability plot and fitting of data points from MSA. Right: fragility obtained with the GPP method and related distribution of 
fragilities with five-hundred non-parametric resampling runs. 

Fig. 3. Left: example of logistic regression to determine the collapse probability as a function of IM. Right: fragility obtained with the MLS method (using logistic 
regression for the collapse cases) and related distribution of fragilities with five-hundred non-parametric resampling runs. 
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estimation is best constrained when the IM discretization at which dy-
namic analysis is performed gives a large and densely populated range of 
lumped P[f |IM= imi] values in the (0, 1) interval. Assuming that the part 
of the fragility probability interval is well covered by the structural 
analyses at the lower intensity measures, if the LFM value is relatively 
small the uncertainty in the fragility parameters is expected to be larger. 
In this respect, Fig. 4 shows two cases where the lumped fragility values 
are plotted against the result of the fitting procedure obtained via ML 
(black solid line). In the shown cases the LFM is within 0.3–0.6 range, 
while that in Fig. 1 (right) is larger than 0.9.4 The figure shows also the 
results of five-hundred resampling runs and it is apparent the larger 
variability of the curves as the LFM gets lower.5 To quantify this effect, 
for example, the relative root-mean-square error (RMSE) of the β̂ 
parameter of the fragility curve can be used. It is evaluated assuming 
that the value obtained from equation (3) is the true value (i.e., the first 
obtained estimate), which is consistent with the parametric resampling 
approach: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
k
⋅
∑k

i=1

⎛

⎜
⎝

β̂
*
i − β̂

β̂

⎞

⎟
⎠

2
√
√
√
√
√
√ . (10) 

In the equation, k is the number of resampling runs (k = 500 in this 
case). It results that for the fragility in Fig. 1, whereLFM > 0.9, RMSE is 
equal to 0.15. LFM = 0.60 means that the data from dynamic analysis 
are available up to IM levels slightly above the median. Fragility fitting 
continues to represent the trend of the empirical data, but the estimation 
uncertainty increases with RMSE equal to 0.21. Finally, when LFM =

0.30 curve fitting is somewhat getting worse and estimation uncertainty 
further increases, with a RMSE equal to 0.32, which means that het-
erogeneity of the parametric resampling around the black solid line 
significantly increases. The LFM is a candidate for a parameter to be 
tuned, along with m and n values, to design MSA to gather a desired level 
of RMSE of the fragility parameters. 

6. Final remarks 

In this technical note, some estimation uncertainty procedures for 
some common fragility fitting methods that find their roots in consoli-
dated literature, were discussed. The procedures are based on para-
metric and non-parametric resampling plans and can be applied to 
multi-stripe nonlinear dynamic analyses, also considering collapse 
cases arising from numerical instabilities. Each procedure allows to 
obtain an arbitrarily large sample of fragility curves providing a sense of 

the uncertainty in estimation of the parameters that, can be used, in 
turn, to obtain the distribution of the estimator of the structural reli-
ability, after each curve is integrated with the seismic hazard. It is also 
briefly discussed how, in general, the estimation uncertainty grows for 
diminishing the maximum values of the lumped fragility frequentist 
estimates, which therefore can be one of the parameters to design 
structural analysis to achieve a desired level of estimation uncertainty. 
The provided algorithms are illustrated in a step-by-step manner to be 
easily applicable; however, they were coded (including the LFM) within 
a major update of the R2R-EU software (https://www.reluis.it/it/proge 
ttazione/software/r2r-eu.html), which is a tool made available for 
further earthquake engineering applications, along with a dedicated 
tutorial (https://www.reluis.it/images/stories/R2R/R2R-EU_manual. 
pdf). 
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