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Abstract Recent literature about life-cycle models for earthquake resistant structures con-
siders that damage accumulation and failure are possibly due to subsequent shocks occurring
during the time period of interest. In fact, most of these models only consider the effect of
mainshocks. On the other hand, it is well known that earthquakes occur in clusters in which
the mainshock represents only the principal (e.g., prominent magnitude) event. Because there
is a chance that aftershocks can also cause deterioration of structural conditions, it may be
appropriate to include this effect in the life-cycle assessment. Recently, stochastic processes
describing the occurrences of aftershocks and their effect on cumulative structural damage
have been formalized. These can be employed to develop stochastic damage accumulation
models for earthquake resistant structures, accounting for the cluster effect. In the paper,
such a model is formulated with reference to simple elastic-perfectly-plastic single degree
of freedom systems. Temporal distribution of mainshocks is modeled via a homogeneous
Poisson process. Occurrence of aftershocks is modeled by means of non-homogeneous Pois-
son processes conditional to the characteristics of the triggering mainshock. Approximate
closed-form solutions are derived for the reliability assessment under the two hypotheses
that total damages produced by events pertaining to different clusters can be assumed to
be independent and identically distributed gamma or inverse-Gaussian random variables.
An application illustrates the implications of the model on the life-cycle assessment when
compared to the case where the effect of damaging aftershocks is ignored.
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1 Introduction

Life-cycle models for structures require accounting for the degradation over time of structural
performance. Usually, two categories of phenomena which may lead to damage accumulation
are identified: (1) continuous deterioration of material characteristics (or aging), and (2)
accumulation of damage because of repeated overloading due to earthquake shocks (e.g.,
Sanchez-Silva et al. 2011). In a probabilistic framework, the former is likely to be represented
by a process in which damage accumulates continuously over time, while the latter may be
interpreted as damage accumulating due to shocks, which can be treated as instantaneous
when compared to the life-cycle of the structure.

The current best practice with respect to long-term seismic risk analysis of structures is cer-
tainly represented by the performance-based earthquake engineering framework (or PBEE;
e.g., Cornell and Krawinkler 2000). PBEE conveniently splits structural assessment into sub-
problems that can be more easily addressed, yet providing the desired result if combined:
hazard, vulnerability, and loss (or exposure, that is the value of the elements at risk).

Classical probabilistic seismic hazard analysis (PSHA; e.g., McGuire 2004) usually makes
recourse to the homogeneous Poisson process (HPP) in order to model the temporal distri-
bution of seismic shocks at the earthquake source and at the construction site of interest. A
memory-less model is also adopted to account for the spatial distribution of the earthquakes,
that is, the location of past events does not affect the probability of future locations. One
of the main limitations of this approach is that it is used to account for the occurrence of
mainshocks only. In fact, earthquakes typically occur in clusters, in which a mainshock is
followed by aftershocks, whose spatial and temporal distribution depends on the charac-
teristics of the triggering mainshock (foreshocks are neglected in the following as they are
usually very small in number; Yeo and Cornell 2009a). In a context where structural damage
accumulation is accounted for, aftershocks may have a non-negligible effect on the life-cycle.
Unfortunately, classical PSHA, because of both the use of the HPP and the model adopted
for the spatial distribution of mainshocks, is not suitable to model events that are clustered
in time and space.

Stochastic modeling of structures cumulating damage due to mainshock-aftershock seis-
mic sequences is the issue addressed in the present study, and builds on recent results of
the authors. Indeed, in Iervolino et al. (2013) a model for life cycle assessment of structures
subjected to both earthquake damage accumulation and aging was developed. It led to a
closed-form for the reliability assessment when occurrence of seismic shocks is according
to a HPP. On the other hand, in Iervolino et al. (2014a) short-term seismic risk assessment of
structures, which have experienced a mainshock (i.e., during aftershock sequences), was also
developed. This model, considers a similar vulnerability model as in Iervolino et al. (2013),
yet it is based on aftershock probabilistic seismic hazard analysis (or APSHA; Yeo and Cor-
nell 2009a), in which earthquake occurrence is described by a non-homogeneous Poisson
process (NHPP). Finally, in Iervolino et al. (2014b) mainshock HPP and aftershock NHPP
were combined to develop a long-term PSHA model, which accounts also for aftershocks
along with mainshocks. The present study derives a closed-form life-cycle assessment model,
accounting for the effects of mainshocks and aftershocks (see also Yeo and Cornell 2009b).

In the study, earthquake clusters are considered instantaneous with respect to structural life;
therefore, seismic events are described by a marked (or reward; Ross 1996) point process,
where each event is represented by its occurrence time (i.e., the occurrence time of the
triggering mainshock) and damage that it produces. The occurrence of earthquake clusters
is modeled via the same HPP considered for the mainshocks (Boyd 2012), while the random
occurrence of aftershocks is represented, as mentioned, by means of a (conditional) NHPP.
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From the structural vulnerability point of view, it is considered that degradation during seismic
clusters can eventually lead to failure.

The main hypotheses of the model are that increments of damage accumulated over dif-
ferent seismic clusters are independent and identically distributed (i.i.d.) random variables
(RVs), which are also independent of the process underlying cluster occurrence. It is clear
that the principal reason for these assumptions is analytical convenience (to follow). Nev-
ertheless, in the case of the considered application, they are less restrictive than they may
appear; as a matter of fact, as briefly discussed in Sect. 3, they are verified when energy-based
damage indices are used in conjunction with the relatively simple (yet widely applicable in
earthquake engineering) elastic-perfectly-plastic (EPP) single degree of freedom (SDOF)
system. The model also accounts for the fact that not all earthquakes are damaging.

The paper is structured in a way that the compound Poisson process modeling damage
accumulation is described first. Then, the damage variable selected to define the state of the
stochastic model is briefly discussed. Subsequently, the distribution of damage in a single
cluster (i.e., a single mainshock-aftershock sequence) is derived. Two alternative models
are adopted to represent the damage in the cluster: the gamma and the inverse-Gaussian.
The reproductive property of these RVs enables closed-form solutions for the reliability
assessment in different cases, each corresponding to a different knowledge regarding the
seismic history of the structure. An illustrative application to an EPP–SDOF structure located
in an ideal seismic source zone, concludes the work. For this simple structure the model is
calibrated and the life-cycle assessment is compared to the case where the aftershock effect
is ignored.

2 Damage process formulation

A schematic representation of the issue tackled in this study is given in Fig. 1, where the
vertical axis reports the residual seismic capacity as a function of time. The source of dete-
rioration, in absence of aging (not considered in this study), is related to damaging events in
seismic sequences comprised of a mainshock and following aftershocks. Considering that a
seismic sequence, with duration in the order of weeks/months, may be seen as instantaneous
with respect to the life-cycle of the structure, cluster occurrence time is considered coinciding
with that of the triggering mainshock. On the other hand, the effect of the (whole) sequence
on the structure is evaluated considering the factual occurrence of aftershocks in the cluster.
The advantage of this approach is that it allows describing the cluster effect as that of a single
shock, as illustrated in Fig. 2. (Clearly, this approach works satisfactorily in the case repair
is assumed unfeasible within a sequence.)

Given a metric of the damage effect on the structural performance, for example the residual
ductility to collapse, μ (t), the degradation process may be expressed as in Eq. (1). In the
equation, μ0 is the initial seismic structural capacity in the cycle and D (t) is the cumulated
damage due to all clusters, N (t), occurring within t .

μ (t) = μ0 − D (t) = μ0 −
N (t)∑

i=1

�μi (1)

It follows from Eq. (1) that the probability of the structure failing within time t , Pf (t),
is the probability that the structure passes the limit-state (LS) threshold, μL S . It can also be
expressed as the probability that the cumulated damage exceeds the difference between the
initial capacity and the threshold, μ̄ = μ0 − μL S , as in Eq. (2).
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Fig. 1 Sketch of degradation in structures subjected to seismic damages in mainshock-aftershocks clusters

Shock Shock Shock

Fig. 2 Seismic cycle representation for a structure subjected to cumulative earthquake damages

Pf (t) = P [μ (t) ≤ μL S] = P [D (t) ≥ μ0 − μL S] = P [D (t) ≥ μ̄] (2)

Because in this approach the damage in the single cluster, �μi , and N (t) are both RVs,
the structural reliability problem may be computed via the total probability theorem as in
Eq. (3). In the application of the theorem, the probability of failure (i.e., damage exceeding
the threshold) given k clusters and the probability of occurrence of k clusters appear (the
summations start from one because the terms corresponding to i = 0 do not give any
contribution).

Pf (t) = P [D (t) ≥ μ̄] =
+∞∑

k=1

P [D (t) ≥ μ̄ |N (t) = k ] · P [N (t) = k]

=
+∞∑

k=1

P

[
k∑

i=1

�μi ≥ μ̄ |N (t) = k

]
· (E [N (t)])k

k! · e−E[N (t)]

=
+∞∑

k=1

P

[
k∑

i=1

�μi ≥ μ̄ |N (t) = k

]
· (λ · t)k

k! · e−λ·t (3)
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The equation assumes that the process underlying the occurrence of clusters is a HPP, as in
classical PSHA, which means that the probability of occurrence of k clusters is derived from
a Poisson distribution. Indeed, if mainshock occurrence is stochastically modeled by a HPP
with rate λ, then, the cluster initiation may be seen as described by the same process. Thus,
E [N (t)] = λ · t is the expected number of clusters in (0, t).

Once the total probability theorem is applied, and the probability of occurrence of clusters
is formulated, the last issue to solve is to evaluate the probability of failure given k clus-

ters, P
[∑k

i=1 �μi ≥ μ̄|N (t) = k
]
. Such a probability may be easily computed if �μi , the

damage increment in a single cluster, is modeled via a random variable enjoying the additive
reproductive property. This means that the sum of i.i.d. RVs belonging to a family featuring
the reproductive property, also belongs to the same family of distributions, as it will be clear
in the following. A well-known example of reproductive RV is the Gaussian one, as the
sum of independent Gaussian variables is still Gaussian; however, it is not suitable to model
degradation, which is a monotonic process, thus requiring damage in a single event to be a
non-negative RV. In turn, the lognormal RV, often used in the earthquake engineering context
to model non-negative random variables, is not reproductive in the additive sense needed in
Eq. (3).

Two RVs, featuring the needed property, are the gamma (G) and the inverse-Gaussian (IG),
which are two-parameters models. These will be considered in the following to model struc-
tural damage in earthquake clusters; however, because reproducibility requires that effects
of clusters are independent, this hypothesis will be discussed in the next section along with
the assumption that cluster damages are identically distributed.

3 Damage measures and independent and identically distributed increments
hypothesis

This section focuses on the properties of some structural damage measures. According to
Cosenza and Manfredi (2000), damage indices are usually classified in two categories: (i)
displacement-related and (ii) energy-related. Measures in the former class assume that col-
lapse is related to attainment of a maximum strain limit. Those in the latter postulate that
damage is related to the amount of dissipated hysteretic energy. In fact, the most representa-
tive damage index of category (i) is maximum displacement demand, while hysteretic energy,
defined as the total areas of plastic cycles during shaking, is typical of category (ii). Hybrid
indices also exist (e.g., Park and Ang 1985).

If the simplest non-linear inelastic structure is considered, that is an EPP–SDOF (Fig. 3a),
according to a displacement-based damage criterion, in a sequence of two shocks, the accumu-
lation of degradation occurs in the second shock only if the maximum displacement reached
(in a certain direction) in the second one is larger than the maximum in the first one. This
makes the damage increment dependent at least on the residual displacement of the structure
at the time of the shock, and violates the hypothesis that damages in different shocks (that is
damage increments) are independent. In this case, state-dependent approaches (e.g., Yeo and
Cornell 2009b; Giorgio et al. 2010) may be required to stochastically model degradation. On
the other hand, Fig. 3b shows that the area of hysteretic loops during the shaking from the
second shock is measured regardless of the previous shaking demand. Therefore, due to the
non-evolutionary (Cosenza and Manfredi 2000) features of the EPP–SDOF system response,
if a damage index measuring dissipated hysteretic energy is chosen, damage increments in
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Fig. 3 Elastic-perfectly-plastic non-evolutionary behavior (a), and monotonic (simplistic) scheme of cumu-
lative response in terms of maximum displacement and dissipated hysteretic energy (b). F is the force, δ is
the displacement, and y subscript indicates yielding

subsequent events are i.i.d. RVs, that is, the response of the structure to a specific shock is
independent of its status prior to the shock (see Sect. 4).

In this work the kinematic ductility, μ, is considered as a simplistic proxy for dissipated
hysteretic energy. Kinematic ductility is the ratio of maximum displacement demand (plastic
excursion hereafter) to the yielding displacement (Cosenza et al. 1993). Note that this implies
that only events with intensity larger than that required to yield the structure may produce
increment of damage. Collapse is assumed to occur when kinematic ductility, conservatively
accumulated independently of the sign of maximum displacement, reaches some capacity
value.

4 Damage distribution for a single cluster

This section deals with the formulation of the distribution of the damage increment in a single
seismic cluster, �μi , which is the fundamental component towards obtaining the distribution
of the sum of damage in k clusters as per Eq. (3). Under the hypotheses discussed in the
preceding sections, �μi may be seen as the damage in the mainshock, �μE,i , plus that
accumulated in the aftershock sequence, �μA,i , pertaining to the same mainshock, Eq. (4).

�μi = �μE,i + �μA,i = �μE,i +
NA,i (�TA)∑

j=1

�μA,i j (4)

In the equation, NA,i is the number of aftershocks in the �TA time interval following the i-th
mainshock and �μA,i j is the damage in the j-th aftershock. The developed model considers all
the terms of Eq. (4) as random. Therefore, in the following, how NA,i is stochastically modeled
is discussed first, then the distribution of �μE,i is addressed, and �μA,i j is discussed. Finally
the strategy for combining these terms to get �μi is illustrated.

4.1 Conditional aftershock occurrence process and APSHA hypotheses

In the APSHA approach, given the occurrence (at t = 0) of the mainshock initiating the
seismic sequence, the occurrence of aftershocks is described by a NHPP with daily rate,
λA|ME , provided by Eq. (5). The rate refers to aftershocks with magnitude bounded between
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a minimum value of interest, mmin, and that of the mainshock, ME = x . Coefficients a and
b are from a suitable Gutenberg-Richter (GR) relationship (Gutenberg and Richter 1944),
while c and p are those of the modified Omori law (Utsu 1961) for the considered sequence.
It also follows from Eq. (5) that the expected number of aftershocks in (0,�TA) is given by
Eq. (6).

λA|ME (t) =
(

10a+b·(x−mmin) − 10a
)/

(t + c)p (5)

E [NA (�TA) |ME = x ] =
�TA∫

0

λA|ME (τ ) · dτ = 10a+b·(x−mmin) − 10a

p − 1

× [
c1−p − (�TA + c)1−p] (6)

APSHA, provides the rate of exceedance of a ground motion intensity measure (IM) at a site
of interest, λI MA|ME ,RE (t), during the aftershock sequence, via Eq. (7).

λI MA |ME ,RE (t) = λA|ME (t) ·
∫

rA

∫

m A

P [I M > im |MA = w, RA = z ]

× fMA,RA|ME ,RE (w, z |x, y ) · dw · dz (7)

In the equation, fMA,RA|ME ,RE is the distribution of aftershock magnitude and dis-
tance, {MA, RA}, conditional to those of the mainshock, {ME = x, RE = y}, while
P [I M > im |MA = w, RA = z ] is the probability of exceedance of IM, conditional to mag-
nitude and distance, from a ground motion prediction equation (GMPE). It is worth to note
that APSHA also assumes that IMs in different aftershocks are i.i.d., given {ME , RE }.
4.2 Mainshock damage

The probability density function (PDF) of the first term on the right hand side of Eq. (4), that
is the damage in the mainshock, �μE,i , is computed consistently with PBEE. Indeed, the
distribution of �μE,i , f�μE,i , is calculated as in Eq. (8), where f�μE,i |I M is the distribution of
damage given an IM value (e.g., from incremental dynamic analysis or IDA; Vamvatsikos and
Cornell 2002), while f I ME is the PDF of the chosen IM given the occurrence of a mainshock.
The latter, as per the right hand side of Eq. (8), can be computed as in PSHA, via the joint
PDF of mainshock magnitude and distance RVs for the construction site, fME ,RE , and the
distribution of IM given the mainshock parameters, f I M|ME ,RE , provided by a GMPE.

f�μE,i (δμ) =
∫

im

f�μE,i |I M (δμ |u ) · f I ME (u) · du =
∫

im

f�μE,i |I M (δμ |u )

×
∫

rE

∫

m E

f I M|ME ,RE (u |x, y ) · fME ,RE (x, y) · dx · dy · du (8)

It will actually be shown in Sect. 4.3, that to compute the distribution of damage in the cluster,
the distribution of damage in the mainshock conditional to {ME , RE } is of interest. This
follows from Eq. (8) and is given in Eq. (9), assuming that structural response is independent
of {ME , RE } given IM.

f�μE,i |ME ,RE (δμ |x, y ) =
∫

im

f�μE,i |I M (δμ |u ) · f I M|ME ,RE (u |x, y ) · du (9)
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4.3 Damage in the generic aftershock given the mainshock

In order to compute the distribution of damage in a single aftershock of a certain mainshock,
a similar approach can be used. This is described by Eq. (10), where f I MA|ME ,RE is the
distribution of ground motion intensity of the aftershock, given a mainshock of magnitude
ME = x and separated from the site by a distance RE = y; i.e., from APSHA.1 In fact,
f I MA|ME ,RE is the PDF corresponding to the integral term of Eq. (7).

f�μA,i j |ME ,RE (δμ |x, y ) =
∫

im

f�μA,i j |I M (δμ |u ) · f I MA|ME ,RE (u |x, y ) · du

=
∫

im

f�μA,i j |I M (δμ |u ) ·
∫

rA

∫

m A

fI M|MA,RA (u |w, z )

× fMA,RA|ME ,RE (w, z |x, y ) · dw · dz · du (10)

Note that the f�μA,i j |I M term is the same as f�μE,i |I M in Eq. (9). Indeed, in both equations
it is assumed that the response of the structure given the IM, is the same for mainshocks and
aftershocks, or f�μE,i |I M = f�μA,i j |I M = f�μ|I M , and it is independent of any specific
feature of the earthquake (see Sect. 6) such as magnitude and distance. In this case, the IM
is said to be a sufficient one (Luco and Cornell 2007). Moreover, it is also assumed that the
same GMPE can be used for mainshocks and aftershocks, then also the f I M|MA,RA term is
the same as f I M|ME ,RE .

4.4 Cluster damage

On the basis of the above equations, it is possible to approach the distribution of damage for
the entire cluster. Recalling equation (4), the probability of exceedance of any damage level
can be computed as in Eq. (11).

P [�μi > δμ] = P
[
�μE,i + �μA,i > δμ

] = 1 − P
[
�μE,i + �μA,i ≤ δμ

]

= 1 − P

⎡

⎣�μE,i +
NA,i (�TA)∑

j=1

�μA,i j ≤ δμ

⎤

⎦ (11)

Because of the features of the EPP–SDOF response introduced in Sect. 3, it may be argued
that, conditional to {ME , RE }, the damage (increment) in the mainshock and in the aftershock
sequence are independent random variables. This is because, as discussed in Sects. 4.2 and 4.3,
the effect of any single event in a cluster only depends on the IM, and the IMs associate to the
events in a cluster are independent, given the features of the triggering mainshock. Hence,
applying the total probability theorem, P

[
�μE,i + �μA,i ≤ δμ

]
of Eq. (11) can be rewritten

as in Eq. (12).

1 Models used in this study consider that the aftershock source zone depends on the magnitude and location
of the mainshock. Considering magnitude and distance, instead, is equivalent herein. It is also to note that
both f I MA |ME ,RE and f I ME |ME ,RE should be indicated as f I MA,i j |ME ,RE and f I ME,i |ME ,RE , yet the
notation is intentionally simplified due to the i.i.d. features of these RVs. Actually, while also damages are
i.i.d., subscript are kept there to avoid confusion, as it will be clarified in the following.
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P
[
�μE,i + �μA,i ≤ δμ

] =
∫

rE

∫

m E

P [�μi ≤ δμ |ME = x, RE = y ]

× fME ,RE (x, y) · dx · dy

=
∫

rE

∫

m E

δμ∫

0

P
[
�μE,i ≤ δμ − l |ME = x, RE = y

]

× f�μA,i |ME ,RE (l |x, y ) · fME ,RE (x, y) · dl · dx · dy (12)

In the above equation, the term P
[
�μE,i ≤ δμ − l|ME = x, RE = y

]
is obtained from

Eq. (9), while f�μA,i |ME ,RE represents the PDF of damage cumulated during the aftershock
sequence, given the features of the mainshock. Due to the fact that, as discussed, the aftershock
sequence is comprised by a random number of events, f�μA,i |ME ,RE can be evaluated by
applying the total probability theorem again; Eq. (13). Note that following the APSHA
approach, the probability of having j aftershocks in the cluster is provided by a Poisson
distribution with a mean given by Eq. (6). In the equation it is assumed that f�μA,i |ME ,RE ,NA,i

degenerates to a unit probability mass at zero when j equals zero.

f�μA,i |ME ,RE (l |x, y )=
+∞∑

j=0

f�μA,i |ME ,RE ,NA,i
(l |x, y, j ) · P

[
NA,i (�TA) = j |ME = x

]

=
+∞∑

j=0

f�μA,i |ME ,RE ,NA,i
(l |x, y, j )

×
(
E
[
NA,i (�TA) |ME = x

]) j

j ! · e−E[NA,i (�TA)|ME =x ] (13)

Under the assumption that damages produced in different aftershock events are i.i.d. RVs,
given {ME , RE }, which also follows from Sect. 3, the distribution of the sum of damages
in a given number of aftershocks, conditional to magnitude and distance of the mainshock,
f�μA,i |ME ,RE ,NA,i

, is just the j-th order convolution of f�μA,i j |ME ,RE from Eq. (10), with

itself, and it will be indicated as f ( j)
�μA,i |ME ,RE

in the following.
Applying a further simplification of the delta method (e.g., Oehlert 1992) to Eq. (13), the

infinite-terms summation may be approximated by the term corresponding to the expected
number (closest integer) of aftershocks in the time interval of interest, Eq. (14). The suitability
of this approximation depends mostly on the variance of the distribution of the number of
aftershocks (which is equal to the mean in the case of the Poisson PDF). Examples of the
resulting distributions for a given expected number of (damaging) aftershocks, as well as how
such an expected number scales with magnitude and distance, are provided in the application
section for the selected case-study.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f�μA,i |ME ,RE (l |x, y ) = ∑+∞
j=0 f ( j)

�μA,i j |ME ,RE
(l |x, y ) · (E[NA,i (�TA)|ME =x ]) j

j !

× e−E[NA,i (�TA)|ME =x ] ≈ f

(
ÑA

)

�μA,i j |ME ,RE
(l|x, y)

ÑA = int
{

E
[
NA,i (�TA) |ME = x

]} = int

{
�TA∫

0
λA|ME (τ ) · dτ

} (14)
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At this point, combining equation (14) with Eq. (12), Eq. (15) results, which gives the
probability of exceedance of a damage increment value in the single cluster, once it is assumed

that f

(
ÑA

)

�μA,i j |ME ,RE
degenerates to a unitary probability mass at zero damage when ÑA = 0.2

P [�μi > δμ] = 1 −
∫

rE

∫

m E

δμ∫

0

P
[
�μE,i ≤ δμ − l |ME = x, RE = y

]

× f

(
ÑA

)

�μA,i j |ME ,RE
(l |x, y ) · fME ,RE (x, y) · dl · dx · dy (15)

The strategy for computing the integral in Eq. (15) will be discussed in Sect. 6, while Sect. 5
introduces the advantage of assuming that �μi follows a G or an IG distribution.

5 Reliability solutions for Gamma and Inverse-Gaussian damage in the cluster

Because the EPP–SDOF guarantees that the RVs adopted to model damage, �μi , accumu-
lated over different clusters are i.i.d., a closed-form solution of the reliability problem may
be obtained if the sum of the damages in multiple mainshock-aftershock sequences may be
expressed using a reproductive and non-negative RV.

5.1 Gamma-distributed damage increments

An option discussed in Iervolino et al. (2013) is given in Eq. (16), in which it is considered
that the damage increment is a gamma-distributed RV (� is the gamma function). The PDF
of this RV is indexed by γD and αD , which are the scale and shape parameters, respectively.
The mean and variance are αD/γD and αD/γ 2

D , respectively.

f�μi (δμ) = γD · (γD · δμ)αD−1

� (αD)
· e−γD ·δμ (16)

The main advantage of using the gamma model in the context of this study is that the sum of kD

i.i.d. G-distributed RVs, with parameters γD and αD , remains G-distributed with parameters
γD and kD · αD . Therefore, the probability of cumulative damage exceeding the threshold,
conditional to kD shocks, is given by Eq. (17) where � (kD · αD) and �U (kD · αD, γD · μ̄)

are referred to as the incomplete and the upper-incomplete gamma functions, respectively.

P [D (t) ≥ μ̄ |ND (t) = kD ] =
+∞∫

μ̄

γD (γD · x)kD ·αD−1

� (kD · αD)
· e−γD ·x · dx

= �U (kD · αD, γD · μ̄)

� (kD · αD)
(17)

Equation (17), allows a closed-form solution of the reliability problem given in Eq. (3).
However, since the gamma RV is continuous, it gives P [�μi = 0] = 0; thus, it can be
adopted to account only for the effects of damaging clusters (this justifies the subscript D).

2 In Eq. (15), and in the others above, the distribution of damage is always indicated as a PDF, for simplicity
of notation. However, it is not perfectly appropriate because the damage in a single event is not a continuous
RV.
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This is the reason why the rate in Eq. (3) has to be the one referring to damaging sequences,
which can be obtained by the total rate, λ, times the probability that a cluster is damaging,
that is λD = λ · P [�μi > 0]; to follow.

That said, it might be worthwhile to introduce an approximation enabling a closed-form
solution for the reliability assessment. It is given in Eq. (18), where Pf (t) is replaced by the
probability of failure conditional to the expected number of damaging clusters until t . For
the suitability of this approximation see the application section.

Pf (t) =
+∞∑

kD=1

P [D (t) ≥ μ̄ |ND (t) = kD ] · (λD · t)kD

kD ! · e−λD ·t

=
+∞∑

kD=1

P

[ kD∑

i=1

�μi ≥ μ̄ |ND (t) = kD

]
· (λD · t)kD

kD ! · e−λD ·t

≈ P [D (t) ≥ μ̄ |ND (t) = E [ND (t)] ]

= P [D (t) ≥ μ̄ |ND (t) = λD · t ] = �U (λD · t · αD, γD · μ̄)

� (λD · t · αD)
(18)

5.2 Inverse-Gaussian-distributed damage increments

Another RV with properties similar to those of the gamma, is the inverse-Gaussian, Eq. (19).
This RV has a PDF which is also indexed by two parameters: ηD and νD . The mean and
variance are νD and ν3

D/ηD , respectively.

f�μi (δμ) =
√

ηD

2 · π · δμ3 · e
− ηD ·(δμ−νD)2

2·ν2
D ·δμ (19)

The sum of kD i.i.d. IG-distributed RVs, each of which with parameters ηD and νD , is still IG
with parameters k2

D · ηD and kD · νD ; see Eq. (20), where FI G is the cumulative distribution
function of the IG-RV. Therefore, following from Eq. (18), the failure probability in Eq. (3)
can be approximated by Eq. (21).

P [D (t) ≥ μ̄ |ND (t) = kD ] =
+∞∫

μ̄

√
k2

D · ηD

2 · π · x3 · e
− ηD ·(x−kD ·νD)2

2·ν2
D ·x · dx

= 1 − FI G
(
μ̄; k2

D · ηD, kD · νD
)

(20)

Pf (t) ≈ P [D (t) ≥ μ̄ |ND (t) = E [ND (t)] ]

= 1 − FI G
(
μ̄; λ2

D · t2 · ηD, λD · t · νD
)

(21)

5.3 Conditional reliability approximations

The above formulations provide the absolute (i.e., aprioristic) probability that a new structure
fails in a time interval of interest (0, t). However, according to the formulated models, it is
possible to include additional information about the structural conditions in the reliability
assessment (e.g., after an inspection), while still retaining the closed-form solutions (Iervolino
et al. 2013 and 2014a). More specifically, it is possible to formulate the conditional failure
probabilities when: (1) the residual capacity of the structure is known at the time of the
reliability assessment; (2) it is only known that the structure is above the failure threshold at
the time the evaluation is performed, yet with unknown residual seismic capacity; (3) same
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as in case (2) with the additional information about the number of damaging clusters the
structure sustained up to the time of the assessment.

(1) In this case, at t∗ during the life-cycle, the present capacity, μ (t∗), of the structure is
measured. The failure probability conditional to the observed state has the same expression
as above, provided that μ̄ and t of Eqs. (18) and (21), are replaced with μ̄∗ = μ (t∗) − μL S

and t − t∗. In fact, the structure now has to undergo a smaller reduction in capacity to fail.
Equations (22) and (23) provide such probability when the damage increment in the cluster
is amenable to G or IG representation, respectively.

P
[
D (t) ≥ μ̄

∣∣μ
(
t∗
) − μL S = μ̄∗ ] ≈ �U

[
λD · (t − t∗) · αD, γD · μ̄∗]

� [λD · (t − t∗) · αD]
, t > t∗ (22)

P
[
D (t) ≥ μ̄

∣∣μ
(
t∗
) − μL S = μ̄∗ ]

≈ 1 − FI G

[
μ̄∗; λ2

D · (t − t∗
)2 · ηD, λD · (t − t∗

) · νD

]
, t > t∗ (23)

(2) In the second case the structure is still surviving at t∗, but with unknown conditions. The
failure probability may be computed via Equation (24), which turns into Eqs. (25) and (26)
for the G and IG cases, respectively.

P
[
D (t) ≥ μ̄

∣∣μ
(
t∗
)

> μL S
] = 1 − P

[
D (t) < μ̄

∣∣μ
(
t∗
)

> μL S
]

= 1 − P
[
D (t) < μ̄ ∩ μ (t∗) > μL S

]

P [μ (t∗) > μL S]

= 1 − R (t)

R (t∗)
= 1 − 1 − Pf (t)

1 − Pf (t∗)
, t > t∗ (24)

P
[
D (t) ≥ μ̄

∣∣μ
(
t∗
)

> μL S
] ≈ 1 − 1 − �U[λD ·t ·αD ,γD ·μ̄]

�[λD ·t ·αD ]

1 − �U[λD ·t∗·αD ,γD ·μ̄]
�[λD ·t∗·αD ]

, t > t∗ (25)

P
[
D (t) ≥ μ̄

∣∣μ
(
t∗
)

> μL S
] ≈ 1 − FI G

(
μ̄; λ2

D · t2 · ηD, λD · t · νD
)

FI G
[
μ̄; λ2

D · (t∗)2 · ηD, λD · t∗ · νD
] , t > t∗

(26)

(3) Finally, Eq. (27) provides the probability of failure for the structure surviving at time t∗
and having sustained ND (t∗) = kD damaging clusters. Equations (28) and (29) specialize
for the G and IG cases, respectively.

P
[
D (t) ≥ μ̄

∣∣μ
(
t∗
)

> μL S ∩ ND
(
t∗
) = kD

]

= 1 −
1 − P

[∑kD+ND(t−t∗)
i=1 �μi ≥ μ̄

]

1 − P
[∑kD

i=1 �μi ≥ μ̄
]

= 1−
1−∑+∞

k∗
D=0 P

[∑kD+k∗
D

i=1 �μi ≥ μ̄ |ND (t−t∗) =k∗
D

]
· P

[
ND (t − t∗) =k∗

D

]

1−P
[∑kD

i=1 �μi ≥ μ̄
] , t>t∗

(27)

P
[
D (t) ≥ μ̄

∣∣μ
(
t∗
)

> μL S ∩ ND
(
t∗
) = kD

]

≈ 1 − 1 − �U[kD ·αD+λD ·(t−t∗)·αD ,γD ·μ̄]
�[kD ·αD+λD ·(t−t∗)·αD ]

1 − �U[kD ·αD ,γD ·μ̄]
�[kD ·αD ]

, t > t∗ (28)

123



Bull Earthquake Eng (2015) 13:983–1002 995

P
[
D (t) ≥ μ̄

∣∣μ
(
t∗
)

> μL S ∩ ND
(
t∗
) = kD

]

≈ 1 −
FI G

{
μ̄; [kD + λD · (t − t∗)

]2 · ηD,
[
kD + λD · (t − t∗)

] · νD

}

FI G
(
μ̄; k2

D · ηD, kD · νD
) , t > t∗ (29)

6 Model calibration strategy via an illustrative application

To evaluate the developed models, an illustrative example is developed. To this end, a simple
EPP–SDOF system with unloading/reloading stiffness always equal to the initial one is
considered. The period of the SDOF system is assumed equal to 0.5 s, its weight is 100
kN, the yielding force is equal to 10 kN, and viscous damping is set at 5 %. The following
sub-sections first illustrate the calibration of the damage cluster model. Then, the results
of the reliability assessment are discussed and compared with the case where the effects of
aftershocks are neglected.

6.1 Mainshock and aftershock intensity distributions

The structure is assumed to be within a generic seismogenetic source zone, the size of which
is 20 × 80 km2. Mainshock epicenters are assumed to be uniformly distributed on the lattice
in Fig. 4. The event rate of mainshocks, and consequently that of clusters, is assumed to be
λ = 0.013 [events/yr ]. The distribution of mainshock magnitude is a truncated exponential
one, defined in the [5, 6.5] range. The b-value of the GR relationship is 1.056; {ME , RE } are
independent RVs.

It is assumed that each mainshock has its aftershocks constrained in an area around its
epicenter. The size of the aftershock seismogenic zone in squared kilometers, SA, depends
on the magnitude of the triggering event according to Eq. (30), from Utsu (1970). Within
this area, arbitrarily assumed to be a square, epicenters are uniformly distributed on a lattice
with 0.5 km spacing (see Iervolino et al. 2014b, for a discussion related to these issues).

SA = 10(m E −4.1) (30)

The time-length of aftershock sequences (�TA) is set equal to 90 days after the main-
shock (following Yeo and Cornell 2009a). The parameters appearing in Eq. (5), were:
a = −1.66, b = 0.96, c = 0.03, p = 0.93, and mmin = 4.5; i.e., those of generic
aftershock sequences in Italy according to Lolli and Gasperini (2003).

0 10 20 30 40 50 60 70 80
0

5

10

15

20

Site

Generic Mainshock location Generic
aftershock
lattice

Lattice for mainshock location

Fig. 4 Seismogenic source lattice for mainshocks, generic aftershock lattice around a mainshock epicenter,
and site
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Fig. 5 Distribution of IM in the mainshock given its features (a), and distribution of IM in the generic
aftershock given the features of the mainshock as per APSHA (b)

Given this set of parameters and source model, the distributions of IM in the mainshock
and in the generic aftershock, given magnitude and location of the mainshock, were computed
via the integrals over magnitude and distance appearing at the right hand sides of Eqs. (8) and
(10), which are, in fact, hazard integrals without the rate because these PDFs are conditional
on the occurrence of the seismic event of interest. The required f I M|ME ,RE and f I M|MA,RA

terms for these calculations were taken considering the Ambraseys et al. (1996) GMPE (on
rock). Figure 5 reports the resulting distributions of IM for some pairs of mainshock features.

6.2 Distribution of damage given the intensity of a single earthquake shock

As discussed in Sect. 3, the parameter chosen as a proxy for dissipating hysteretic energy in
a single earthquake is kinematic ductility computed assuming that the residual displacement
of the structure before the earthquake was zero. Therefore, the damage increment, �μ, in
each earthquake event may be evaluated via Equation (31).

�μ = δmax − δy

δ̄ − δy
= μ

μ0
(31)

In the equation δmax is the maximum absolute value of plastic displacement demand and δ̄ is
the displacement associated to the ductility capacity; recalling that μ0 is the initial capacity,
values of �μ larger than one imply failure. Moreover, as discussed earlier, damage is zero
in shocks unable to push the structure beyond yielding, which means ground motions with
5 % damped spectral acceleration at 0.5 s lower than 0.10 g.

Since the response of the considered structure in terms of hysteretic energy in a generic
earthquake shock should always have the same distribution given a sufficient IM—e.g., first
mode spectral acceleration at the elastic period of the SDOF, or Sa (T )—and is independent
of the shaking history, a single set of IDAs is sufficient to calibrate the damage distribu-
tion conditional to earthquake intensity, f�μ|I M . In particular, it is sufficient to analyze the
response of the as-new structure (see also Iervolino et al. 2013 and 2014a). To this aim,
IDAs have been performed using 30 records selected via REXEL (Iervolino et al. 2010),
with moment magnitude between 5 and 7, epicentral distances lower than 30 km and stiff
site class; Fig. 6a shows IDA’s output. For f�μ|I M a lognormal distribution was assumed,
which is a well-established hypothesis in the PBEE context. Figure 6b shows some of these
conditional PDFs.
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Fig. 6 Seismic demand from IDAs (a), and distributions of damage conditional to some ground motion
intensity values (b)
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Fig. 7 Distribution of damage: in the mainshock conditional to some magnitude and distance values (a), and
in the generic aftershock conditional to the same features of the mainshock (b)

6.3 Damage distributions in mainshock, in the aftershock sequence, and in the cluster

The integration of the distributions as per Sects. 4.2 and 4.3 enables to get the PDFs of damage
in the mainshocks and in a generic aftershock, conditional to magnitude and distance of the
mainshock, according to Eqs. (9) and (10). As an example, the continuous part, f̃�μE,i |ME ,RE

and f̃�μA,i j |ME ,RE , of these distributions are given in Fig. 7.
Note that, even if not represented in the figure because of scale issues, both these functions

have a concentrated mass at zero, which is the probability that the earthquake of interest is
not damaging (i.e., the probability that a shock has intensity lower than yielding the SDOF
system). In fact, distributions are defined as in Eq. (32) and in Eq. (33).

P
[
�μE,i |ME ,RE ≤ δμ

] =

⎧
⎪⎨

⎪⎩

P0
E,i |ME ,RE

δμ = 0

P0
E,i |ME ,RE

+
δμ∫

0
f̃�μE,i |ME ,RE (z |x, y ) · dz δμ > 0

(32)

P
[
�μA,i j |ME ,RE ≤ δμ

] =

⎧
⎪⎨

⎪⎩

P0
A,i j |ME ,RE

δμ = 0

P0
A,i j |ME ,RE

+
δμ∫

0
f̃�μA,i j |ME ,RE (z |x, y ) · dz δμ > 0

(33)
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In the cases of Fig. 7 P0
E,i |ME ,RE

= {0.0014, 0.054, 0.21} for {ME = 6.5, RE = 5},{
ME = 6.0, RE = 10

}
, {ME = 6.3, RE = 22}, respectively, while P0

A,i j |ME ,RE
=

{0.39, 0.48, 0.81} for {ME = 6.5, RE =5}, {ME = 6.0, RE = 10} , {ME = 6.3, RE = 22},
respectively.

Recalling that, while f�μE,i |ME ,RE is directly needed to compute the damage in the cluster

as per Eq. (15), f

(
ÑA

)

�μA,i j |ME ,RE
is required for aftershocks. This is the PDF of total damage

in the aftershock sequence conditional to {ME , RE } of the mainshock, when the expected

number
(

ÑA

)
of aftershocks occurs in �TA. It is convenient here to refer to the process

counting the number of damaging aftershocks, as they are the only contributing to damage
accumulation. Because of the properties of Poisson processes, the rate of damaging after-
shocks is simply that in Eq. (5) times the probability that an aftershock is damaging, Eq. (34).
The integer approximation of the expected number of damaging aftershocks is then termed
ÑA,D .

λA,D|ME ,RE (t) = λA|ME (t) · P
[
�μA,i j |ME ,RE > 0

] = λA|ME (t) ·
(

1 − P0
A,i j |ME ,RE

)

(34)

Because, given {ME , RE }, damage in different aftershocks are i.i.d., the f

(
ÑA,D

)

�μA,i j |ME ,RE
is

just the convolution of order ÑA,D of f�μA,i j |ME ,RE (which now represents the damage PDF
in a damaging aftershock; i.e., does not have a concentrated mass at zero) with itself. The
expected number of aftershocks for some {ME , RE } pairs is given in Fig. 8a, while Fig. 8b
reports the distributions of damage in the corresponding aftershock sequences.

These distributions allow the computation, via Equation (15), of the distribution of the
damage accumulated in the cluster, that is integrating over {ME , RE }. The P [�μi > δμ]
distribution obtained is compared in Fig. 9a with the distribution obtained when the contribu-
tion of aftershocks is neglected, that is with the results of Eq. (8) in terms of complementary
cumulative distribution function (CCDF). Changes in probability, in the case the aftershock
sequences are accounted for, are depicted in Fig. 9b. Note that the distribution of damage in
the cluster, Eq. (35), is characterized by a probability mass at zero, which accounts for the
chance that the cluster is undamaging. For the considered example, the probability that the
cluster is undamaging is P0

i = 1 − P [�μi > 0] = 0.62, and the rate of damaging clusters
is λD = λ · P [�μi > 0] = 0.013 ·0.38 = 0.005 [events/yr ]. It may also be worth reporting
the probability that the mainshock alone is undamaging, which is P0

E,i = 0.65, marginally
with respect to {ME , RE }.

P [�μi ≤ δμ] =

⎧
⎪⎨

⎪⎩

P0
i δμ = 0

P0
i +

δμ∫

0
f̃�μi (z) · dz δμ > 0

(35)

6.4 Results of reliability assessment

The distribution of damage in the cluster, P [�μi > δμ], given that the cluster is damaging,
was then alternatively approximated via a gamma and an inverse-Gaussian distribution. In
fact, the damage RV is not continuous as it has a probability mass at zero accounting for
the non-damaging clusters, which cannot be modeled by the G and IG models. Therefore,
these RVs were adopted only to approximate the continuous part, f̃�μi , of the distribution in
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Fig. 8 Expected number of total and damaging aftershocks conditional to the features of the mainshock (a);
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(a) (b)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

δμ

C
om

pl
em

en
ta

ry

Cluster
Mainshock

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

δμ

P
er

ce
nt

 in
cr

em
en

ts
 in

 c
lu

st
er

da
m

ag
e 

C
C

D
F

 w
ith

 r
es

pe
ct

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

to
 th

e 
m

ai
ns

ho
ck

 o
nl

y 
ca

se

Fig. 9 CCDFs of damage increment in the cluster and in the mainshock only (a); percent probability incre-
ments if the aftershock sequence effect is not neglected (b)

Table 1 Parameters of the
gamma and of the
inverse-Gaussian distributions

Gamma Inverse-Gaussian

γD αD ηD νD

0.3556 0.2762 0.2145 0.7766

Eq. (35) (whose area is normalized to one). The criterion to calibrate the parameters of the
PDFs was to set the mean and variance equal to those of the distribution of damage (condi-
tional to the occurrence of a damaging cluster) obtained via structural analysis. These mean
and variance are 0.78 and 2.18, respectively. Table 1 reports the corresponding parameters.

At this point it is possible to compute the probability of failure as a function of time
(Fig. 10a) for cases:

(i) according to Eqs. (18) and (21), that is when the distribution of damage in the cluster is
assumed to follow a G or an IG distribution, respectively, and the expected number of
damaging clusters is considered in lieu of any possible number of clusters;

(ii) when the distribution of damage in the cluster is assumed to follow a G or an IG RV,
yet the approximation of the expected number of damaging clusters is relaxed;
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Fig. 10 Lifetime distributions accounting for the cluster effect, with different degrees of approximation, along
with that considering only mainshocks (a); failure probabilities from curves in the left panel divided by the
reference curve (b)

(iii) without approximating the number of damaging clusters via its expected value, and
without approximating the distribution of damage in the cluster by means of a G or an
IG model (that is, using the distribution of damage in Fig. 9a for the cluster, obtained
by means of structural analysis);

(iv) without approximating the number of damaging clusters via its expected value, and
without approximating the distribution of damage in the cluster by means of a G or an
IG model, yet using the distribution of damage in Fig. 9a for the mainshock, that is
neglecting the effect of aftershocks.

Cases from (ii) to (iv) were computed applying equation (3); however, it is noted that the
case (iii) is a reference case to compare other results, as it is the case without any approximat-
ing hypothesis other than the expected number of aftershocks in the sequence (as per Eq. 15),
and the use of the lognormal RV to fit IDA results. Therefore, Fig. 10b reports the ratios of
the failure probabilities in Fig. 10a divided by those corresponding to this reference case.
For example, the ratios obtained by dividing the probabilities from the mainshock curve by
those from the reference curve allow the appreciation, in the considered application, of the
significance of accounting for the potentially damaging effect of aftershocks in the cluster.
Similarly, the ratios of the other curves allow the evaluation of the suitability of modeling
damage by means of a gamma or an inverse-Gaussian PDF, and also the suitability of replac-
ing the number of occurring clusters by the expected value of the damaging ones. Results
show that considering the mainshocks only leads to an un-conservative estimate of failure
probability. Generally speaking, the G approximation of cluster damage seems to provide
better results than the IG with respect to the reference case. Moreover, the models based on
the gamma distribution, contrary to the inverse-Gaussian ones, appear to be conservative, at
least up to number of years of larger engineering interest. However, these observations may
be limited to this application.

Finally, Table 2 reports examples of conditional failure probabilities as per Sect. 5.3. In
particular, the following cases were considered: (a) failure probability in 50 yr when at 25
yr 0.7 residual capacity is measured, from Eqs. (22) and (23); (b) failure probability in 50
yr when at 25 yr it is observed that the structure hasn’t failed yet, from Eqs. (25) and (26);
(c) failure probability in 50 yr when at 25 yr it is observed that the structure hasn’t failed
yet, and it is known that it has suffered one damaging cluster, from Eqs. (28) and (29). It is
confirmed, at least referring to this application, that the G distribution performs better than
the IG.
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Table 2 Conditional failure probabilities for different knowledge levels

Case Formulation Numerical (i.e., case iii) Gamma Inverse-Gaussian

(a) P [D (50) ≥ μ̄ |D (25) = 0.3 ] 0.0335 0.0359 0.0281
(b) P [D (50) ≥ μ̄ |D (25) < 1 ] 0.0263 0.0282 0.0219
(c) P [D (50) ≥ μ̄ |D (25) < 1 ∩ kD = 1 ] 0.0347 0.0357 0.0354

7 Conclusions

Starting from classical stochastic modeling of mainshock occurrence, conditional process
modeling of aftershock sequences, and a probabilistic structural damage accumulation model,
life-cycle reliability of constructions subjected to seismic clusters was addressed. The devel-
oped model assumes that the occurrence of seismic clusters may be described by the same
homogeneous Poisson process characterizing mainshock occurrence, while aftershock occur-
rences follow a non-homogeneous Poisson process conditional on the mainshock and based
on the modified Omori-law.

The structural damage model postulated leads to damage increments in different main-
shocks independent and identically distributed; damage increments in aftershocks pertaining
to a specific mainshock are also independent and identically distributed random variables,
given the mainshock features. This allowed the formulation of the distribution of damage in
a generic cluster, which is also i.i.d. with respect to other clusters. The characteristics of the
cluster-damage distribution enabled the formulation of a non-negative damage accumulation
process. Under the additional hypotheses that damage is either a gamma RV or an inverse-
Gaussian RV, closed-form solutions for the life-cycle reliability assessment were derived.
Finally, strategies were also formulated, which allow the use of additional information about
the status of the structure at the time of the assessment in order to perform state-dependent
reliability evaluations.

A simple application was set-up with a twofold aim: (i) to appreciate the effect of changes
in reliability assessment when the effect of potentially damaging aftershock sequences are
accounted for, and (ii) to evaluate the tolerance of the methodology towards the approxi-
mations introduced by the closed-form solutions. An elastic perfectly plastic single-degree-
of-freedom system located in a generic seismogenic areal source was considered, spatial
distribution of aftershocks was modeled by a semi-empirical relationship function of main-
shock magnitude and location. Then, distributions of intensity in mainshocks and in following
sequences were obtained. Integration of those with the results of seismic demand analysis for
the considered structure, led to the distribution of damage in mainshocks, aftershocks and,
finally, in the single (generic) cluster. This distribution, conditional to damage larger than
zero, was fitted by the mentioned distributions calibrated to retain mean and variance of dam-
age distribution computed via structural analysis. Results show that, at least in the examined
case, the contribution of aftershocks to the life-cycle assessment may be non-negligible, yet
the problem may be addressed via stochastic modeling consistent with PBEE and leading to
convenient closed-form approximations.
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