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[1] From the engineering perspective, the effectiveness of
earthquake early warning systems (EEWS) depends only
on the possibility of immediately detecting the earthquake
and estimating the expected loss at a location of interest,
in order to undertake actions to manage/mitigate the risk
before the strike. The simplest proxy for the earthquake’s
destructive potential is the peak ground acceleration (PGA),
which is predicted through probabilistic seismic hazard
analysis in the framework of EEW. In this paper, the
effects of different sources of uncertainty on the prediction
of PGA are assessed with reference to the ISNet (Irpinia
Seismic Network) EEWS. First the analyses show how the
uncertainty of the ground motion prediction equation (GMPE)
dominates those of magnitude and distance, almost
independently of the information available for the event.
Secondly, based on these findings, information-dependent
lead-time maps are provided for the Campania (southern
Italy) region. Finally, different real-time magnitude
estimators are compared in terms of errors in the prediction
of PGA, as a more efficient estimator may give additional
lead-time for risk reduction.Citation: Iervolino, I., M. Giorgio,

C. Galasso, and G. Manfredi (2009), Uncertainty in early warning

predictions of engineering ground motion parameters: What really

matters?, Geophys. Res. Lett., 36, L00B06, doi:10.1029/

2008GL036644.

1. Introduction to RTPSHA

[2] Seismologists have recently developed several
methods to estimate the magnitude (M) of an event, given
limited information of the P-waves, for real-time applications.
Similarly, the source-to-site distance (R) may be determined
by analyzing the time and order of the seismic stations
detecting the developing earthquake. Therefore, for earth-
quake early warning purposes, it is possible to assume that at
a given instant estimates of M and R are available, and the
peak ground motion at the site can be predicted via probabi-
listic seismic hazard analysis (PSHA) conditional to the real-
time information given by the seismic sensors network
[Iervolino et al., 2006].
[3] In fact, assuming that at a given time t from the

earthquake’s origin, the seismic network can provide a vector
of measures informative for the magnitude, {t1, t2, . . ., tn},
for example the predominant periods of the first four seconds

of the P-waves [Allen and Kanamori, 2003], then the
posterior probability density function (PDF) ofM conditional
to the measures, f(mjt1, t2, . . ., tn), may be obtained via the
Bayes theorem, equation (1).

f mjt1; t2; . . . ; tnð Þ ¼ f t1; t2; . . . ; tnjmð Þf mð ÞRMmax

Mmin

f t1; t2; . . . ; tnjmð Þf mð Þdm
ð1Þ

[4] In the Bayesian framework f(m), the a priori distri-
bution, is used to incorporate the information available before
the seismic network performs the measurements. Then, in
this application, a natural candidate for f(m) is the truncated
exponential of equation (2), derived by the Gutenberg-
Richter relationship. In equation (2), {b, Mmin, Mmax} are
dependent on the seismic features of the region under study
and will be assumed in the following as {1.69, 4, 7}.
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[5] The joint PDF f(t1, t2, . . ., tnjm) is the likelihood
function. It is used to incorporate into the analysis all
information on M contained into the real-time data. Under
the hypothesis that the t measurements are stochastically
independent and identically distributed lognormal random
variables it may be formulated as in equation (3).
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[6] The parameters in equation (3) are the mean, mln(t),
and the standard deviation, sln(t), of t from the study of Allen
and Kanamori [2003], equation (4).

mln tð Þ ¼ M � 5:9ð Þ= 7 log eð Þð Þ
sln tð Þ ¼ 0:16= log eð Þ

�
ð4Þ

[7] Combining equation (3) and equation (2) into
equation (1), the posterior PDF of the magnitude results that
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of equation (5), which depends on the measures only via
the summation of the logs,

Pn
i¼1

ln(ti).
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[8] A simpler approach to the estimation of the magnitude
is proposed by Convertito et al. [2008]. It consists of using
for M, in place of its full PDF, a classical point estimate that,
for example, can be obtained via the constrained maximum
likelihood estimator of equation (6).

�M ¼
M̂ ¼ 5:9þ 7

n

Xn
i¼1

log tið Þ; if Mmin � M̂ � Mmax

Mmin; if M̂ < Mmin

Mmax; if M̂ > Mmax

8>>><
>>>:

ð6Þ

[9] Regarding the source-to-site distance, because of
rapid earthquake localization procedures, a probabilistic
estimate of the epicenter may also be available. For exam-
ple, during an earthquake the RTLoc algorithm [Satriano et
al., 2008] allows the assigning to each point of a grid,
defined in the region where the network operates, a prob-
ability that the hypocenter is coincident with that point
based on the sequence according to which the stations
trigger, {s1, s2, . . ., sn}. Consequently, also the PDF of R,
f (rjs1, s2, . . ., sn), may be retrieved numerically in real-time.
Thus, it is possible to compute the probabilistic distribution
(or hazard curve) of a ground motion intensity measure (IM),
for example the PGA, at a site of interest as in equation (7),
which requires f (imjm, r) available for the chosen IM. This
is typically a lognormal distribution the parameters of which
are given by a ground motion prediction equation.
[10] The subscript n in the left-hand side of equation (7)

means that the computed hazard curve is still conditional on
the specific set of triggered stations/measures and, therefore,
evolves with time. This procedure will be referred to as real-
time probabilistic seismic hazard analysis (RTPSHA).

fn imð Þ ¼
Z
M

Z
R

f imjm; rð Þf mjt1; t2; . . . ; tnð Þf rjs1; s2; . . . ; snð Þdrdm

ð7Þ

[11] One of the main purposes of this letter is to assess
and compare the effects of different possible approaches to
magnitude estimation on RTPSHA. In addition, the other
sources of uncertainty (i.e., localization and GMPE) are also
evaluated. Finally, based on the results of these analysis,
information-dependent lead-time maps are given for the
Campania region (southern Italy).

2. Simulation of the ISNet EEWS

[12] ISNet is a local network of 29 strong motion seismic
stations deployed in a 100  70 km2 area covering the

epicentral location of the main earthquakes that occurred in
the southern Appennines in Italy [Weber et al., 2007]. The
EEWS under development in Campania using ISNet has
been designed to be a hybrid application of regional and
on-site early warning approaches [Kanamori, 2005], where
a seismic network operates to protect several critical
structures/infrastructures at the same time.
[13] To analyze the performances of the ISNet infrastruc-

ture in respect to the RTPSHA a MATHWORKS-MATLAB/
SIMULINK1 simulator was developed. It may be represented
by the three following blocks.

2.1. Acquisition

[14] The simulation starts with the assignment of the basic
features of the earthquake (i.e., the true values of magnitude
and location). Then, the t measurements for the triggered
stations are needed to perform the RTPSHA. The stations’
measurements may be simulated sampling from the f (tjm)
distribution (see section 1). In the simulation process, the
number and sequence of stations triggered is also computed
assuming an appropriate velocity model (to follow) for the
region. A station is considered to be in the simulation process
(i.e., its t measurement is simulated) if 4 s have passed from
its trigger.

2.2. Computation

[15] This block furnishes evolving real-time estimates of
the hypocenter (i.e., the distance of the source from the site
for which the prediction of peak ground motion is sought)
and themagnitude of the earthquake as described in section 1.
At each 1 s time step, the estimates of R and M are updated
on the basis of new information collected by the network,
when available.

2.3. Decision

[16] Here the hazard integral of equation (7) is computed,
i.e., the prediction of the IM at the target site is obtained and
the decision whether to issue an alarm or not is taken. This
implies a decisional rule: a simple one, if the predicted IM is
the PGA, is to issue the alarm if the probability that a critical
peak ground motion value (PGAc) will be exceeded, when
the earthquakes strikes at the site, is larger than a probability
threshold (Pc), as in equation (8).

P PGA > PGAc½ 	 > Pc ð8Þ

[17] Probabilistic procedures that can be used to set PGAc

and Pc based on the minimization of the expected loss for
structures, are provided by Iervolino et al. [2007].

3. Results and Discussion

[18] As an example, results of the simulation for an M 6
event located within the ISNet network are given. Two target
sites are considered, the city of Naples, capital of the
Campania region, and S. Angelo dei Lombardi, a small town
severely affected by the 1980 Irpinia earthquake (Figure 1a).
The probabilistic PDFs of the magnitude (obtained via the
Bayesian approach) are given in Figure 1b. Figure 1c and 1d
represent the distributions of R for the two sites. Note that
the true distances of Naples and S. Angelo dei Lombardi
from the epicenter of the simulated event, 124 km and 60 km
respectively, are well captured by the PDFs. In Figure 1e
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and 1f, the real-time hazards are given for the two target
sites (the used GMPE is that from Sabetta and Pugliese
[1996], assumed, in this study, to be applicable moderately
beyond the M and R limits prescribed for the model). The
curves in Figure 1 are given for selected instants from the
beginning of the event and, therefore, different numbers of
stations providing t.

3.1. Uncertainty Analysis

[19] Referring to the M 6 event and the decisional rule
discussed, in Figures 2a and 2b the exceedance probabilities
are given for different possible values of PGAc. The plots in
the figure refer to 100 averaged simulations (i.e., the t
measurements were simulated 100 times for the same
earthquake). It appears that the probability of exceedance
does not change after 10 s–13 s. In other words, after
on average 11–18 stations have measured t, the estima-
tion of the critical PGA do not benefit much from further
information.

[20] In Figures 2c and 2d, the coefficient of variation
(CoV, the ratio of the standard deviation to the mean) of
the PGA is given, as the number of stations providing t
increases. In particular, the CoV is computed, using
equation (7), in the following cases: (i) considering both
PDFs of M and R; (ii) considering only the modal value of
the distance (R*) from Figures 1c and 1d, in place of its
full PDF; and (iii) considering only the mode of R and the
maximum likelihood value of M. Note that in case (iii)
the real-time hazard is simply given by f (imjM , R*), i.e.,
the distribution of the PGA from the GMPE computed
for the specific {M , R*} pair.
[21] It appears from the results that the uncertainty of the

distance is negligible with respect to the prediction of PGA
as the CoV is almost the same with or without uncertainty
on distance as green and blue curves are overlapping (it is to
note that, for events outside the network or for networks
not as dense as the ISNet, cases not investigated herein, the
uncertainty on distance can be larger). Also the contribution

Figure 1. Results for the M 6 simulated event in (left) S. Angelo dei Lombardi and (right) Naples. (a) Scheme of the
network and sites; (b) magnitude distributions; (c and d) distance distributions; and (e and f) PGA distributions.
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of uncertainty of magnitude to CoV, although larger than
distance, is small if compared to that of the GMPE. This is
more evident when, during an event, several t measures
have been collected by the seismic network.

3.2. Information-Dependent Lead-Time

[22] It was shown that, in the adopted RTPSHA approach,
the estimation of critical ground motion becomes stable only
after a number of stations have measured the early signal of
the event. Therefore, there is a trade-off between the lead-
time and the level of information based on which the alarm
issuance is decided. Consequently, different lead-times
may be considered, each of those correspond to a different
number (k) of stations providing t, for example 4, 18 and 29.
In these cases, the lead-times associated to each point ( j) in
Campania, Tk

j , have been computed as in equation (9)
using a 1D model in which P and S velocities, VP and VS

respectively, are a function of hypocentral depth (h) and
have a constant VP/VS = 1.68 ratio.

T
j
k ¼ T

j
S hð Þ � Tk

P hð Þ �Dt ð9Þ

[23] In equation (9), TS
j (h) is the S-wave arrival time at

the specific site (j); TP
k (h) represent the time to trigger the

first k stations; Dt is the required processing time (assumed
that it is equal to 5 seconds including the required P-wave
data recording time at each station and some computing
time). TS

j (h) and TP
k (h) were approximated using travel-time

curves as a function of distance from the seismic source
and h (A. Zollo, personal communication, 2008).
[24] The lead-times were computed for the region consid-

ering as possible epicenters those randomly occurring in the

area which includes the ISNet sensors, while the hypocentral
depth may be up to 12 km. Results in form of maps are given
in Figure 3, where mean lead-times are given for each node of
a regular grid having about 2 km spacing and covering the
territory of the Campania region. The map corresponding to
18 stations was analyzed in respect to a list of real-time risk
reduction actions and the time they require [Goltz, 2002].
Because it was shown that the information on the impending
ground motion stabilizes when about 18 stations have pro-
vided t, this map may be a tool for the design of engineering
applications of EEWS.

3.3. Comparison of Magnitude Estimators

[25] In this section the performances of the magnitude
estimators presented in section 1 are compared. The better
estimator is assumed to be the one giving hazard estimates
closer to true one (i.e., the hazard calculated using the real
values of magnitude and distance for the event). Since an
estimator never performs systematically better than another
one, except in trivial cases, comparisons are typicallymade in
terms of average performance, adopting as reference index
the mean squared error (MSE). Because this index is calcu-
lated for fixed values of the estimated parameter, the MSE
results as a function of the parameter. Unfortunately, for
different estimators the functions may interweave, not allow-
ing the identification of the better estimator. In these cases,
when an a priori distribution is available for the unknown
parameter, a resolving approach consists in computing the
Bayes risk (BR). It is obtained by averaging the MSE over
the a priori. The better estimator is the one having the
smaller BR.

Figure 2. Evolution of hazard estimates for three different critical PGA values and COVs in the case of different
considered uncertainties. (left) S. Angelo dei Lombardi and (right) Naples.
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[26] Herein, the comparison of magnitude estimation
approaches is carried out by an exemplificative case study,
in which MSE and BR were calculated via a Montecarlo
simulation. It should be noted preliminarily that in the
RTPSHA framework there is a function to evaluate (i.e.,
the PGA distribution). Thus, for each value of the magni-
tude the MSE is still a function of the PGA. The site for

which the hazard is computed is Sant’Angelo dei Lombardi
and the epicentral location is that of Figure 1. In all the
simulations the distance was considered known, because of
its negligible uncertainty.
[27] Results of the analysis are given in Figures 4a–4c,

which report the MSE in six cases. The curves give for each
PGA in abscissa the MSE computed as in equation (10) where

Figure 3. Information-dependent average lead-time maps for the Campania region in the case of an event within the area
covered by the ISNet network and possible risk reduction actions. The three maps refer to different numbers of t measures
available.

Figure 4. Effects on real-time hazard of different magnitude estimators in the case of different numbers of t measures
available. MSE for (a) M 5, (b) M 6, and (c) M 7 events; and (d) Bayes risk.
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NS is the number of samples generated in the simulation,
PE[PGA]T is the true hazard (expressed in terms of proba-
bility of exceedance of PGA), and PE[PGA]i is its estimate
obtained with the i-th sample.

MSE ¼ 1

NS

XNS
i¼1

PE PGA½ 	i�PE PGA½ 	T
� �2 ð10Þ

[28] Dashed lines in the figure refer to the classical point
estimator. Three different dashed lines are represented, to
show how performances depend on the number of stations
which have triggered at the moment of the analysis; solid
lines are their analogous computed with the Bayesian
approach. The curves were computed simulating NS = 500
samples/events of fixed magnitude, M 5, M 6, and M 7
respectively.
[29] The MSE, in all cases, does not establish which

estimator performs better, as the result of the comparison
depends on both M and PGA. Thus, with an a priori being
available for the magnitude (i.e., the Gutenberg-Richter), the
BR was computed, again adopting equation (10). In this
case 500 samples/events, whose magnitude (one for each
event) was randomly sampled from the a priori, were gener-
ated. Therefore, the true hazard value also varies, with M,
from sample to sample. Note that because the a priori is the
historical recurrence relationship of M, BR has the objective
meaning of long term estimation error of RTPSHA.
[30] Results of the simulation (Figure 4d) demonstrate

that the Bayesian estimator, performs better than the alter-
native one. In fact, the BR for the former is smaller for every
value of the PGA with respect to the latter, with differences
which, as expected, decrease when the number of triggered
stations increases, as larger amounts of measures render the
a priori information less precious.

4. Conclusions

[31] The uncertainty associated to engineering ground
motion predictions in the framework of earthquake early
warning was investigated. The study was carried out refer-
ring to the ISNet seismic network, installed in southern
Appennines (Italy). Results of the analyses lead to conclude

that: (1) the dominating uncertainty in the real-time hazard
analysis is that of the ground motion prediction equation;
(2) the estimation of peak ground motion stabilizes only
when a certain level of information is reached and, therefore,
information-dependent lead-time should be considered for
design of engineering applications of EEW; (3) Bayesian
magnitude estimation may provide larger efficiency in
respect to simpler point estimates if the peak ground motion
is the parameter of interest.
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