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Abstract

Seismic risk assessment on a large scale may be defined as the prediction of the fraction of buildings expected to reach a conventional limit
state in the region and time period of interest. This definition is the frequentistic interpretation of the failure probability for a homogeneous class
of structures. Empirical post-event survey methods for vulnerability evaluation may not fit the purpose of seismic risk analysis at class level and
a pure analytical approach may be required. To this aim this paper proposes the extension of structure-specific reliability procedures, but without
assuming a single structure as representative of the class. The class-capacity function is approximated by regression of significant cases analyzed
by Static Push-Over (SPO); the seismic demand is obtained by Probabilistic Seismic Hazard Analysis (PSHA). The seismic risk is computed by
simulation of the former being exceeded by the latter via the Capacity Spectrum Method (CSM). Explanatory application refers to six classes of
Italian rectangular R.C. buildings; three classes are of pre-code constructions, designed only for gravity loads, whereas the other three considered
are of seismic buildings designed with old codes not accounting for capacity design rules.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When considering the seismic risk assessment of a specific
structure, the engineer will seek the frequency of one or more
events leading to conventional structural failure. It is possible
to define, for those limit states, a function (Z) which is non-
positive if the failure condition is reached or exceeded. If
some of the parameters Z depends on are uncertain, then
the assessment of whether the structure is safe or not can
only be given in probabilistic terms. The probability that Z
is non-positive is the failure probability

(
P f

)
; its complement(

Ps = 1 − P f
)
, the probability of survival, is a measure of

the structural reliability. In the seismic case the Z -function is
expressed in terms of nonlinear capacity (C) versus demand
(D), Eq. (1). The latter is the required performance for the
structure at a specific site and the former is the supply of such
performance.

P f = P [Z ≤ 0] = P [C ≤ D]. (1)
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The rate of the capacity being exceeded by the demand, in
a given time interval, may be interpreted as the seismic risk.
Several methods are available to compute P [C ≤ D] in close
or even approximate form and a comprehensive review of these
methods is given in Pinto et al. [1] and references therein. A
possible strategy is to separate the estimation of the structural
response from the probabilistic characterization of the seismic
threat it is subjected to, Eq. (2), [2].

P [C ≤ D] =

∑
All a

P [C ≤ D | IM = a] P [IM = a]. (2)

The second term in the right hand side of Eq. (2) is the
occurrence probability of a ground motion Intensity Measure
(IM), typically reflecting some spectral properties, computed
by means of Probabilistic Seismic Hazard Analysis (PSHA) [3,
4]; P [C ≤ D | IM], the fragility, is the failure probability for
a given IM value and summarises the vulnerability features of
the structure.

Eq. (2) may also apply to a class of structures and the failure
probability may be interpreted as the fraction of buildings
within the class expected to collapse. To this aim it is required to
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probabilistically characterize the seismic capacity and demand
for the class, and an analytical evaluation of these terms seems
to be the appropriate approach. In the case of class/regional
scale seismic risk assessment, in fact, vulnerability data are
often represented by means of statistical analysis of post
earthquake damage surveys [5]. The empirical approach is
adopted worldwide, in Italy for example, by the procedures
issued by Gruppo Nazionale Difesa dai Terremoti — GNDT [6,
7]. The accuracy of empirical methods may be affected by the
unavailability of a sufficient database of damage observations,
which usually consists of heterogeneous data. Moreover, those
studies often formulate the damage probability as a function
of macro-seismic intensity scales [8] and, therefore, do not fit
the seismic risk computation including PSHA, as in Eq. (2),
because the two terms are not consistently expressed in
terms of the same variable (even though some conversion is
possible it would introduce further uncertainty in the process).
Consequently, much research attempted to obtain vulnerability
curves via alternative approaches less dependent on post-
event surveying. An advance in this direction is represented
by HAZUS methodology [9], which provides fragility curves
for categories of structures depending, for example, on the
design code enforced at the time of construction. However,
the HAZUS loss assessment procedure is optimized for
scenario analysis (e.g. for a given ground shaking level and/or
magnitude–distance pair) rather than for risk evaluations, as
also pointed out by Crowley et al. [10]. A further attempt to
estimate the vulnerability by class-representative mechanical
models is given by the “semi-quantitative” methods [11], which
need a limited number of input data in compliance with
the amount of information generally available. The approach
of Rossetto and Elnashai [12], which is a characterized by
a state-of-the-art quantitative framework, still considers a
specific structure as representative of the class. In conclusion,
even though some interesting effort exists [13], the degree
of knowledge about structural models required by structure-
specific methods and the computational exertion to compute
Eq. (2), are not easily applied to the class-scale analysis. On
the other hand, the traditional (observational) vulnerability
approach seems to be inadequate for probabilistic seismic risk
assessment.

Herein, the formulation of an analytical method for class-
scale risk analysis is discussed. A set of buildings, belonging
to the class of interest, is reproduced by means of simulated
design with reference to the codes, the available handbooks and
the current practice at the time of construction. The capacity
of the class is retrieved by performing a set of Static Push-
Over (SPO) analyses for these significant cases. Then, multiple
regression allows the expression of capacity as a function
of the parameters of interest (materials, geometrical and
structural features). The seismic demand is given by inelastic
modification of the probabilistic elastic spectra resulting from
PSHA. The expected number of failures within the class is
estimated comparing C and D by a simple simulation method
(i.e. Montecarlo). The approach allows to explicitly account
for several uncertainties related to both seismic response and
structural damage, avoiding the shortcomings of empirical
Fig. 1. Generic element representing the class and geometric random variables.

vulnerability analysis. Moreover, the spectral demand analysis
ensures a computational effort appropriate to the scale of the
problem. As for illustrative application, the method is used to
compute seismic risk of Italian existing rectangular plan view
R.C. buildings, pre-code and designed for seismic action.

2. Formulation and methodology

The estimation of the fraction of structures in the class
not expected to survive the period of observation may be
formulated assuming that the class is the entity the failure
probability has to be computed for, as seismic reliability
methods compute P f for specific structures. To this aim the
probabilistic characterization of the class-capacity and of the
class-demand, which are functions associating to any building
belonging to the class of its seismic performances, is needed.
In the case of structure-specific problems the uncertainties
affecting C and D reflect the intra-structure variability of some
global or local factors as material properties and the variability
of response to ground motion. At the class-scale, in addition,
uncertainty also includes the building-to-building variability
of structural system and details. For example, if the class of
interest is one of the Italian pre-code rectangular R.C. buildings
with a given number of storeys, the class is represented by a
generic building as in Fig. 1. A particular structure belonging
to the class is defined by a realization x of a vector of random
variables, X = {X1, X2, . . . , Xn}, which may also include plan
dimensions, bay lengths and inter-storey height. Then the limit
state function may be expressed as in Eq. (3).

P f = P
[
Z(X) ≤ 0

]
= P

[
C(X) ≤ D(X)

]
. (3)

Since for any x , the C(x) and D(x) functions return the
seismic capacity and demand respectively of the structure
defined by x , the risk assessment is possible only if statistics
for the components of the X vector are available. This paper
will discuss the analysis of C and D and will not deal with the
issue of estimating the distributions they depend on, which may
be carried out for example, by sampling the population under
analysis.
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Fig. 2. Representation of 3n experimental plan for two generic variables
affecting the capacity.

2.1. Class-scale capacity

The class-capacity may be defined as the function mapping
the capacity curve to the vector X . Then, for any realization
x , which identifies a particular structure, the function returns
the appropriate set of effective period, ultimate displacement
and strength defining its capacity curve (to follow). At least
two options are available to get an approximate form of such
capacity.

Option A: The marginal statistics of the n terms (variables)
of the X vector, for each class, are assumed to be known
and stochastically independent. The approach consists of
preliminary planning of a number of structural analyses defined
according to the distributions of the variables. Then one
may consider, for example, a 3n factorial plan as for the
Design of Experiments (DoE) in the Response Surface Method
(RSM) [14]. The levels of factors of X are selected to capture
their variability in the class; for instance, if a relevant factor
X i is Gaussian and narrowly distributed around its mean in
the population of structures to be investigated, the three levels
for the experiments may be the mean

(
µX i

)
plus or minus

one standard deviation
(
σX i

)
. In Fig. 2 a DoE plan for two

generic variables
{

X i , X j
}

is given. From this standpoint, a
series of meaningful combinations of levels of the vector X ,
hence a series of particular structures, are defined and analyzed
to observe the capacity.

This approach has been developed by Iervolino et al. [15];
in that study the procedure associates each point of the DoE
to a fragility curve via nonlinear dynamic analysis to obtain
the seismic vulnerability, rather than the seismic risk, as a
function of some structural parameters. Herein, a Static Push-
Over (SPO) evaluation is performed at each point of the DoE,
and the capacity depending on X , for example in terms of
ultimate displacement Cd , is obtained. Results from these
analyses (i.e. ultimate roof displacement) are fitted by multi-
parametric regression (e.g. linear), which provides capacity for
any structure of the class (e.g. x realization) not specifically
investigated. Such functional format is given in Eq. (4) where
Fig. 3. Dense DoE for two variables. Each point require an SPO and the
capacity function.

the a terms are the constants to be determined.

Cd(X) ≈ aCd ,0 +

n∑
i=1

aCd ,i X i . (4)

Since for the 3n structures analysed a capacity curve is
available by SPO, similarly, approximated functions for the
strength (Cs) and the effective period (T ) may be defined as
in (5) and (7).

Cs(X) ≈ aCs ,0 +

n∑
i=1

aCs ,i X i (5)

T (X) ≈ aT,0 +

n∑
i=1

aT,i X i . (6)

Option B: The procedure just discussed requires an
intentionally limited number of structural analyses and it is
able to provide an approximate form for the class-capacity with
comparatively little effort. However, if the statistics of the X
variables are disperse and the points of the DoE are relatively
far from each other, the linear or even quadratic regressions
may not be appropriate to capture the actual variation of
capacity within the class. In fact, if the dispersion of the
component of the X vector is large, the fitting by a regression
may approximate the capacity too roughly. Therefore, another
possible option, adopted herein, may be to compute capacity
for many cases defined by scanning the range of the generic
X i variable. This kind of dense experimental plan (Fig. 3)
does not require fitting a function covering a broad region
of the X domain, but rather a series of local interpolating
functions defined between adjacent points of the DoE (Fig. 4).
The number of SPO required may be much larger than option
A, but it has the benefit of reducing the approximation of the
C function. The limits of this experimental plan have to be
defined, as in option A, trying to capture as much as possible
the variability of the components of the X vector; the density of
the DoE has also to be calibrated accounting for the available
computational capabilities.
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Fig. 4. In the case of Option B a local linear function among the pre-analyzed
points is fitted.

2.2. Seismic demand

Demand, D(X), refers to inelastic spectral analysis, in the
sense of the Capacity Spectrum Method (CSM) in its modified
format by Fajfar [16]. According to this approach it is necessary
to get inelastic displacement demand for any possible period
T (X). In the light of seismic risk, this implies that each
spectral ordinate has a corresponding probabilistic distribution
reflecting the seismic hazard at the site. This task may be
carried out referring to the common PSHA. In fact, Probabilistic
Seismic Hazard Analysis provides distributions of pseudo-
acceleration spectral ordinates, Sa,e(T ), at given period. Since
the elastic displacement, Sd,e(T ), can be obtained by Eq. (7)
where ω = 2πT −1, then the PDF of the latter is a simple
transformation of the distribution of the former.

Sd,e(T ) =
Sa,e(T )

ω2(T )
. (7)

In order to evaluate the inelastic displacement demand
Sd,i (T ), see Eq. (8), the elastic displacement should be
adequately modified by displacement modification factor,
CR(R, T ) [17]:

Sd,i (T ) = Sd,e(T ) CR(R, T ) (8)

where R is the strength reduction factor defined as the ratio of
Sa,e(T ) times the mass m, over the strength CS . Miranda has
shown in [18] that this approach provides a better estimate of
the maximum inelastic displacement than using a displacement
ductility ratio.

In order to account for all uncertainties in computation
of Eq. (1) the variability of CR has to be included. The
conditional distribution of CR , given {T, R}, may be assumed
to be lognormal (Miranda, personal communication, 2005) and
therefore the random variable may be written as in Eq. (9),

CR = ĈR εCR (9)
Fig. 5. Seismic risk computation flow chart.

where ĈR is the median and the log of εCR is normally
distributed with zero mean and variance equal to the variance
of CR . Finally, if the displacement capacity of the structure
is indicated as Cd , the limit state function can be written as
in Eq. (10) depending on the vector X of structural random
numbers (e.g. materials, members size, plan view geometry,
etc.)

Z(X) = Cd − Sd,e(T ) CR(R, T ). (10)

2.3. Risk analysis

Given that the seismic class-capacity and class-demand
may be computed, the CSM may be applied virtually to any
structure, either specifically analyzed in the DoE or not, and
the limit state function may be also checked for collapse or
survival. Then, considering the marginal distributions of the
components of X , the risk of the class may be estimated by
a conventional simulation method, as Montecarlo, applied to
Eq. (10). Such simulation proceeds by the steps here listed
and represented by the flow chart of Fig. 5. In any single run,
indicated by the ordinal k, the X vector is sampled (i) according
to the marginal distributions of its components and a realization
xk =

{
x1,k, x2,k, . . . , xn,k

}
is obtained; (ii) the capacity of the

building defined by xk may be retrieved by option A, or by
option B, resulting in a

{
Cd,k, Cs,k, Tk

}
set; (iii) the Sa,e (Tk)

distribution is sampled; (iv) Sd,e (Tk) follows by Eq. (7); (v) the
median ĈR (Tk, Rk) factor is calculated; (vi) the conditioned
distribution of the residual

(
εCR

)
of CR is sampled and the

actual CR,k and the inelastic demand are obtained by Eq. (8);
(vii) the capacity and the demand are compared to see if the
limit state is exceeded in the kth run.

At the end of the simulation the seismic risk of the class
is estimated by the ratio of counted failures over total number
of runs (Ntot). Moreover, given that the structural failure is
a Bernoullian random variable, then P f (just computed by
simulation) approximates its expected value, while the variance
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(
σ 2) may be estimated as P f

(
1 − P f

)
/Ntot. Therefore, to

also keep track of uncertainty in the risk assessment, a
confidence interval may be computed, resulting (assuming a
0.05 confidence level) in P f ± 1.96σ .

The flow chart of Fig. 5 calls for an “option C” to the class-
capacity analysis. In fact, once step Eq. (1) is completed and
the x realization is obtained one may think of analyzing (by
SPO) the corresponding structures in real time, skipping the
approximation related to the global, or even local, regression.
This approach, which may be referred as direct Montecarlo,
is certainly the more attractive option in terms of accuracy,
however it is extremely demanding in terms of computational
effort and its benefits are almost negligible in respect of the
option B if the latter has a sufficiently dense DoE.

3. Capacity analysis for a class of R.C. buildings

Collecting buildings in a homogeneous class may help
to reduce epistemic uncertainty in the seismic capacity
assessment. To this aim the definition of the class should be
based on parameters which affect the seismic behaviour of the
buildings, while they are available at a large scale [19]. The very
simple features which may be directly related to the seismic
assessment are: plan morphology, number of storeys and design
code enforced at time of construction. Similar classification is
adopted by HAZUS.

The procedure presented above requires that a specific
structure then has to be associated to any realization of the X
vector in the DoE; to this aim a specific re-design procedure,
based on simulated design, has been developed in [20] and
employed herein. Once the structures have been defined,
nonlinear analysis allows the retrieval of the seismic capacity
in terms of {Cd , CS, T }. This job is generally carried out, on
a class scale, by simplified methods based on the assumption
of failure mechanisms [20,21]. On the other hand, the Static
Push-Over analysis is an attractive solution for the trade-off
in investigating the building seismic behaviour by performing
a comparatively simple, yet accurate, assessment, including
different sources of deformability [22]. For the purposes of this
study, a lumped plasticity model was implemented to assess the
class-capacity with a structure-specific accuracy.

3.1. Re-design process

Adopting a 3D mesh with variable module’s linear
dimensions

{
ax , ay, az

}
it is possible to reproduce a set of

geometrical models, which are consistent with the global
building dimensions Lx , L y and L z , as shown in Fig. 6.
Geometrical mesh discontinuities are explicitly considered; e.g.
the number of stairs (ns) and the length of the stair module
as , and the inter-storey height of the first floor (a1z). The
latter may differ from az for structural (foundation level) and/or
architectural reasons. Moreover, for each geometric model, it
is possible to define a set of structural models depending on
the number and location of the structural elements. Although
the configuration of the columns is uniquely determined for a
given geometric model, on the other hand, the beam number
and position are determined by the number of plane frames in
x and y directions, n px and n py respectively.

In gravity load design (pre-code buildings), according to
experience from field observations [23], it is assumed that
only the lateral plane frames exist in the short direction
(n py = 2). Conversely, when seismically designed buildings
are concerned [24], the number of plane frames in the short
direction is equal to the number of bays, n py = nx . Considering
that column orientation (OR) complies with architectural rules,
it is assumed that columns on the perimeter and those adjacent
to the stair module are oriented so as to lay inside the infill
thickness. For the remaining columns, two limit schemes are
adopted, considering for each direction x and y the extreme
situations of strong and weak column orientation. The columns
and beams identified in the previous step are designed, in
terms of cross-section and reinforcement, according to code
and design practices related with the construction age. In
particular, for the gravity load design an element level analysis
model was generally adopted (e.g. axial load for the columns,
simple bending for the beams). While, regarding seismically
designed buildings, it was common practice to consider the
horizontal slabs as deformable in their plane; the adopted
analysis model assumes simple plane frames extracted from the
3D structure and do not consider the stair stiffness. Material
properties selected for design derive from prescribed codes and
consider steel and concrete types commonly used at the age of
construction.

3.2. Nonlinear analysis

Seismic capacity is evaluated by means of SPO. As
mentioned, the flexural behaviour of the beam/column
element is characterized by a lumped plasticity model; a
moment–rotation (M–θ) relationship, depending on geometric
and mechanical features of the element end sections, has to
be defined. The adopted M–θ elastic–plastic curve is defined
by the yielding (θy) and ultimate (θu) rotations computed as
proposed by Panagiotakos and Fardis [25]. The influence of
shear action is modeled based on a reduction of the shear
strength depending on the local ductility, expressed in terms
of rotation varying with a linear trend [26]. These models
depend mainly on compressive ( fc) and steel yielding ( fsy)

strengths. Beam/column joint failure is not considered. The
capacity curve, in terms of lateral strength Vb and displacement
at the roof level ∆, is determined up to maximum lateral
strength (near collapse), consistent with adopted mechanical
models. Structural failure corresponds to the first attainment
among element failure (ultimate rotation or ultimate shear
strength of a structural member) and the near collapse condition
of the structure. The MDOF–SDOF equivalence prescribed
by CSM is performed referring to the structure’s failure
point. Furthermore, the transformation of the capacity curve
in bilinear form allows estimating nonlinear strength Cs(X);
the displacement capacity Cd(X); and effective period T (X),
as shown in Fig. 7, where X = {Lx , L y, . . . , fsy} is the
vector of parameters the limit state function depends on, as
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Fig. 6. Building model: Geometric mesh and structural model.

Fig. 7. Capacity parameters.
listed in Table 1. What has been discussed for the collapse
may be similarly applied to any other limit state. In fact,
the method allows evaluation of the capacity and demand
parameters concerning any other limit state condition, which
can be determined by the static push-over analysis and
according to current seismic codes (i.e. first yielding and
performance levels corresponding to values of inter-storey drift
ratios).
4. Application

The procedure presented in the previous sections has been
applied to compute total risk for R.C. building classes located
in a moderate seismicity site in southern Italy. The application
refers to 3, 4 and 5 storeys pre-code and seismic rectangular
buildings. Pre-code, or gravity load designed, represent the
majority of the building stock in many areas that have been
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Table 1
Building model parameters

Geometric Structural Mechanical

Plan dimensions Lx , L y Bay length ax , ay Concrete fc
Height Lz Number of plane

frames
n px , n py Steel fsy

Number of storeys nz Column orientation OR

Table 2
Design of experiments details

Variable Range Scanning step

Lx [15–32] 1.0 m
L y [8–12] 1.0 m
fc [5–45] 10 MPa
fsy [200–600] 50 MPa
ax , ay [3–5] See compatibility

equations of Fig. 6

Fig. 8. Seismic hazard of this study.

recently classified as seismic, according to the last Italian
hazard map [27]. On the other hand, many seismically designed
constructions reflect old codes, [28–30], which do not account
for capacity design rules. Hazard curves, computed by PSHA,
used in this application define the seismicity of the site where
the classes are supposed to be located. In Fig. 8 selected curves
for several T value classes are given referring to a 50 years
time span. In Fig. 9 the Uniform Hazard Spectrum (UHS),
corresponding to a 10% exceeding probability in 50 years, is
given.

Adopting option B, for determining the class-capacity and
computing total risk, a large amount of SPO is performed
considering all the possible cases defined by scanning the
significant ranges of the input variables. These ranges are
defined depending on X distributions. In particular, the base
plan view dimensions Lx (L y) are assumed to be normally
distributed with a mean of 25.0 m (10.0 m) and a Coefficient
of Variation (CoV) of 12% (6%). These values are chosen
based on the results of field surveys carried out in southern
Italy and expert judgement [23,24]. The height is determined
by the number of storeys and assuming az = 3.00 m and
a1z = 4.50 m for all classes, then height of storeys is not
Fig. 9. Uniform hazard spectrum.

considered to be a random variable within a class. Hence
for 3, 4 and 5 storey building classes height L z is 10.5 m,
13.5 m, 16.5 m respectively. Compatibly with the assumed Lx
dimension it is hypothesized that one single stair (ns = 1)

module accomplishes the building functionality. Stair module
dimension as = 3.00 m is considered. According to the
design practice and common architectural trends the ax and ay
modules’ linear dimensions are limited in the range of [3–5]
meters. Only the strong column orientation is considered as a
variable, OR. Finally, concrete and steel strengths fc and fsy
are normally distributed with mean 25 N/mm2 and 400 N/mm2

and CoV 25% and 15% respectively [31,32]. Starting from
these assumptions the input variables’ ranges are defined and
given in Table 2. The scanning step of such ranges was chosen
in order to optimize the trade-off between having a dense DoE,
as requested by option B of class-capacity analysis, and the
computational effort. Hence, it is possible to compute total risk
as outlined in Section 2.3. In particular, for each sampling of
the distribution of the X variables, local interpolation of the
capacity,

{
Cd(X), Cs(X), T (X)

}
, corresponding to the closest

points in the analysis plan is performed. The so-determined
inelastic displacement capacity Cd is, then, compared to the
inelastic seismic demand D computed as in Eq. (8). The number
of collapses (C < D) over the total number of trials is the
expected fraction of failures in 50 years summarized in Table 3.
The given results show that, even when not considering any
capacity design principle, the seismic classes are characterized
by a risk one order of magnitude lower than pre-code cases. The
different structural system results in a shorter effective period
of the former with respect to the latter which results in a lower
displacement demand. However some input of the analysis are
arbitrary, i.e. in the distribution of the X variables, and therefore
the results in terms of total risk, should be only taken as an
illustration of the proposed methodology.

5. Conclusions

The method presented in this paper deals quantitatively with
the large number of factors involved in the total risk analysis for
classes of buildings. Formulation explicitly takes into account
uncertainties in inelastic capacity and demand extending



820 I. Iervolino et al. / Engineering Structures 29 (2007) 813–820
Table 3
Class failure probability P f

Number of storeys of the
class

Pre-code expected failures
fraction

Seismic expected
failures fraction

3 4.00 × 10−3 8.00 × 10−5

4 3.30 × 10−3 2.40 × 10−4

5 5.20 × 10−3 5.80 × 10−4

the approach of structure-specific reliability methods. The
mechanical evaluation of the seismic capacity avoids some
limitations of empirical vulnerability analysis. The limit state
function is represented in terms of inelastic displacement and
demand. Class-capacity is defined as a function mapping the
bilinear force–displacement curve to the factors identifying
a specific structure within the class. Two alternative options
are given to get such function by interpolation of a number
of push-over analyses. A specific computer code has been
developed to re-design the buildings to be analyzed associating
a specific structure to the poor information of the input
variables. The probabilistic characterization of the limit state
function is obtained considering the statistics of the capacity
affecting variables (to be retrieved surveying the population
under investigation). Seismic demand refers to PSHA modified
by inelastic spectral amplification factors; uncertainty related to
the latter is also included. The application investigates three to
five storey R.C. buildings with pre-code or poor seismic design
and a moderate seismicity site in southern Italy. Although the
distributions of the parameters do not reflect a case study,
results show that the seismic design, even when not considering
the capacity design philosophy, lowers the risk of an order of
magnitude in respect to pre-code classes.

Acknowledgement

Authors gratefully acknowledge Miss Racquel K. Hagen of
Stanford University for proofreading the paper.

References

[1] Pinto PE, Giannini R, Franchin P. Seismic reliability analysis of
structures. Pavia (Italy): IUSS press; 2004.

[2] Cornell CA. Hazard, Ground Motions and Probabilistic assessment
for PBSD. In: Performance based seismic design concepts and
implementation. PEER report 2004/05. Pacific Earthquake Engineering
Research Center, University of California Berkeley; 2004 p. 39–52.
http://peer.berkeley.edu/Products/PEERReports/reports-2004/0405.pdf.

[3] Cornell CA. Engineering seismic risk analysis. Bulletin of Seismological
Society America 1968;58:1583–606.

[4] McGuire RK. Probabilistic seismic hazard analysis and design
earthquakes: Closing the loop. Bulletin of Seismological Society of
America 1995;85:1275–84.

[5] Rossetto T, Elnashai AS. Derivation of vulnerability functions for
European-type RC structures based on observational data. Engineering
Structures 2003;25:1241–63.

[6] Di Pasquale G, Orsini G, Romeo RW. New developments in seismic risk
assessment in Italy. Bulletin of Earthquake Engineering 2005;3:101–28.

[7] CNR-GNDT. Seismic risk for public buildings. Part I. methodological
aspects. Gruppo Nazionale per la Difesa dai Terremoti. Roma. 1994.

[8] Dolce M, Kappos A, Masi A, Penelis G, Vona M. Vulnerability
assessment and earthquake damage scenarios of the building stock
of Potenza (Southern Italy) using Italian and Greek methodologies.
Engineering Structures 2006;28:357–71.

[9] FEMA (Federal Emergency Management Agency). Earthquake loss
estimation methodology. HAZUS 99 technical manual. Washington DC,
USA. 1999.

[10] Crowley H, Pinho R, Bommer JJ. A probabilistic displacement-based
vulnerability assessment procedure for earthquake loss estimation.
Bulletin of Earthquake Engineering 2004;2:173–219.

[11] Calvi GM. A displacement-based approach for vulnerability evaluation of
classes of buildings. Journal of Earthquake Engineering 1999;3:411–38.

[12] Rossetto T, Elnashai AS. A new analytical procedure for the derivation of
displacement-based vulnerability curves for populations of RC structures.
Engineering Structures 2005;27:397–409.

[13] Fischer T, Alvarez M, De la Llera JC, Riddell R. An integrated model for
earthquake risk assessment of buildings. Engineering Structures 2002;24:
979–98.

[14] Khuri AI, Cornell JA. Response surfaces: Designs and analyses. New
York: Marcel Dekker; 1987.

[15] Iervolino I, Fabbrocino G, Manfredi G. Fragility of standard industrial
structures by a response surface based method. Journal of Earthquake
Engineering 2004;8:927–46.

[16] Fajfar P. Capacity spectrum method based on inelastic demand spectra.
Earthquake Engineering and Structural Dynamics 1999;28:979–93.

[17] Ruiz-Garcia J, Miranda E. Inelastic displacement ratios for evaluation
of existing structures. Earthquake Engineering and Structural Dynamics
2003;32:1237–58.

[18] Miranda E. Estimation of inelastic deformation demand of SDOF systems.
Journal of Structural Engineering ASCE 2001;127:1005–12.

[19] ATC. Seismic evaluation and retrofit of concrete buildings. vol. 1, ATC-40
report. Redwood City (CA): Applied Technology Council; 1996.

[20] Cosenza E, Manfredi G, Polese M, Verderame GM. A multilevel approach
to the capacity assessment of RC buildings. Journal of Earthquake
Engineering 2005;9:1–22.

[21] Glaister S, Pinho R. Development of a simplified deformation-based
method for seismic vulnerability assessment. Journal of Earthquake
Engineering 2003;7:107–40.

[22] Cosenza E, Manfredi G, Verderame GM. Seismic assessment of gravity
load designed R.C. frames: Critical issues in structural modeling. Journal
of Earthquake Engineering 2002;6:101–22.

[23] Verderame GM, Polese M, Cosenza E, Manfredi G. In: Cosenza E, editor.
Vulnerability analysis of a pre-seismic code R.C. building in Catania.
Seismic behavior of GLD R.C. buildings. Rome (Italy): CNR–GNDT;
2002.

[24] Pecce M, Polese M, Verderame GM. Seismic vulnerability aspects
of R.C. buildings in Benevento. In: Pecce M, Manfredi G, Zollo
A, editors. The Many facets of seismic risk CRdC AMRA. 2004
http://www.amra.unina.it/docs.php?op=pubblicazioni.

[25] Panagiotakos T, Fardis MN. Deformation of r.c. members at yielding and
ultimate. ACI Structural Journal 2001;98:135–48.

[26] Priestley MJN, Verma R, Xiao Y. Seismic shear strength of reinforced
concrete columns. Journal of Structural Engineering ASCE 1994;120:
2310–29.

[27] OPCM 3431/2005. Testo integrato dell’Allegato 2–Edifici–all’Ordinanza
3274 [in Italian].

[28] R.D.L. Norme tecniche di edilizia con speciali prescrizioni per le località
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