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a b s t r a c t

Stochastic modeling of deterioration of structures at the scale of the life of the construction is the subject

of this study. The categories of degradation phenomena considered are those two typical of structures,

that is progressive degradation of structural characteristics and cumulative damage due to point overloads;

i.e., earthquakes. The wearing structural parameter is the seismic capacity expressed in terms of kinematic

ductility to conventional collapse, as a proxy for a dissipated hysteretic energy damage criterion. The gamma

distribution is considered to model damages produced by earthquakes. The exponential distribution is also

addressed as a special case. Closed-form approximations, for life-cycle structural assessment, are obtained

in terms of absolute failure probability, as well as conditional to different knowledge about the structural

damage history. Moreover, the gamma stochastic process is considered for continuous deterioration; that is

aging. It is shown that if such probabilistic characterizations apply, it is possible to express total degradation

(i.e., due to both aging and shocks) in simple forms, susceptible of numerical solution. Finally, the possible

transformation of the repeated-shock effect due to earthquakes in an equivalent aging (forward virtual age)

is discussed. Examples referring to simple bilinear structural systems illustrate potential applicability and

limitations of the approach within the performance-based earthquake engineering framework.
c⃝ 2013 Elsevier Ltd. All rights reserved.

1. Introduction and formulation

Dependency on history (e.g., number of occurred earthquakes,
time elapsed since the last seismic event, or structural repair, etc.)
of seismic structural risk may involve all the three elements con-
stituting the performance-based earthquake engineering framework
(PBEE) [1], that is, hazard, vulnerability, and loss. History-dependency
of seismic hazard is often considered to be related to occurrence of
characteristic earthquakes on individual faults, clustering of earth-
quake sequences, and fault interactions. All of these may be directly
linked to the common cause of stress accumulation on the fault, which
triggers seismic events. On the other hand, when many independent
sources contribute to hazard, in classical probabilistic seismic hazard
analysis (PSHA) familiar to engineers, it is customary to stochastically
model earthquake arrivals via a homogeneous Poisson process (HPP);
i.e., a process with independent and stationary increments [2].

Earthquake loss may be time-dependent mainly because of invest-
ment costs, which require financial discounting (e.g., [3]), or time-
variant occupancy issues. Seismic structural vulnerability, finally, is
commonly considered affected by two categories of phenomena that
may lead it to vary with time: (1) continuous deterioration of ma-
terial characteristics, or aging, and (2) cumulating damage because
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of repeated overloading due to earthquake shocks [4]. Both of them
are damage accumulation processes; in the following, aging will be
referred to as progressive damage, while damage due to earthquakes
will be referred to as shock-based.

Aging, which in some cases may show an effect in increasing seis-
mic structural fragility [5], is often related to an aggressive environ-
ment which worsens mechanical features of structural elements, for
example: corrosion of reinforcing steel due to chloride attack, or car-
bonation in concrete (e.g., [6]). To be able to predict the evolution of
this kind of wear is especially important in design of maintenance
policies (e.g., [7,8]). Often the aging assessment is addressed via pre-
dictable models (e.g., degradation is assumed to evolve deterministi-
cally after a random initiation time). In fact, a stochastic model, which
can account for temporal variability of the wear process, can be con-
sidered more appropriate [9].

Earthquake shocks potentially cumulate damage on the hit struc-
ture during its lifetime, unless partial or total restoration; i.e., within
a cycle. In general, mainly because earthquake occurrences can be
considered instantaneous with respect to structural life, it is advan-
tageous to model the cumulative seismic damage process separately
from the progressive aging. Indeed, to describe earthquakes proba-
bilistically, a marked point process, in which each seismic event is
represented by its occurrence time and damage it produces, can be
conveniently adopted. With respect to this model, engineering inter-
est is in the compound point process, which accounts for the cumu-
lative damage (i.e., the sum of damage increments) produced by all
occurring shocks.
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If both deterioration effects may be measured in terms of the same
parameter expressing the structural capacity, for example the residual
ductility to collapse, or µ(t), then the total wear may be susceptible of
the representation as a function of time in Fig. 1, where an arbitrary
path of the process is depicted, as well as a conventional threshold
corresponding to a limit-state of interest.

Formally, the degradation process is that in Eq. (1), where µ0 is the
initial capacity in the cycle (e.g., the as-new capacity), and D(t) is the
cumulated level of deterioration at the time t. Note that, with respect
to Fig. 1, the initial time of the cycle is assumed to be zero, that is t0

= 0.

µ (t) = µ0 − D (t) (1)

As introduced, D(t) can be seen as the sum of two effects, one due
to continuous deterioration and one due to accumulation of seismic
damage, as in Eq. (2), where the first term in the right hand side is
the continuous loss of capacity at time t due to aging, µC(t), and the
second one is the cumulated loss of resistance due to all earthquake
events, N(t), occurring until time t. Note that µC(t), !µi (damage in a
single seismic event), and N(t) are all random variables (RVs).

D (t) = µC (t) +
N(t)∑

i=1

!µi (2)

Given this formulation, the probability the structure fails within t,
Pf(t), or the complement to one of the structural reliability R(t), is the
probability that the structure reaches or passes a threshold related to
a certain limit state, µLS, at any time before t, Eq. (3).

P f (t) = 1 − R (t) = FT (t) = P [µ (t) ≤ µLS]

= P [D (t) ≥ µ0 − µLS] = P [D (t) ≥ µ] (3)

In other words, it is the probability that in (0, t) the capacity reduces
traveling the distance, µ, between the initial value and the threshold.
Note that, by definition, Eq. (3) also provides the cumulative proba-
bility function (CDF) of structural lifetime, FT(t). To model such a risk
is the objective of the presented study.

The following is structured such that shock-based damage only,
that is when continuous deterioration is neglected, is investigated
first. The developed compound point process assumes: (1) damage
increments, are independent and identically distributed (i.i.d.) and (2)
the processes regulating earthquake occurrence and seismic damage
are mutually independent.

In particular, it is addressed the case in which damage in an indi-
vidual earthquake is susceptible of gamma representation (including
the special case of exponential distribution). For this case, closed-
and/or approximate-form solutions for absolute and conditional reli-
ability problems are derived, if earthquake occurrence follows a HPP.
The model also considers that not all earthquakes are necessarily
damaging, as not all of them are overloads. Indeed, most of the earth-
quakes occurring in a region where earthquake magnitude follows a
Gutenberg–Richter relationship [10] refer to small magnitude events,
with negligible (by structural design) consequences, as also discussed
later on.

Subsequently, the gamma process [11], of acknowledged suitability
for probabilistic representation of wear in engineering systems (e.g.,
[9]), is considered for continuous deterioration of seismic structural
capacity. Then, how to model the total wear when the cumulative
earthquake effect and the aging processes may be taken as inde-
pendent, is approached. Moreover, the special cases, in which total
degradation can be described via a single gamma process, are also
discussed. The concept of equivalent aging due to earthquake shocks
is introduced, which reverting a maintenance concept, is referred to
as forward virtual age.

Finally, illustrative applications referring to a simple single degree
of freedom (SDOF) elastic-perfectly-plastic (EPP) structure, supposed
to be located in a comparatively high-seismicity region in central

Italy, are developed to address applications of potential earthquake
engineering interest, and to shed some light on suitability of the hy-
potheses at the basis of these simple age-dependent reliability models.

2. Cumulative earthquake damage

In the case where only shock-based damage is considered (i.e.,
µC(t) = 0, ∀t), then the deterioration process results as sketched in
Fig. 2 and formulated in Eq. (4).

µ (t) = µ0 − D (t) = µ0 −
N(t)∑

i=1

!µi (4)

In the classical case, where the occurrence of seismic events is de-
scribed by a HPP, N(t) has a Poisson distribution with constant λ rate.
Thus, considering the distribution of cumulative earthquake dam-
age as dependent on the number of occurring earthquakes, and their
ground motion intensities measures, IM, the failure probability may
be computed as in Eq. (5), where the integral is of k-th order.

P f (t) = P [D(t) ≥ µ]

=
+∞∑

k=1

P [D(t) ≥ µ|N(t) = k] · P [N(t) = k]

=
+∞∑

k=1

P [D(t) ≥ µ|N(t) = k] · (λ · t)k

k!
· e−λ·t

=
+∞∑

k=1

∫

im

P

[
k∑

i=1

∆µi ≥ µ
∣∣IM = im, N(t) = k

]

· fIM(im) · d(im) · (λ · t)k

k!
· e−λ·t

(5)

In the classical HPP-based PSHA, IMs, for example first mode spec-
tral acceleration, Sa, in different earthquakes are i.i.d. RVs, and
fIM(im) is simply the product of marginal distributions, fIMi (im), which
are k in number. Therefore, the critical issue to solve the reliability
problem is to get the probability of shock-based damage exceeding
the threshold conditional to ground motion intensities for a given
number of earthquakes, that is P [

∑k
i=1 !µi ≥ µ|IM = im, N(t) = k]

or, even better, P [
∑k

i=1 !µi ≥ µ|N(t) = k], as per the first line of the
equation. The latter may be addressed in a relatively simple manner
if three conditions, which are listed below, are met.

(1) Damage in the i-th earthquake, !µi, always has the same cu-
mulative distribution in Eq. (6), marginal with respect to IM; i.e.,
P[!µi ≤ δµ] = P[!µ ≤ δµ], ∀i.

F !µ (δµ) =
∫

im

P [!µ ≤ δµ|IM = x] · fIM (x) · dx (6)

(2) Damages produced in different events are independent RVs. In
other words, according to conditions (1) and (2), earthquake’s struc-
tural effects are i.i.d. (This, in particular, implies that a structure, in
an earthquake, suffers damage that is independent of its state.)

Condition (3) is that the distribution of the sum of damages can be
expressed in a simple form. A way to satisfy this condition consists
of modeling damage via an RV that enjoys the reproductive prop-
erty. A well-known example of this kind of variable is the Gaussian
one. However, because in earthquakes it should be !µi ≥ 0 ∀i, the
deterioration process due to subsequent shocks should also show
non-negative increments, rendering the Gaussian representation of
damage not perfectly appropriate. Although the lognormal one may
appear as a solution (often adopted in the earthquake engineering
context), the latter is not reproductive in the addition sense; there-
fore, it may not be applied if deterioration is seen as the sum of
damages.

In the following subsections the gamma RV is considered to derive
closed-form solutions for reliability when damage accumulation is
due to seismic events only. In fact, the special case of the exponential
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Fig. 1. Seismic cycle representation for a structure subjected to aging and repeated earthquake shocks, when degradation affects residual capacity to failure.

Fig. 2. Seismic cycle representation for a structure subjected to cumulative earthquake damages only.

RV (a gamma distribution with shape parameter equal to one), which
the literature has already assumed to model damage, is addressed
first.

In the application section it will be shown that the gamma distribu-
tion may be a suitable option to model earthquake damage, and that
the listed conditions apply for an EPP-SDOF if damage accumulation
is based on hysteretic energy dissipation. Conversely, they may not
be suitable for those systems in which the structural response in one
earthquake depends on the previous shock history. The latter is the
case of structures with evolutionary or degrading hysteretic behavior
and also EPP-SDOF systems when strain-based damage functionals
are considered [12]. In these situations, state-dependent approaches
(e.g., [13–15]) may be required to describe, from the reliability point
of view, performance degradation.

2.1. Damage accumulation in the case of exponential increments

To model earthquake cumulative damage proceeding in one di-
rection only, the simplest option is the exponential distribution,
f!µ(δµ) = γD · e−γD ·δµ (γ D is the parameter). The latter was consid-
ered as a possibility in [4], in a useful attempt to provide a frame-
work to stochastically model deterioration of earthquake-resistant
structures. In fact, in [4] no closed-form solutions were derived
for reliability assessment; however, because the sum of i.i.d. ex-
ponential RVs is an Erlang-distributed random number, then the
failure probability conditional to kD shocks is that given in Eq. (7),
where &(β) =

∫ +∞
0 zβ−1 · e−z · dz and &U (β, y) =

∫ +∞
y zβ−1 · e−z · dz are

the gamma and the upper incomplete gamma functions, respectively.
Indeed, the exponential damage assumption yields the solution of the

reliability problem given in Eq. (8).

P
[
D (t) ≥ µ

∣∣ND (t) = kD
]

= P

⎡

⎣
kD∑

i=1

!µi ≥ µ
∣∣ND (t) = kD

⎤

⎦

=
+∞∫

µ

γD · (γD · x)kD −1

& (kD )
· e−γD ·x · dx

= &U (kD , γD · µ)

& (kD )
=

kD −1∑

i=0

(γD · µ)i

i!
· e−γD ·µ

(7)

P f (t) = P [D (t) ≥ µ]

=
+∞∑

kD =1

+∞∫

µ

γD · (γD · x)kD −1

& (kD )
· e−γD ·x · dx · (λD · t)kD

kD !
· e−λD ·t

=
+∞∑

kD =1

⎡

⎣
kD −1∑

i=0

(γD · µ)i

i!
· e−γD ·µ

⎤

⎦ · (λD · t)kD

kD !
· e−λD ·t

(8)

It is to underline that, being continuous and non-negative, the expo-
nential RV is suitable to model only the effect of earthquakes deter-
mining loss of capacity, not those events whose intensity is not large
enough. In this respect, differently from Eq. (5), kD in Eq. (7) refers to
the filtered HPP of parameter λD = λ·P[!µ > 0], counting damaging
events only, ND(t).

The failure probability in Eq. (8) can be approximated by the condi-
tional probability in Eq. (7), in which ND(t) is replaced by the expected
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number of earthquakes until t, Eq. (9).1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P f (t) ≈ P
[
D (t) ≥ µ

∣∣ND (t) = E [ND (t)]
]

=
+∞∫

µ

γD · (γD · x)λD ·t−1

& (λD · t)
· e−γD ·x · dx = &U (λD · t, γD · µ)

& (λD · t)

E [ND (t)] = λD · t

(9)

The latter equation, which is obtained via a rough application of the
delta method [16], is expected to be a helpful simplification of the
reliability problem. In fact, it is to note that this approximation, to
provide results similar to the exact case, requires the neglected terms
to be comparatively small with respect to those kept. As shown in the
illustrative application later on, this approach, even rough, appears
suitable in the context of this study.

2.2. Gamma-distributed damage increments

Although the exponential distribution was already considered to
model earthquake damage (e.g., in [4]), one may argue about inherent
limited flexibility due to its single parameter. In fact, another option,
perhaps more attractive, which depends on two of those and includes
the exponential RV as a special case, is the gamma distribution. It is
shown in Eq. (10), where γ D and αD are the scale and shape parame-
ters, respectively. The use of this continuous non-negative RV, due to
its reproductive property, yields handy reliability solutions, similar
to those of the exponential case; at the same time, depending on its
shape parameter, it can take significantly different shapes. For exam-
ple, αD equal to one stretches the distribution to the exponential, a
large value of the shape parameter let the probability density func-
tion (PDF) be similar to that of a Gaussian RV, while for intermediate
values of αD, it is an alternative to the lognormal one to model skewed
non-negative RVs.

f!µ (δµ) = γD · (γD · δµ)αD −1

& (αD )
· e−γD ·δµ (10)

Because the sum of kD i.i.d. gamma-distributed RVs, with scale and
shape parameters γ D and αD respectively, is still gamma with param-
eters γ D and kD·αD, the probability of cumulative damage exceeding
the threshold, conditional to kD shocks, is given by Eq. (11). Finally,
in the gamma case, Eq. (9) becomes Eq. (12), which, again, represents
an approximation of Pf(t).

P
[
D (t) ≥ µ

∣∣ND (t) = kD
]

=
+∞∫

µ

γD · (γD · x)kD ·αD −1 · e−γD ·x

& (kD · αD )
dx

= &U (kD · αD , γD · µ)

& (kD · αD )

(11)

P f (t) ≈ P
[
D (t) ≥ µ

∣∣ND (t) = E [ND (t)]
]

=
+∞∫

µ

γD · (γD · x)λD ·t·αD −1

& (λD · t · αD )
· e−γD ·x · dx

= &U (λD · t · αD , γD · µ)

& (λD · t · αD )

(12)

2.3. Conditional reliability approximations

Formulations above give absolute (i.e., aprioristic) probability that
a new structure fails in (0, t), yet conditional failure probability, which
accounts for information possibly available at the epoch of the evalu-
ation, can be obtained. Some of these are given below, and sketched
in Fig. 3, for different knowledge levels referring to cases in which:

1 To compute Eq. (9), the following approximation, yielding the same result of Eq.

(7) when λ·t is an integer, can be adopted: &U (β,y)
&(β)

≈
∑INT(β+0.5)−1

i=0
yi

i! · e−y.

(i) the current state of the structure is known at the time of the
reliability assessment;

(ii) it is only known that the structure is surviving at the time the
evaluation is performed, yet with unknown residual seismic
capacity;

(iii) same of (ii) with the additional information about the number
of damaging earthquakes the structure was subjected to.

For the sake of generality, all derivations are given for the case
damage is a gamma-distributed RV, yet they also apply to the case it
is exponential.

2.3.1. Failure probability when the structural state is known
It may be the case the structure is analyzed at t*, for example after

an earthquake felt in the region where the structure is located, and
the current residual capacity is measured, µ(t*). The failure probabil-
ity conditional to observed state has the same expression above, just,
replacing µ and t of Eq. (12), with µ∗ = µ(t∗) − µLS and t–t*, respec-
tively (i.e., Eq. (13)).

P f (t − t∗) ≈
+∞∫

µ∗

γD · (γD · x)λD ·(t−t∗)·αD −1

& [λD · (t − t∗) · αD ]
· e−γD ·x · dx

= &U [λD · (t − t∗) · αD , γD · µ∗]

& [λD · (t − t∗) · αD ]
, t ≥ t∗

(13)

In fact, the structure has now to undergo a smaller capacity reduction
to fail. Equivalent: the same relationship may also be used if the
residual capacity µ∗ is obtained via a repair at t*.

2.3.2. Failure probability when survival is known
Also interesting is the case in which one wants to include in the

reliability assessment the information that the structure is still sur-
viving at t*, but with unknown damage condition. It may be computed
via Eq. (14), plugging in previous results.

P [failure within t > t∗|survival in t∗]
= 1 − P [survival in t > t∗|survival in t∗]

= 1 − P [survival in t > t∗ ∩ survival in t∗]

P [survival in t∗]

= 1 − R (t)

R (t∗)
= 1 −

1 − P f (t)

1 − P f (t∗)

≈ 1 −
1 −

+∞∫

µ

γD · (γD · x)λD ·t·αD −1

& (λD · t · αD )
· e−γD ·x · dx

1 −
+∞∫

µ

γD · (γD · x)λD ·t∗·αD −1

& (λD · t∗ · αD )
· e−γD ·x · dx

= 1 −
1 − &U (λD · t · αD , γD · µ)

& (λD · t · αD )

1 − &U (λD · t∗ · αD , γD · µ)

& (λD · t∗ · αD )

(14)

2.3.3. Failure probability when survival and the number of damaging
earthquakes are known

Finally, the probability of failure given survival at t*and the num-
ber, ND(t*) = kD (larger than zero), of damaging earthquakes until t*,
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Fig. 3. Conditional probability cases when: (i) current state is known, (ii) non-collapse (survival) is the only available information, and (iii) when survival and the number of

damaging earthquakes are known.

yields Eq. (15), where the approximation is analogous to those above.

P
[
failure within t > t∗ ∣∣survival in t∗, ND (t∗) = kD

]

= 1 − P [T > t ∩ T > t∗ ∩ ND (t∗) = kD ]

P [T > t∗ ∩ ND (t∗) = kD ]

= 1 −
1 − P

[∑kD +ND (t−t∗)
i=1 !µi ≥ µ

]

1 − P
[∑kD

i=1 !µi ≥ µ
]

= 1 −
1 −

∑+∞
k∗

D =0 P

[∑kD +k∗
D

i=1 !µi ≥ µ
∣∣ND (t − t∗) = k∗

D

]
· P [ND (t − t∗) = k∗

D ]

1 − P
[∑kD

i=1 !µi ≥ µ
]

≈ 1 −
1 −

+∞∫

µ

γD · (γD · x)kD ·αD +λD ·(t−t∗)·αD −1

& [kD · αD + λD · (t − t∗) · αD ]
· e−γD ·x · dx

1 −
+∞∫

µ

γD · (γD · x)kD ·αD −1

& (kD · αD )
· e−γD ·x · dx

= 1 −
1 − &U [kD · αD + λD · (t − t∗) · αD , γD · µ]

& [kD · αD + λD · (t − t∗) · αD ]

1 − &U (kD · αD , γD · µ)

& (kD · αD )

(15)

Note that in the case ND (t*) = 0, Eq. (12) applies, in which t is replaced
by t–t*; i.e., in the absence of damaging shocks, the structure is as new
at t*.

3. Gamma process for continuous wear modeling

This section refers to the modeling of aging. The key difference
with respect to the shock-based damage discussed so far, is that
its probabilistic representation is a continuous process, resulting in
progressive wear. An attractive option is the gamma process that,
if applicable, implies that degradation has independent and station-
ary gamma-distributed increments, yielding Eq. (16) for the PDF of
wear accumulated in (0, t). It may prove suitable to model contin-
uously accumulating degradation, such as wear, fatigue, corrosion,
crack growth, creep, and swell; i.e., typical aging-related phenomena
in structures [17]; however, the properties of the increment imply
that degradation accumulation in any time interval only depends on
how wide such interval is, independent of current state and age of the
structure.

fµC (t) (µ) = γA · (γA · µ)sA ·t−1

& (sA · t)
· e−γA ·µ (16)

In Eq. (16) the deteriorating structural parameter is still ductility to
collapse, thus it is assumed the phenomenon affects seismic capacity.
Therefore, if degradation is due to aging only, the failure probability
is given by Eq. (17).

P f (t) = P [D (t) > µ] = P [µC (t) > µ]

=
+∞∫

µ

γA · (γA · x)sA ·t−1

& (sA · t)
· e−γA ·x · dx = &U (sA · t, γA · µ)

& (sA · t)
(17)

Note that the model of Eq. (16) also implies the mean and the
variance of the degradation process vary linearly being equal to:
E[µC(t)]=(sA/γ A)·t and Var[µC (t)] = (sA/γ 2

A ) · t. Despite this assump-
tion, which helps to keep the illustration simple and is also considered
in the structural context (e.g., [9,17,18]), it is to recall that if the shape
parameter is defined as a non-linear function of time, the gamma
process allows to model degradation trends different from that linear
(i.e., non-stationary increments).

4. Degradation due to shock-based damage and aging

In the case the point and continuous degradation processes are
independent and modeled as in Sections 2.2 and 3, then the failure
probability is that given in Eq. (18), which follows from Eqs. (12) and
(17). It may be easily solved numerically; however, it is to mention
that analytical-form for the convolution of an arbitrary number of
independent gamma random variables, with different parameters,
may also be derived; see [19].

P f (t) = P [D (t) ≥ µ] = P

⎡

⎣µC (t) +
N(t)∑

i=1

!µi ≥ µ

⎤

⎦

= 1 − F D(t) (µ) = 1 −
µ∫

0

F∑N(t)
i=1 !µi

(µ − y) · fµC (y) · dy

≈ 1 −
µ∫

0

µ−y∫

0

γD · (γD · x)λD ·t·αD −1

& (λD · t · αD )
· e−γD ·x

· γA · (γA · y)sA ·t−1

& (sA · t)
· e−γA ·y · dx · dy

(18)

The use of Eq. (18) has an important implication. It assumes that
the progressive damage accumulation process continues in the same
fashion independently of earthquake damage; i.e., occurrence of a
seismic damage does not alter future evolution of progressive dete-
rioration. Thus, for example, from the practical point of view, if aging
is due to chloride penetration and steel corrosion, it is assumed that
evolution of this process is not significantly affected by crack openings
due to earthquakes. Specular: damage resulting from an earthquake
is independent of both age and amount of deterioration the structure
is found when the earthquake occurs.

4.1. Earthquake damage and forward virtual age concept

Due to the properties of the gamma distribution, also invoked in
Section 2.2, it follows that in the case continuous aging and seismic
damage share the same scale parameter, γ , probability of failure,
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conditional to the number of shocks, kD, is that of Eq. (19).

P [D (t) ≥ µ|ND (t) = kD ] =
+∞∫

µ

γ · (γ · x)sA ·t+kD ·αD −1

& (sA · t + kD · αD )
· e−γ ·x · dx

= &U (sA · t + kD · αD , γ · µ)

& (sA · t + kD · αD )

(19)

The assumption yielding this equation may be restrictive and has to
be verified case-by-case. Obviously, when it applies, Eq. (19) gives
evident computational advantages. On the other hand, also in the
case the hypothesis is not verified, it may be used to quickly obtain a
preliminary estimate of the failure probability, to be refined further
if needed.

It is also worth noting, as a side result, that Eq. (19) is susceptible
of an appealing interpretation, in terms of the virtual age concept,
originally developed to account for the effect of maintenance in the
reliability assessment [20]. According to virtual age, repair is seen as
rejuvenation, such that, from the reliability assessment point of view,
the repaired system is equivalent to the original one, but with an age
reduced by the number of years canceled by repair (Fig. 4, left).

In fact, in the case under study, the effect of the shock may be
seen as equivalent to aging. Indeed, defining the time warp τ=αD/sA,
Eq. (19) may be rewritten as Eq. (20), which shows that failure prob-
ability of a structure of age t and subject to kD earthquakes, may be
computed as that of a structure with age t + kD·τ , and no shocks. This
model may be referred to as forward virtual age (as opposite to that
backward of [20]).

P [D (t) ≥ µ|ND (t) = kD ]
= P

[
D (t + kD · τ ) ≥ µ

∣∣ND (t + kD · τ ) = 0]

=
+∞∫

µ

γ · (γ · x)sA ·(t+kD ·τ )−1

& [sA · (t + kD · τ )]
· e−γ ·x · dx = &U [sA · (t + kD · τ ) , γ · µ]

& [sA · (t + kD · τ )]

(20)

4.2. Life-cycle and conditional reliability approximations

Eq. (19) allows the derivation of handy approximations of reliabil-
ity considering both degradation phenomena; the failure probability
may be approximated as in Eq. (21), with the use of the same ap-
proximation as in Eq. (12). In fact, if the equivalent shape parameter,
s = sA + λD·αD, is introduced, the term at the second line of the Eq.
(21) coincides with that of Eq. (17).

P f (t) ≈
+∞∫

µ

γ · (γ · x)sA ·t+E [ND (t)]·αD −1

& (sA · t + E [ND (t)] · αD )
· e−γ ·x · dx

=
+∞∫

µ

γ · (γ · x)
sA ·

(
1+λD · αD

sA

)
·t−1

&
[
sA ·

(
1 + λD · αD

sA

)
· t

] · e−γ ·x · dx

=
+∞∫

µ

γ · (γ · x)s·t−1

& (s · t)
· e−γ ·x · dx = &U (s · t, γ · µ)

& (s · t)

(21)

Conditional probabilities, given the same pieces of information dis-
cussed in Section 2.3, can be also retrieved for this model. In particular,
if the current residual seismic capacity, µ(t*), is measured at a certain
time t*, the failure probability is that of Eq. (22).

P f (t − t∗) ≈
+∞∫

µ(t∗)−µLS

γ · (γ · x)s·(t−t∗)−1

& [s · (t − t∗)]
· e−γ ·x · dx

= &U [s · (t − t∗) , γ · (µ (t∗) − µLS)]

& [s · (t − t∗)]
, t ≥ t∗

(22)

Recalling Eqs. (21) and (14), if the information is only that the struc-
ture is still surviving at t*, the failure probability is approximated by
Eq. (23). If the number of damaging earthquakes is also known, Eq.

(24), applies.

P [failure within t > t∗|survival in t∗]

≈ 1 −
1 −

+∞∫

µ

γ · (γ · x)s·t−1

& (s · t)
· e−γ ·x · dx

1 −
+∞∫

µ

γ · (γ · x)s·t∗−1

& (s · t∗)
· e−γ ·x · dx

= 1 −
1 − &U (s · t, γ · µ)

& (s · t)

1 − &U (s · t∗, γ · µ)

& (s · t∗)

(23)

P
[
failuire within t > t∗

∣∣survival in t∗, ND (t∗) = kD
]

≈ 1 −
1 −

+∞∫

µ

γ · (γ · x)sA ·t+kD ·αD +λD (t−t∗)·αD −1

& [sA · t + kD · αD + λD (t − t∗) · αD ]
· e−γ ·x · dx

1 −
+∞∫

µ

γ · (γ · x)sA ·t∗+kD ·αD −1

& (sA · t∗ + kD · αD )
· e−γ ·x · dx

= 1 −
1 − &U [sA · t + kD · αD + λD (t − t∗) · αD , γ · µ]

& [sA · t + kD · αD + λD (t − t∗) · αD ]

1 − &U (sA · t∗ + kD · αD , γ · µ)

& (sA · t∗ + kD · αD )

(24)

5. Illustrative application

In this section structural modeling is addressed with reference to
a simple EPP-SDOF system with unloading/reloading stiffness, which
is the same as the initial one. The reason to choose this model is
threefold: (i) it is at the basis of earthquake engineering and the re-
sults developed for it are expected to be of significant generality; (ii)
earthquake-resistant structures, especially those reflecting modern
codes, may be often rendered equivalent to this kind of system; (iii)
it shows stable hysteretic cycles that repeat themselves despite of
the sequence of excitation it undergoes. This latter property is espe-
cially important with respect to the age-dependent reliability models
discussed herein, which are based on independent and identically
distributed damage increments. In the following, earthquake-based
cumulative damage is addressed first, subsequently, continuous de-
terioration, and finally the sum of the two.

5.1. Structural response and ductility-based collapse criterion

The elastic period of the EPP-SDOF is equal to 0.5 s; weight is
100 kN and the yielding force is equal to 19.6 kN, which corresponds
to a strength reduction factor equal to 2.5 given a 0.49 g spectral
acceleration.

Chosen engineering demand parameter (EDP) is the kinematic
ductility, µ; i.e., the maximum displacement, when the yielding dis-
placement is the unit. In fact, such an EDP is chosen as the simplest
proxy for the dissipated hysteretic energy during one earthquake
event. Note that this implies, as in all energy-based damage measures,
structural damage in all seismic events with intensity larger than that
required to yield the structure; see also [21] for a discussion.

The collapse is assumed to occur when kinematic ductility, con-
servatively accumulated independently on the sign of maximum dis-
placement, reaches some capacity value.

If the considered limit state (LS) is collapse prevention (CP) de-
rived from [22], which assumes conventional collapse of concrete
structures at a maximum drift ratio equal to 0.04, the system has an
(initial) ductility capacity µ0 = 3.3, and each damaging shock drains
some of this ductility supply (Fig. 5).

Once structural system and collapse criterion are defined, it is
possible to address the i.i.d. hypotheses of damage increments. Due
to its force–displacement relationship, the considered SDOF has a
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Fig. 4. Backward virtual age from repairable systems’ maintenance theory (left); forward virtual age, that is, continuous deterioration equivalent to earthquake damage (right).

Fig. 5. Accumulation of damage in shock sequence with respect to kinematic ductility for EPP-SDOF systems.

response, which is stable with respect to subsequent earthquakes.
It is easy to recognize that this means the maximum displacement
reached in the i-th earthquake of a sequence (required to compute the
ductility assumed to be related to the dissipated energy) is just the
same as if the damaging event hit the new structure, plus the residual
displacement from the preceding shaking. In other words, according
to the assumed damage criterion, variation of drained capacity in
the i-th earthquake is independent both of the age and the state the
shock finds the structure in. Thus, different earthquakes produce i.i.d.
effects, independent of the structural conditions.

5.2. Evaluating the distribution of damage increments

The marginal CDF of the damage increment in a shock, !µ, may
be computed via Eq. (6), where fIM (im) is derived from the HPP haz-
ard curve for the site where the structure is supposed to be located.
The probabilistic seismic demand term, f!µ|IM (δµ|IM = im), may be
computed via incremental dynamic analysis (IDA) assuming the spec-
tral acceleration at the elastic period of the SDOF, as an IM.2 IDA is
developed in terms of structural ductility normalized by µ0, in a way
that the demand is equal to 1 when the CP-LS is attained. Thus, !µ

may be defined as in Eq. (25), where µbefore and µafter refer to residual
capacity before and after the generic earthquake shock.

!µ =
µbefore − µafter

µ0
(25)

Fig. 6 (left) shows IDAs3 output for the considered EPP system; in
the same figure, recalling the normalization of ductility demand, col-
lapse limit corresponding to 1, is also reported. Fig. 6 (right) shows
f!µ|IM(δµ|IM = im) for some ground motion intensities, under the as-
sumption they are lognormal RVs (a well-established hypothesis in
PBEE context).

Marginalization of the distribution of damage increments by
fIM(im), as per Eq. (6), is site-specific. Considered site is (arbitrar-
ily) Sulmona (13.96 Lon.; 42.05 Lat.), close to L’Aquila in central Italy.

2 Due to the mentioned repetitive features of the EPP response, it is also easy to show

that a single set of IDAs is required to estimate the distribution of damage increments

given IM (see [23] for details).
3 To develop IDAs thirty records were selected via REXEL [24], with moment magni-

tude between 5 and 7, epicentral distances lower than 30 km, and site class A according

to Eurocode 8 [25].

PSHA for the site was carried out by software specifically developed
and described in [26], to which the reader should refer for details.
fIM(im) for the spectral ordinate corresponding to the SDOF’s elastic
period, is reported in Fig. 7 (left). Note that, it is not exactly the hazard
curve for the site, while it is the distribution of ground motion inten-
sity given the occurrence of an earthquake. In fact, this is required to
obtain the marginal distribution of capacity reduction in one shock,
and it was obtained from the hazard curve divided by the annual rate
of occurrence of events in Sulmona, which is equal to 1.95 (between
magnitude 4.3 and 7.3).

In Fig. 7 (right), the result of the marginalization in Eq. (6) is re-
ported. To comment on the plot it has to be recalled that, given the
structure, not all earthquakes are strong enough to yield the struc-
ture, and !µ = 0 for such shocks. In particular, !µ is larger than zero
only for spectral accelerations larger than about 1.96 m/s2, which is,
in fact, the yielding acceleration of the considered EPP. Thus, damage
increment is not a continuous RV and its CDF has the expression in
Eq. (26).

F!µ (δµ) = P [!µ ≤ δµ] =

⎧
⎪⎪⎨

⎪⎪⎩

P0 δµ = 0

P0 +
δµ∫

0

f̃ !µ (x) · dx δµ > 0
(26)

In other words, the distribution of !µ is defined by means of a prob-
ability density for !µ > 0, and a probability mass for !µ = 0. In fact,
P0 = P[!µ = 0] accounts for the probability that earthquakes are not
strong enough to damage the structure. Also P [!µ > 1] has an inter-
esting meaning; it is the marginal (i.e., with respect to earthquakes
magnitude and location) probability that the new structure fails in
just one event. In this application P [!µ = 0] and P [!µ > 1] are
equal to 0.9924 and 0.0006, respectively. This means that only 0.76%
of earthquakes is expected to be damaging, while 0.06% is expected
to be catastrophic; i.e., directly causing collapse.

The expected value of !µ, E[!µ] = 0.0026, is also reported, yet
barely visible, in Fig. 7 (right). It means that, for the considered struc-
ture at the considered site, a generic earthquake produces a capacity
reduction of about 0.26%, on average with respect to both damaging
and undamaging events. Thus, referring to the seismic hazard of Sul-
mona, given that average number of earthquakes in 1 yr is equal to
1.95, the considered SDOF is expected to undergo an average capacity
reduction equal to 0.0026·1.95 = 0.0051 or 0.5% per year. Therefore,
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Fig. 6. Ductility demand from IDA analyses (left) and some distributions of structural damage conditional to ground motion intensity (right).

Fig. 7. Complementary CDF of ground motion intensity given earthquake occurrence at the site of interest (left); marginal distribution of !µ for the structure at the site of interest

(right).

according to the considered criterion, the structure fails after about
200 yr on average.

5.3. Absolute and conditional reliability for the cumulative earthquake
damage case

The gamma distribution is adopted to model the PDF
of shock effect in the case of damage larger than zero,
f∆µ(δµ) = f̃ !µ(δµ)/(1 − P0); see Section 2.2. Scale, γ D, and shape, αD,
parameters of the model are set equal to 0.5539 and 0.1916, respec-
tively.

The criterion to calibrate the gamma distribution was to set its
mean and variance equal to the conditional mean and variance of
damage (in the case it is larger than zero) computed by means of
the structural analysis described in Section 5.2. Therefore, the scale
and shape parameters were obtained solving the equations
αD/γ D = E [!µ|!µ > 0] = 0.3459 and αD/γ 2

D =
Var[!µ|!µ > 0] = 0.6245; where 0.3459 and 0.6245 are the
mean and variance of the curve in Fig. 7 (right), when its area is
normalized to one.

Failure probabilities are computed in the following illustrative
cases: (1) failure probability within 50 yr, Eq. (12); (2) failure proba-
bility within 50 yr given that after the first 25 yr a reduction of 30% of
the as-new capacity has been measured, Eq. (13); (3) failure probabil-
ity within 50 yr given that no collapse was recorded in the first 25 yr,
Eq. (14); and (4) failure probability within 50 yr given that one damag-
ing earthquake hit the structure without causing collapse in the first
25 yr, Eq. (15). Results are given in Eq. (27), where it also recalled that
the expected number of damaging earthquakes is computed filtering

the all earthquakes HPP.
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1) P f (50) ≈ 0.076
(2) P f |D(25) =0.3(50) ≈ 0.0524

(3) P f |D(25) <1(50) ≈ 0.0407

(4) P f |D(25) <1,kD =1(50) ≈ 0.047{
1, 2, 3

}
kD = λD · t = (1 − P0) · λ · t = 0.0076 · 1.95 · t

(27)

At this point, it is appropriate to check tolerability of the gamma-
assumption for the damage increments. Moreover, it is the occasion
also to verify the implications of using the approximation, based on
the delta method, in Eq. (12). To this aim, in Fig. 8 (left) the CDF of the
lifetime of the structure, FT(t), according to the model in Eq. (12), is
reported.

In the same figure, Pf(t) is also computed: (i) under the assumption
damage increments are gamma distributed and explicitly considering
the probability associated to any number of shocks as in Eq. (5); and
(ii) adopting for !µ the empirical distribution obtained from struc-
tural simulation (i.e., without fitting a gamma PDF to it), and explicitly
considering the probability associated to any number of shocks. The
figure shows that, at least up to 300 yr, where failure probability is
0.6 (hardly tolerable for a civil construction), the gamma assumption,
even in case of the delta-method-based approximation, gives results
in agreement with those of the empirical model (on the safe side).
This is quantitatively shown by the ratios in Fig. 8 (right), which are
computed taking as a reference Pf(t) from the gamma-based model.

5.4. Total degradation and virtual age

This section starts considering the case of a structure subject (only)
to continuous deterioration of seismic capacity that can be described
via a gamma process with mean and variance function sA/γ A·t = 10−3

and (sA/γ 2
A ) · t = 10−4 · t, respectively. The corresponding process,

and the CDF of lifetime, are reported in Fig. 9; it emerges that it was
assumed continuous deterioration has a mild effect (in accordance
to the literature; e.g., [18]), and the structure has a median life of
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Fig. 8. Structural lifetime distribution in the case of earthquake damage according to the approximated model of Eq. (12) and removing the approximation of the gamma distribution

for the damage increments and the expect number of shocks in lieu of any number of earthquakes.

Fig. 9. Realization of continuous deterioration process (left); corresponding lifetime CDF (right).

Fig. 10. Lifetime cumulative distribution functions for individual and combined pro-

cesses.

about 1000 yr, while Pf is close to one after about 2000 yr, if this is
the sole source of degradation. This arbitrary choice was to simulate
aging mildly affecting seismic capacity if compared to shock-based
damage.

In the case effects of earthquake and aging are independent, the
failure probability due to both can be computed numerically solving
Eq. (18), in which {γ D, αD} and {γ A, sA} are equal to {0.5539, 0.1916}
and {10, 0.01}, respectively. Resulting lifetime distribution is reported
in Fig. 10, along with analogous results for the two individual pro-
cesses.

Assume now the same scale parameter, for example that of cu-
mulative earthquake damage, can be attributed to both degradation
processes. For example, imposing that γ A = γ D, the shape parameter
of continuous deterioration process may be reshaped such that the
same linear trend is preserved, that is sA = γ D·E [µC(t)]/t; however,
this implies to force the variance of the process to be (sA/γ 2

D )·t. In this
case, if sA = γ D·10−3 = 0.5539·10−3, the same mean of aging in Fig.
9 is kept, yet the variance results to be Var [µC(t)] = 0.0018·t. This
allows to apply Eq. (21) with {γ = γ D, s = sA + λD·αD} parameters,
Eq. (28).

s = sA

(
1 + λD · γ

sA
· E [!µ|!µ > 0]

)

= 0.5539 · 10−3 ·
(

1 + 0.01482 · 0.5539

0.5539 · 10−3
· 0.3459

)

= 0.0034

(28)

The resulting lifetime CDF, compared with individual and total degra-
dations, is given in Fig. 11 (left), where also suitability of the approx-
imation is depicted (Fig. 11, right). It may be deduced that, in this
particular case, the approximation provided by the simple model,
appears acceptable.

Along the same line, it is also possible to get results analogous to
Eq. (27) using Eqs. (21)–(24). Results are given in Eq. (29).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1) P f (50) ≈ 0.0920

(2) P f |D(25) =0.3 (50) ≈ 0.0629

(3) P f |D(25) <1 (50) ≈ 0.0499

(4) P f |D(25) <1,kD =1 (50) ≈ 0.0572

(29)
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Fig. 11. Lifetime CDFs (left); failure probability ratio of superimposed degradations and virtual age, or VA (right).

It is interesting to note that, according to the parameters of the ap-
plication, τ = αD/sA = 0.1916/(0.5539·10−3) = 346 yr, meaning that
a generic damaging earthquake is computationally equivalent to an
aging of the structure of more than 300 yr. This illustrates how the
forward virtual age concept, if applicable, is attractive: it provides, at
a glance, vulnerability of a structure subject to the considered sources
of deterioration.

6. Conclusions

Life-cycle reliability analysis of deteriorating structures was dis-
cussed. The addressed approach potentially accounts for both pro-
gressive aging and damage accumulation due to earthquake shocks.
The structural performance measure considered is the ductility ca-
pacity to collapse as a simplistic proxy for an energy-based damage
criterion. This has the advantage to enable treating aging and earth-
quake damage effects altogether.

First, models for reliability analysis of structures cumulating seis-
mic damage were discussed in the case of exponential and gamma
distributions. Closed- and/or approximate-form reliability solutions
were formulated; these also enable accounting for information pos-
sibly available at the epoch of the evaluation. Second, the gamma-
process, especially suitable to represent continuous wear due to its
non-negative, independent, and stationary increments characteris-
tics, was adopted to model structural progressive damage accumula-
tion. Then, reliability of structures, subject to both degradation phe-
nomena, was formulated in the case of independent gamma-based
processes. Finally, the computationally attractive forward virtual age
option was also introduced.

The suitability of the discussed reliability model in the
performance-based earthquake engineering context was also illus-
trated via a simple application, which refers to a bilinear SDOF system
located in a relatively high seismicity site in central Italy. Conventional
collapse prevention limit-state was considered and the gamma dis-
tribution’s parameters were calibrated based on structural analysis.
The results of the models were also discussed with respect to invoked
assumptions and approximations.

Results support the conclusion that gamma-process-based
stochastic modeling of degrading structures, may be useful in the
performance-based earthquake engineering context.
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Erratum

Erratum to "Gamma degradation models for earthquake-resistant
structures" [Struct Saf 45 (2013) 48–58]

Iunio Iervolino a,⇑, Massimiliano Giorgio b, Eugenio Chioccarelli a

a Dipartimento di Strutture per l’Ingegneria e l’Architettura, Università degli Studi di Napoli Federico II, Naples, Italy
b Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università degli Studi di Napoli, Aversa, Italy

Because of a minor error found in the software generating gamma-distributed random numbers used to simulate aging, a few curves in
the paper are slightly incorrect. Even if this error does not alter neither the comments about the plots nor the conclusions of the study, the
correct curves are given here to enable the interested reader to exactly reproduce the results of the illustrative application in the paper.

1. The left panel of Fig. 9 should be replaced by this one:

2. The ‘‘Total’’ curve in Fig. 10 should be replaced by that in the following figure (the others are correct):
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3. The ‘‘Total’’ curve in the left panel Fig. 11 and the right panel of Fig. 11 should be replaced by those in the following figure (the others are
correct):
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