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Abstract. Major earthquakes (i.e., mainshocks) typically trigger a sequence of lower-magnitude events 

clustered both in time and space. Recent advances of seismic hazard analysis stochastically model aftershock 

occurrence (given the main event) as a non-homogeneous Poisson process with rate that decays in time as a 

negative power law. Risk management in the post-event emergency phase has to deal with this short-term 

seismicity. In fact, because the structural systems of interest might have suffered some damage in the mainshock, 

possibly worsen by damaging aftershocks, the failure risk may be large until the intensity of the sequence 

reduces or the structure is repaired. At the state-of-the-art, to quantitatively assess the aftershock risk serves to as 

building tagging, that is to regulate occupancy. The study, on the basis of age-dependent stochastic processes, 

derived closed-form approximations for the aftershock reliability of simple elastic-perfectly-plastic damage-

cumulating systems, conditional on different information about the structure. Results show that, in the case 

hypotheses apply, the developed models may represent a handy tool for risk-informed tagging by stakeholders 

and decision makers. 
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1 INTRODUCTION 

 

Short-term risk assessment, that is at the time-scale of weeks/months around a major event, is 

gathering increasing research attention due to the compelling need of decision makers for quantitative 

tools enabling to manage such a risk. Of particular interest is the evaluation of the failure probability 

for mainshock-damaged structures exposed to the following aftershock sequence. This may be referred 

to as building tagging and allows to monitor the variation of structural risk due to both increased 

vulnerability, caused by cumulative damage, and time-decaying aftershock hazard, and to decide 

whether to: prohibit access to anyone (i.e., red tag), allow access only to trained agents for emergency 

operations (i.e., yellow tag), or to resume from business interruptions allowing normal occupancy (i.e., 

green tag). Seminal research on the topic is that of Yeo and Cornell (2005, 2009a, 2009b), who 

developed aftershock probabilistic seismic hazard analysis (APSHA) and then coupled it with state-

dependent fragilities in a performance-based approach to aftershock risk. 

 

This study derives closed-form reliability solutions for elastic-perfectly-plastic (EPP) single degree of 

freedom (SDoF) systems exposed to aftershock hazard, based on a cumulative shock model. Damage 

increments (i.e., damages in individual seismic shocks) are addressed in the case they are independent 

and identically distributed (i.i.d.) random variables (RVs), characterized by a gamma distribution. It is 

shown that such hypotheses apply for simple, yet general, EPP-SDoF systems, in the case of an 

energy-based collapse criterion. 

 

Gamma modelling of aftershock reliability of elastic-perfectly-plastic 

systems 
 

I. Iervolino
1
, M. Giorgio

2
, E. Chioccarelli

1
 

 
1 
Dipartimento di Strutture per l’Ingegneria e l’Architettura, Università degli Studi di Napoli Federico II, Naples, 

Italy. 
2
 Dipartimento di Ingegneria Industriale e dell'Informazione, Seconda Università degli Studi di Napoli, Aversa, 

Italy. 

 

 



I. Iervolino, M. Giorgio, E. Chioccarelli / VEESD 2013  2 

The following is structured such that essentials of APSHA are reviewed first. Subsequently the 

structural cumulative degradation stochastic process, based on the hypothesis that damage increments 

are gamma distributed, is addressed. Then, time-variant reliability formulations, given different 

knowledge about damage conditions, are derived. Finally, an application, referring to an EPP-SDoF 

supposed to be located in L’Aquila (central Italy), and exposed to a generic aftershock sequence from 

a magnitude, M, 6.3 event, is developed to illustrate the derived models. 

 

 

2 APSHA ESSENTIALS 

 
APSHA is expressed in terms of rate of events exceeding a ground motion intensity measure at a site 

of interest.
1
 The main difference with long-term (or mainshock) PSHA (McGuire, 2004) is that such a 

rate is time-variant. The expected number of events per unit time decreases as the time elapsed since 

the triggering event increases. In this sense the aftershock process is conditional to the mainshock. 

 

APSHA is based on the model of Reasenberg and Jones (1989) according to which, at time t  

(assuming that mainshock occurred at 0t  ), the daily rate of the aftershocks’ occurrence is that in 

Eq. (1). Event magnitude is bounded between a minimum value of interest, 
lm , and that of the 

mainshock, 
mm . Coefficients a and b are from a suitable Gutenberg-Richter relationship, while c and 

p are from the modified Omori law for the considered sequence.  

 

From Eq. (1) it follows that the expected number of aftershocks in the  ,t t t   interval, is given by 

Eq. (2), which applies for a non-homogenous Poisson process (NHPP). 
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APSHA filters the rate by the (time-invariant) probability that the ground motion intensity measure, 

IM, at the site of interest exceeds a threshold,  P IM im . This leads to the rate of the NHPP process, 

 im t , as in Eq. (3), where  | , sP IM im m r  is provided by a ground motion prediction equation, 

and  , ,
sM R sf m r  is the joint probability density function (PDF) of magnitude and source-to-site 

distance, 
sR , of aftershocks, which is sequence-specific (see also section 4). 
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If only aftershocks above a certain intensity threshold, *im , are damaging (e.g., above the intensity 

corresponding to the elastic limit of the structure), Eq. (3) may also serve to compute the rate of the 

NHPP characterizing their occurrence:     *
D t t P IM im       , to follow. 

 

 

 

                                                      
1 While the reader should refer to (Yeo and Cornell, 2009a) for details, this section only recalls those essential results of 

aftershock probabilistic seismic hazard analysis, which are required by the models derived in section 3. 
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3 GAMMA MODEL FOR THE CUMULATIVE DAMAGE PROCESS 

 
Given a mainshock-damaged structure, aftershocks may potentially further increase damage, unless 

partial or total restoration. Cumulative damage, or degradation, measured for example by means the 

residual ductility to collapse, or  t , may be susceptible of the graphical representation in Figure 1, 

which refers to a failure threshold corresponding to a limit-state of interest. 

 

 

Figure 1. Degradation process for a mainshock-damaged structure exposed to aftershocks. 

Formally, the degradation process is that in Eq. (4), where *  is the capacity at 0t  , immediately 

after the mainshock of interest, and  D t  is the cumulated damage due to all aftershocks,  N t , 

occurring within t. Both i  (damage in one aftershock) and  N t  are RVs.  

   
 

* *

1

N t

i

i

t D t   


      (4)

Given this formulation, the probability the structure fails within t,  fP t , is the probability that the 

structure passes the limit-state threshold, 
LS , or the complement to one of reliability,  R t , Eq. (5). 

In fact, it is the probability that the capacity reduces travelling the distance, *
LS    , between the 

initial value and the threshold. 

         *1f LS LSP t R t P t P D t P D t                       (5) 

In the case the occurrence of seismic shock is described by a NHPP, and considering the cumulated 

damage as dependent on the vector of the ground motion intensities measures of occurring 

aftershocks,  fP t  may be computed from Eq. (6), where the integral is of k-th order. 
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Because in APSHA, IMs , for example first mode spectral acceleration, or Sa, in different earthquakes 

are i.i.d. RVs, then  IMf im  is simply the product of  
iIMf im  distributions, which are k  in number. 

Therefore, the critical issue to solve the reliability problem is to obtain 

   ,P D t IM im N t k   
 

, the probability of cumulative damage exceeding the threshold 

conditional to intensities and number of shocks, or, even better,    P D t N t k    . 

 

3.1  Damage increment characterization and reliability approximations 

 

Reliability may be easily addressed if three conditions are met. (1) Damage in the i-th earthquake, 
i

, has always the same distribution,  
i

f   , marginal with respect to IM; i.e.,    ,
i

f f i    . 

(2) Damages produced in different events are independent RVs. In other words, according to these two 

conditions, earthquake’s structural effects are i.i.d. (Iervolino et al., 2012).
2
  

 

Condition (3) is that distribution of sums of damages can be expressed in a simple form. A way to 

satisfy this condition consists of modeling damage via a RV that enjoys the reproductive property.
3
 

Indeed, an attractive option to probabilistically model damage increment is the gamma distribution, 

Eq. (7), which depends on 
D  and 

D ; the scale and shape parameters, respectively.
4
 The D subscript 

emphasizes that, being continuous and non-negative, such RV is suitable to model only the effect of 

earthquakes factually determining loss of capacity, not those events whose intensity is not large 

enough (see section 4). 
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Because the sum of 
Dk  i.i.d. gamma-distributed RVs, with scale and shape parameters 

D  and 
D  

respectively, is still gamma with parameters 
D  and 

D Dk  , the probability of cumulative damage 

exceeding the threshold, conditional to 
Dk  shocks, is given by Eq. (8).   1

0

zz e dz
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      are the gamma and the upper incomplete gamma functions, respectively, 

and  DN t  is the NHPP counting function for the damaging events. 
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If  fP t  in Eq. (6) can be approximated, via the moment approximation (Oehlert, 1992), that is by its 

value conditional to the expected number of damaging earthquakes until t, Eq. (9) results. 

                                                      
2 Which, in particular, implies increment of damage in an earthquake is independent of structural state. Otherwise, for 

example in the case of systems with evolutionary hysteretic behaviour, state-dependent approaches may be required; e.g., 

(Luco et al, 2002, Giorgio et al., 2010, Giorgio et al., 2011). 
3  A well-known example of reproductive RV is the Gaussian one. However, because it should be 0i i   , the 

cumulative degradation process due to subsequent aftershocks should also show non-negative increments, disqualifying the 

Gaussian representation of damage. Although the lognormal PDF may appear as a solution, it is not reproductive in the 

addition sense. 
4 This PDF is quite flexible: a shape parameter equal to one, stretches the distribution to the exponential; a large value of D

, say larger than four, let the PDF be similar to that Gaussian; an intermediate value, around two, makes it similar to the 

lognormal shape.  
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Also interesting is the case in which one wants to include in the reliability assessment the information 

that the structure is still surviving at a certain time after the mainshock, 
1t , but with unknown damage 

condition. It may be computed via, Eq. (10). Finally, the probability of failure given survival in 
1t , and 

a given number of aftershocks, 
Dk , yields Eq. (11).  
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Even if ugly looking, as shown in the next section, these equations allow an easy reliability 

assessment, because solutions are readily available for the gamma functions. 

 

 

4 ILLUSTRATIVE APPLICATION 

 

The application refers to a simple EPP-SDoF system with reloading/unloading stiffness, which is the 

same as the initial one. The elastic period is equal to 0.5 s; weight is 100 kN and the yielding force is 

equal to 19.6 kN. Chosen engineering demand parameter (EDP) is the kinematic ductility,  ; i.e., the 

maximum displacement demand, when the yielding displacement is the unit. To focus on the 

reliability analysis more than on structural modeling, this EDP is considered as the simplest proxy for 

the dissipated hysteretic energy during one earthquake event; i.e., the amount of dissipated energy is 

proportional to the maximum plastic excursion (Cosenza and Manfredi, 2000). Note that this implies, 

as in all energy-based damage measures, an amount of structural damage in all seismic events with 

intensity larger than that required to yield the structure.  

 

The collapse is assumed to occur when kinematic ductility, conservatively accumulated independently 

on the sign of maximum displacement, reaches the limit state (LS) threshold. Quantification of such 
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LS is derived from FEMA 356 (2000), which identifies the conventional collapse prevention (CP) for 

concrete structures at a maximum drift ratio equal to 0.04.
5
 Appling to the considered system, (initial) 

ductility capacity is 
0 3.3  , and each damaging shock drains some of this ductility supply (Figure 

2).  

 

 

Figure 2. Accumulation of damage with respect to kinematic ductility for EPP-SDoF systems. 

This system shows stable hysteretic cycles that repeat themselves despite of the sequence of excitation 

it undergoes to, which is important with respect to the reliability models based on i.i.d. damage 

increments. In fact, the force-deformation response, is such that the demand of kinematic ductility in 

the i-th earthquake of a sequence is just the same as if the damaging event hit the structure in initial 

conditions. In other words, variation of drained capacity in the i-th earthquake is independent of the 

state the shock finds the structure in and ductility is computed as if the residual displacement at 

beginning of each ground motion is zero. Thus, damage increments are i.i.d. In the following 

subsection a gamma distribution is calibrated for the damage increment of the SDoF considered. 

 

4.1  Calibrating the gamma distribution for damage increments 

 

The PDF of damage in a shock may be obtained via the marginalization in Eq. (7). The probabilistic 

seismic demand term, |IMf  , may be computed via incremental dynamic analysis (IDA) assuming Sa 

at the elastic period of the SDoF, as an IM.
6
 IDA is developed herein

7
 in terms of structural ductility 

response normalized by 
0 , so that ductility demand is equal to 1 at onset of CP-LS. Indeed, damage 

increment is defined as   0before after      , where before  and after  refer to capacity before 

and after the generic aftershock. Figure 3 (left) shows |IMf   for some ground motion intensities 

under the, formally tested, lognormal assumption.  

 

Considered site for risk assessment is (arbitrarily) L’Aquila (13.40 lon., 42.35 lat.). Figure 3 (center) 

shows the site-specific IMf  which is also required by Eq. (7).
8
 This is the distribution of ground 

motion intensity given the occurrence of an aftershock; therefore it was computed via the integral term 

at the right hand side of Eq. (3), assuming M and 
sR , in one aftershocks, to be stochastically 

independent RVs. Following section 2,  Mf m is considered to be an exponential PDF with the upper 

bound of magnitude equal to 6.3, the 2009 L’Aquila earthquake magnitude. The minimum aftershock 

magnitude value is arbitrarily taken equal to 4.3.  

 

                                                      
5 This is to obtain a purely conventional measure of energy dissipation structural supply, which may be not perfectly 

appropriate if such a threshold refers to a maximum displacement collapse criterion.  
6 In fact, due to the mentioned repetitive features of the EPP response, it is also easy to show that a single set of IDAs can be 

used to estimate the distribution of damage increment given IM  (see Chioccarelli and Iervolino, 2012, for details). 
7 To develop IDAs thirty records were selected via REXEL (Iervolino et al., 2010), with moment magnitude between 5 and 7, 

epicentral distances lower than 30 km, and stiff site class. 
8 The hazard software and ground motion prediction equation used for the calculations are the same of Iervolino et al. (2011). 
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Figure 3. Examples of distribution of structural damage conditional to ground motion intensity (left), 

distribution of Sa(0.5s) give the earthquake occurrence (center), and damage increment distribution (right). 

The b-value of the GR relationship was taken equal to 0.96 (Lolli and Gasperini, 2003), as justified in 

the following section. To constrain the epicenters of aftershocks with respect to M 6.3, a 400 km
2
 

aftershock source area around the considered site was considered. Therefore, 
sRf  only accounts for 

such a seismogenic zone, the size of which was obtained by the aftershock area versus mainshock 

magnitude relationship in Utsu (1970).  

 

It is to note that, although all the assumptions of the application are generic and reference to 2009 

earthquake is only in terms of mainshock magnitude, aftershock area considered is not much larger 

than the fault supposed to have originated the 2009 earthquake (Chioccarelli and Iervolino, 2010). 

 

The marginalization as per Eq. (7) leads to the distribution of damage in Figure 3 (right). To comment 

such a plot it has to be recalled that, given the structure, not all aftershocks are strong enough to yield 

the structure, and 0   in the case of weak motions. In particular,   is larger than zero only for 

spectral accelerations larger than 1.96 m/s
2
; i.e., the yielding acceleration of the considered EPP-

SDoF. Thus, damage increment is not a continuous RV and its cumulative distribution function has the 

expression in Eq. (12). In other words, the distribution of   is defined by means of a probability 

density for 0  , and a probability mass in zero. In fact, 0 0P P       accounts for the 

probability that shocks are not strong enough to damage the structure. In this case, 
0P  is equal to 

0.7649, that is only 23.5% of aftershocks is expected to be damaging. In fact, in Figure 3 the mean of 

the damage increment (dashed vertical line), accounting for both damaging and undamaging 

aftershocks, is also given. 

 
0

0

0

0

0f x

P

P
P dx







 





   






  
 

 (12) 

Average degradation increment due to a damaging aftershock,  | 0E     , is 0.2884, while the 

variance is  | 0 0.3522Var      . To retain such moments, the gamma PDF adopted to model the 

shock effect in the case of damage larger than zero,      0/ 1f Pf      , must have scale 

and shape parameters equal to 0.8187 and 0.2361, respectively. This is because the mean and the 

variance in the gamma distribution are equal to 
D D 

 
and 2

D D  , respectively. 
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4.2 Reliability in the aftershock sequence of a M 6.3 mainshock  

 

Risk assessment as per the developed model, first requires the rate,  t , of aftershock from Eq. (1). 

To this aim, coefficients of the generic sequence 1.66a   , 0.96b  , 0.03c  , 0.93p  , from (Lolli 

and Gasperini, 2003) were used, considering 4.3 and 6.3 as 
lm  and 

mm , respectively. Then the rate of 

damaging aftershocks is          0 1 0.7649D t t P t          . Thus, the expected number of 

damaging events, in any time interval, is given by Eq. (2), plugging in  D t . Figure 4a plots the total 

and damaging-only aftershock rates until three months since the mainshock.  

 

 

Figure 4. Aftershock rates for the considered sequence (a), failure probability for the structure as time since the 

mainshock passes (b), failure probability in the next seven days given survival at t and/or major aftershocks (c), 

and failure probability in what remains of three months since the mainshock, given survival at t (d). 

It is arbitrarily assumed that the structure has survived to the mainshock event with a residual capacity 
* 0.7   (i.e., 30% capacity reduction). At this point, the failure probabilities according to the models 

of section 3.1 can be easily computed via, for example, the gammainc function implemented in 

MATHWORKS-MATLAB®. Figure 4, panels b-d, reports about the cases listed below, where t is 

always the time elapsed since the mainshock.  

 Figure 4b: absolute failure probability in the  0,t  interval as per Eq. (9); the trend is increasing 

because the larger the interval, the larger the expected number of shocks, see Eq. (2).  

 Figure 4c: this panel reports three curves:    |
7

f D t
P t   from Eq. (10), it is the failure probability 

the week following t, given survival in t;    | , 1
7

Df D t k
P t 

  from Eq. (11), that is the same as the 

previous case, except that it is known that one damaging aftershocks has occurred before the time 

of the reliability evaluation; and    | , 2
7

Df D t k
P t

 
 , that is, it is known that two damaging 

aftershocks have occurred before the time of the reliability evaluation. 

 Figure 4d:    |
90

f D t
P

  from Eq. (10), that is, assuming three months as reference duration of the 

sequence, the failure probability in the remaining exposure time, given survival at t. 
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Dotted graphs in Figure 4b and Figure 4d, represent the same results computed, via Monte Carlo 

simulation, removing the hypothesis that increments are gamma-distributed and without using the first 

moment approximation; i.e., directly employing Eq. (6). Errors introduced by the approximated 

models appear tolerable, and on the safe side. 

 

As an illustration of use of these results, Figure 4c also reports two (time-invariant) probabilities. The 

lower one is 1%, the larger one is 10%. Following the approach in Yeo and Cornell (2005), and 

arbitrarily assuming the probability 1% as a tolerable collapse risk in one week during an aftershock 

sequence, and ten times its value as a tolerable risk for emergency operations, it may be said that: 

before the decaying risk intersects the largest probability, the structures is red tagged (i.e., cannot be 

accessed) in the next week, is green tagged after the aftershock risk gets smaller than the lower value, 

and can be entered only by trained agents in between.  

 

 

5 CONCLUSIONS 

 

A model for the reliability assessment of damage-cumulating elastic-perfectly-plastic systems in 

aftershock environment was discussed. It is based on a cumulative shock model, which makes use of 

the gamma distribution to describe damage in a shock and non-homogeneous Poisson occurrence for 

shocks. The resulting degradation process, considering the ductility capacity to collapse as the 

structural damage measure, is an independent increments one, enabling approximate-form solutions 

for reliability, given different information about the structure.  

 

The applicability of the model was illustrated via an example referring to a mainshock-damaged 

system, supposed to be subjected to a generic aftershock sequence following a M 6.3 event. Different 

kinds of failure risks during the sequence were evaluated. Some of them were also compared with 

arbitrary values of tolerable risk, which were used as tagging criteria in a virtual application of short-

term seismic risk management.  

 

The results from model were also discussed with respect to approximations invoked, which appear 

tolerable, if compared with the near-real-time risk assessment the closed-forms allow.  
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