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One of the most challenging aspects of the seismic assessment of existing buildings is the character-
ization of structural modeling uncertainties. Recent codes, such as Eurocode 8, seem to synthesize
the effect of structural modeling uncertainties in the so-called confidence factors that are applied to
mean material property estimates. The confidence factors are classified and tabulated as a function
of discrete knowledge levels acquired based on the results of specific in-situ tests and inspections. In
this approach, the effect of the application of the confidence factors on structural assessment is not
explicitly stated. This work presents probabilistic performance-based proposals for seismic assess-
ments of RC buildings based on the knowledge levels. These proposals take advantage of the Bayesian
framework for updating the probability distributions for structural modeling parameters based on
the results of tests and inspections. As structural modeling parameters, both the mechanical material
properties and also the structural detailing parameters are considered. These proposals can be cate-
gorized based both on the amount of structural analysis effort required and on the type of structural
analysis performed. An efficient Bayesian method is presented which relies on simplified assumptions
and employs a small sample of structural model realizations and ground motion records in order
to provide an estimate of structural reliability. As an alternative proposal suitable for code imple-
mentation, the simplified approach implemented in the SAC-FEMA guidelines is adapted to existing
structures by employing the efficient Bayesian method. This method takes into account the effect of
both ground motion uncertainty and the structural modeling uncertainties on the global performance
of the structure, in a closed-form analytical safety-checking format. These alternative proposals are
demonstrated for the case study structure which is an existing RC frame. In particular, it is shown
how the parameters for the safety-checking format can be estimated and tabulated as a function of
knowledge level, outcome of tests, and the type of structural analysis adopted.

Keywords Performance-based Assessment; Existing Buildings; Bayesian Updating; Structural
Modeling Uncertainties; Confidence Factor; Knowledge Levels; Reliability

1. Introduction

Many European countries are subjected to a considerable seismic hazard. Quite a few of
these countries enjoy a rich patrimony of existing buildings, which for the most part were
built before modern seismic design provisions made their way into the constructions codes.
Therefore, the existing buildings can potentially pose serious fatality and economic risks in
the event of a strong earthquake. A recent and unfortunate case is the L’Aquila Earthquake
of April 6, 2009 in central Italy.
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TABLE 1 Recommended minimum requirements for different levels of inspection
and testing

Inspections of reinforcement Testing of Materials
KL details (% structural elements) (sample/floor)

Limited 20 1
Extended 50 2
Comprehensive 80 3

One main feature distinguishing the assessment of existing buildings from that of the
new construction is the large amount of uncertainty present in determining the structural
modeling parameters. The recent European codes seem to provide a level of conservatism
in the assessment of existing buildings, by the application of the confidence factors (CF)
to mean material property estimates. These confidence factors are to be determined as a
function of the knowledge levels (KL). The knowledge levels are determined based on the
amount of tests and inspections performed on the building. Table 1 illustrates the three
KL’s, namely, limited, extended and comprehensive [CEN, 2003].

With the emerging of concepts such as life-cycle cost analysis and performance-based
design, the question arises as to what the CF would signify and would guarantee in terms
of the structural seismic reliability [Jalayer et al., 2008, 2010; Franchin et al., 2008]. This
would not be possible without a thorough characterization of the uncertainties in the struc-
tural modeling parameters [e.g., Jalayer et al. 2008, 2010; Monti and Alessandri, 2008].
Another issue regards the definition of the KL: the current code definition in Table 1 leaves
some room for interpretation. For example, it does not specify the spatial configuration and
the outcome of the test results. Moreover, the logical connection between the numerical
values for the CF’s and the attainment of the KL’s is not clear.

This works focuses on performance-based probabilistic proposals for the seismic
assessment of existing RC structure based on different KL’s. As one of the proposals,
a novel and efficient simulation-based Bayesian method is presented for structural reli-
ability assessments taking into account both the structural modeling uncertainties and the
record-to-record variability in ground motion (GM). This method exploits a relatively small
number of structural analyses in order to yield the robust reliability for the structure in ques-
tion. The term robust herein refers to the fact that the reliability is calculated taking into
account all possible structural models and their relative plausibilities [Beck and Au, 2002;
Papadimitriou et al., 2001].

Moreover, it is demonstrated how the efficient Bayesian method can be used in order to
estimate the parameters of a simplified analytic safety-checking format arranged similar to
Load-Resistance Factor Design (LRFD) for different KL’s considering dynamic analyses.
This format is already adopted in the American Department of Energy Guidelines DOE-
1020 and in SAC-FEMA guidelines [FEMA, 2000a,b,c,d]. For seismic assessment based
on static analyses, an analytical safety-checking formulation is adopted which yields the
global structural response, represented by a structural performance parameter, correspond-
ing to a certain confidence. If the parameters of these safety-checking formats (for static
and dynamic analyses) are estimated for different KL’s, these formats will be potentially
suitable for code implementation. In this article, the standard Monte Carlo Simulation is
used as a benchmark in order to verify the accuracy of the efficient Bayesian method which
uses a small sample of simulations. For each KL, the outcome of tests and inspections
is incorporated by employing the Bayesian updating framework. In fact, the Bayesian



364 F. Jalayer et al.

framework for probabilistic inference seems to be a perfect vehicle for taking into account
the results of tests and inspections in updating the structural model. In a previous work
[Jalayer et al., 2010], the authors demonstrated how an advanced simulation scheme (i.e.,
the Markov Chain Monte Carlo algorithm) can be used to both update the structural reli-
ability and also the probability distribution for the modeling parameters based on test and
inspection results. In the present work, more simple and less computationally intensive
methods are investigated. A set of “multi-level” options for the analyst to choose from are
proposed. By “multi-level,” multiple levels of sophistication in the method and quantity of
analysis effort is intended.

1.1. The Structural Performance Parameter and the Structural Reliability

The structural performance parameter in this work is formatted in terms of a critical demand
to capacity ratio. This parameter, denoted as Y , assumes the value of unity at the onset of the
limit state LS. In the case of static analyses, the capacity spectrum method (CSM) [Fajfar,
1999] is used to obtain Y . Moreover, at the onset of the limit state, the shear capacity of the
structural components is also verified by calculating the shear demand to capacity ratio for
the structural components. The overall structural performance parameter is finally taken as
the larger between the critical shear component demand to capacity ratio and the overall
demand to capacity ratio derived from CSM. The structural reliability in the static case is
expressed as the probability that Y exceeds one:

Pf = P(Y > 1) (1)

In the case of dynamic analyses, the cut-sets concept in system reliability theory
[Ditlevsen and Madsen, 1996] is employed to find the critical component demand to capac-
ity ratio that takes the structure closer to the onset of the limit state LS. This critical demand
to capacity ratio corresponds to the strongest component of the weakest structural failure
mechanism [Jalayer et al., 2007]:

Y = minl maxj
Dlj

Clj
, (2)

where l is the structural mechanism index considered and j is the component index within
the lth mechanism. In this case, the mechanisms considered involve the ultimate chord rota-
tion in the components, the formation of global mechanisms (e.g., soft story and beam
mechanisms) and the component shear capacity. The structural reliability in the dynamic
case is represented by the mean annual frequency (MAF) that the performance parameter Y
defined in (2) exceeds unity (or simply, the MAF of failure). Taking the spectral accelera-
tion at the fundamental period of the structure as the intensity measure, the MAF of failure
can be calculated by integrating fragility and hazard for all values of spectral acceleration
[Jalayer et al., 2007]:

λf = λY>1 =
∫

P(Y > 1|Sa)|dλ(Sa)| (3)

1.2. The Knowledge Levels

Four distinct knowledge levels are taken into consideration in the current work. The first
KL, referred to as KL0, describes the state of the knowledge about the structure before
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in-situ tests and inspections are performed. The other three KL’s, namely, KL1, KL2, and
KL3, are characterized based on the Eurocode 8 recommendations, limited, extended, and
comprehensive, respectively.

1.3. A Performance-Based Safety-Checking Format (Dynamic Analyses)

As an alternative to the CF approach in code-based recommendations, a probabilistic and
performance-based approach, adopted in the American Department of Energy Guidelines
DOE-1020 and in SAC-FEMA guidelines [Cornell et al., 2002], is chosen in this work. This
simplified approach leads to an analytical and closed-form solution which compares the
factored demand against factored capacity. The factored demand and capacity are respec-
tively equal to median demand and capacity multiplied by some factors. The magnifying
demand factors and the de-magnifying capacity factors can take into account all sources
of uncertainty, such as record-to-record (ground motion) variability, structural modeling
uncertainty, and the uncertainty in the capacities. This approach, also known as the Demand
and Capacity Factor Design (DCFD) [Cornell et al., 2002] for its similarity with the Load
and Resistance Factor Design (LRFD), takes into account the overall effect of the various
types of uncertainties on a global structural performance parameter:

ηY (Po) · e
1
2

k
b (β2

Y|Sa
+β2

UC) ≤ 1 , (4)

where Po is an acceptable threshold for structural failure probability and ηY(Po) is the
median structural performance parameter corresponding to the acceptable probability Po.
κ is the slope coefficient for linear regression (in the logarithmic space) of spectral acceler-
ation hazard versus spectral acceleration and b is the slope coefficient for linear regression
(in the logarithmic space) of the structural performance parameter Y vs. spectral acceler-
ation. The terms βY|Sa and βUC represent the effect of record-to-record (ground motion)
variability and structural modeling uncertainties, respectively, on the total dispersion in
the structural performance parameter given spectral acceleration (see Jalayer and Cornell,
2009, for more details on how to estimate ηY(Po) and βY|Sa). The inequality in (4) can be
verified with a certain x% confidence:

ηY (Po) · e
1
2

k
b β2

Y|Sa ≤ e−�−1(x)
√

β2
Y|Sa

+β2
UC , (5)

where �−1(x) is the inverse Gaussian cumulative distribution function (CDF) for percentile
x. Note that, in this formulation, in contrast to (4), the factored demand is compared to a
less than unity quantity in order to provide a certain level of confidence in the assessment,
which is suitable for code implementation.

1.4. A Performance-Based Safety-Checking Format (Static Analyses)

In the static case, safety-checking is performed by calculating a given percentile x% of the
structural performance parameter Y and by verifying whether it is less than or equal to
unity:

ηY · e�−1(x)βY ≤ 1 , (6)
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where ηY is the median value and βY is the standard deviation of the logarithm for the
structural performance variable Y . As explained before, the percentile x reflects a desired
level of confidence in the structural performance.

2. Methodology

In this section, the analytical basis for the methods proposed and discussed in this work is
presented.

2.1. Characterization of the Uncertainties

It is assumed that the vector θ represents all the uncertain parameters considered in the
problem. Typically, the uncertainties present in seismic assessment can be classified in
different groups, namely: (a) the uncertainties in the representation of the GM; (b) the
modeling uncertainties associated with the structural finite element model; (c) the compo-
nent capacity models; (d) and the uncertainties in the structural modeling parameters. It
should be mentioned that since this research effort uses the code procedure involving the
application of confidence factors as a point of reference, the uncertainties in the capacity
models are not taken into account. This is because the Eurocode 8 takes into account the
uncertainty in the capacity model separately by applying a less-than-unity safety factor γ el.
This work focuses on the uncertainty in the structural modeling parameters related to the
available information on the characteristics of existing buildings. This is the type of uncer-
tainty that is believed to be addressed implicitly by the application of CF’s. Two groups of
structural modeling uncertainties are considered, the uncertainty in the mechanical prop-
erty of materials and the uncertainty in the structural construction details. In particular, the
structural construction details can include stirrup spacing, concrete cover, anchorage, and
splice length; these are also known as the defects. One of the main characteristics of the con-
struction details modeling is that possible deviations from the original configurations are
mostly taken into account in those cases leading to undesirable effects. This justifies why
the uncertainties related to construction details are sometimes referred to as the defects.

It is common to distinguish between the uncertainty that reflects the variability of
the outcome of a repeatable experiment (aleatory uncertainty) and the uncertainty due
to limited or imperfect knowledge (epistemic uncertainty). For instance, the strength of
materials is affected by both aleatory and epistemic uncertainties; instead, the information
relative to construction details is affected by epistemic uncertainties as they can be reduced
with inspections. In any case, in the framework of Bayesian updating both types of uncer-
tainty are treated in the same manner. Hence, in this work both the epistemic and aleatory
uncertainties are simply referred to as uncertainties.

In order to take into account the uncertainty in the representation of the GM, a set of 30
records (listed in Appendix A) based on Mediterranean events are chosen from European
Strong Motion Database (http://www.isesd.cv.ic.ac.uk/ESD/frameset.htm), 28 recordings,
and the database of the Next Generation Attenuation of Ground Motions (NGA) Project
(http://peer.berkeley.edu/products/nga_project.html), 2 recordings.

They are all main-shock recordings and include only one of the horizontal components
of the same registration. The soil category on which the GMs are recorded is stiff soil
(400 m/s < Vs30 < 700 m/s) which is consistent with the Eurocode 8 soil-type B (the
soil-type for the site of the case study presented in this work). The earthquake events have
moment magnitude between 5.3 and 7.2, and closest distances ranging between 7 km and
87 km (Fig. 11). Moreover, a set of seven records, recorded on stiff soil, are chosen from
European Strong Motion database; they are all main-shock recordings and include only one
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TABLE 2 The uncertainties in the material properties (sys-
tematic per floor)

Material Type Median COV

fc LN 165 0.15
fy LN 3200 0.08

of the horizontal components of the same registration. The earthquake events have moment
magnitude between 5.4 and 6.5, and closest distances ranging between 18 and 87 km. In
order to have a set compatible with the code-specified spectrum of Eurocode 8 or EC8
[CEN, 2003] the suite of records has been scaled linearly in amplitude (Fig. 9).

The parameters identifying the prior probability distributions for the material mechani-
cal properties (concrete strength and the steel yielding force) have been based on the values
typical of the post world-war II construction in Italy [Verderame et al., 2001a,b]. Table 2
shows these parameters that are used to define the Lognormal probability distributions for
the material properties.

The prior probability distributions for the structural detailing parameters are defined
based on qualitative prior information coming from expert judgment or based on ignorance
in the extreme case [Jalayer et al., 2010]. Table 3 shows (for illustrative purpose only) the
example specifications used to construct the prior probability distributions for the structural
detailing parameters. Since the focus of this work is on the procedure for seismic assess-
ment given the knowledge level, the prior probability distribution characteristics shown in
Table 3 are merely for illustrative purposes. Therefore, a thorough characterization of the
prior probability distributions for the structural defects is out of the scope of this work. The
table shows a list of possible defects, their probability distribution and correlation charac-
teristics. For the construction details regarding the steel rebar, the uncertain parameter is
a less-than-unity factor which will be applied to the steel area. That is why the maximum
value for the uncertain parameters related to longitudinal rebar defects is equal to unity.

2.2. Updating the Probability Distributions

The probability distributions for the structural modeling parameters are updated employ-
ing the Bayesian framework for inference. It is assumed that the material properties are
homogeneous across each floor or construction zone. Therefore, the material property value
assigned to each floor can be thought of as an average of the material property values across
the floor in question. The results of tests and inspections for each floor are used to update the
probability distribution for the mean material property across the floor. Figure 1 illustrates
an example where the test results for concrete strength have all verified the nominal value
(fc = 165 Kg/cm2, 16.18 N/mm2) for different levels of knowledge. It is observed that the
updated curve has the same median but has its dispersion reduced as the amount of data
increases. In the following, the updating procedure for the concrete strength fc is demon-
strated; the exact same procedure is applied also for updating the probability distribution
for steel yielding strength fy.

Let d = {di : i = 1 : N} denote the set of data available for the concrete strength
for a given construction zone. Assuming that the data measurements contain no errors,
the updated probability distribution for mean concrete strength across the floor can be
calculated using the Bayes formula:

p(fc|d) = p(d|fc)p(fc)∫
p(d|fc)p(fc)dfc

(7)



368 F. Jalayer et al.

TABLE 3 The uncertainties in structural detailing parameters

Defects Possibilities Prob. Type

Insufficient
anchorage
(Beams)

sufficient (100% effective)
absent (50% effective)

Uniform
[0.50,1]

Systematic over
floor

Error in diameter
(Columns)

φ16

φ14

Uniform
[0.7697,1]

Systematic over
floor and
section type

Superposition
(Columns)

100% of the area effective
75% of the area effective

Uniform
[0.75,1]

Systematic over
floor

Errors in
configuration
(columns)

More plausible
configuration
Less plausible
configuration

Uniform
[0.75,1] [0.67,1]

Systematic over
floor and
section type

Absence of a bar
(beams)

Absence of a bar
Presence of a bar

Uniform
[0.70,1] [0.69,1]
[0.60,1]

Systematic over
floor and
section type

Stirrup spacing Uniform (beams) Uniform
[15 cm, 30 cm]

Systematic

Stirrup spacing Uniform (beams) Uniform
[20 cm, 35 cm]

Systematic

Spacing of shear
rebar

Uniform (column) Uniform
[20 cm, 35 cm]

Systematic

Assuming that the data are independent, the likelihood p(d|fc) is written as:

p(d|fc) =
N∏

i=1

p(di|fc) , (8)

where p(fc) denotes the prior probability distribution for the mean concrete strength across
the construction zone. For example, in this case it can refer to the characterization of the
uncertainty in concrete strength, before the tests are conducted, for the knowledge level
KL0; that is the Lognormal distribution described in Table 2. The likelihood functions,
p(di|fc), are also assumed to be Lognormal probability distributions with median value
equal to fc and standard deviation of the logarithm equal to the value tabulated in Table 2.
Figure 1 illustrates the probability distribution of the mean concrete strength value across
the construction zone for the knowledge levels — KL0, KL1, KL2, and KL3 — based on
the extreme hypothesis that all the test results confirm the nominal value. It should be
mentioned that this hypothesis is considered for the purpose of parameter studies on the
effect of test results. Otherwise, the methodology is general with respect to the outcome
of the test results. It is observed from the figure that standard deviation for the updated



Knowledge-Based Performance Assessment 369

0.04
KL0

KL1

KL2

KL3

0.035

0.025

0.015

0.005

0
50 100 150 200

fc

250 300

0.03

0.02

0.01

FIGURE 1 The prior and the updated probability distributions for concrete strength for
different knowledge levels.

probability distribution for each KL decreases across increasing knowledge levels while
the median value remains invariant.

With regard to the structural detailing parameters, a slightly different approach is
employed. Assuming that the probability of not having a construction defect in a mem-
ber is equal to f , the probability distribution for f is updated using the test results. If the test
results indicate that out of n cases observed nd of them demonstrate a defect, the probability
distribution for f is also updated according to the Bayes formula:

p(f |d) = p(d|f )p(f )∑
f

p(d|f )p(f )
, (9)

where p(f ) is the prior probability distribution for f and p(d|f ) is the likelihood function for
the data d given the value of f . In the absence of prior information it is assumed that p(f ) is
an uniform distribution from 0 to 1. Use can be made of expert judgment in order to limit
the lower and the upper bounds for the defect probability.

The likelihood function is calculated using the binomial distribution:

p(d|f ) =
(

n
nd

)
(1 − f )nd f n−nd (10)

which gives the probability of having exactly nd successes out of n trials. In relation to the
structural detailing parameters, this model is adopted assuming that the number of trials
corresponds to the number of inspections of the reinforcement detail in question, expressed
in terms of % of the structural elements for each KL (Table 1). The number of successes,
instead, corresponds to the outcomes of inspections, for example whether they verify the
nominal value or not. In this work, three different hypotheses are considered regarding the
outcome of the simulated inspections, that is:

1. 100% of the inspections verify the design values indicated in the original
documents;
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FIGURE 2 The uniform prior and updated probability distributions for the spacing of the
shear stirrups.

2. 50% of the inspections verify the design values indicated in the original documents;
3. 0% of the inspections verify the design values indicated in the original documents.

Figure 2 illustrates the prior probability distribution for the spacing between the shear
reinforcement together with updated distribution based on the hypothesis that all of the test
results verify the design value (s = 15 cm). It is observed that the consideration of the test
data focuses more narrowly the probability distribution around the design value. Figure 3
displays the prior distribution for the anchorage effectiveness factor. The figure also shows
the updated probability distributions after the test results for the three KL’s verify the design
value (i.e., effectiveness factor equal to unity). The same as the probability distribution for
stirrup spacing, it is observed that, across the increasing KL’s, the probability distributions
become more and more focused around the nominal value. The nominal value is taken as
the value indicated in the original design documents if available.

2.3. An Efficient Method for Estimation of Robust Reliability

Suppose that the probability of failure is described by an analytical probability distribution
with parameters χ = (ηY , βY ) (e.g., median and standard deviation of the Lognormal dis-
tribution). If the probability of failure given the set of parameters is denoted by P(F|χ ), the
expected value (or the robust estimate) for the probability of failure for a given set of data
values d = {di : i = 1 : N} is expressed as:

E[P(F|d)] =
∫



P(F|χ )p(χ |d)dχ , (11)

where p(χ |d) is the posterior probability distribution for the set of parameters χ given the
data d and 
 is the space of possible values for χ . The robust variance for the probability
of failure is calculated as:

σ 2
P(F|d) = E[P(F|d)2] − E[P(F|d)]2 (12)
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FIGURE 3 The uniform prior and the updated probability distributions for the anchorage
effectiveness factor.

In particular, if the dataset d is expressed in terms of a set of Y values calculated for different
realizations of the uncertain parameters within the problem, the structural reliability or the
probability of failure in the case considering structural modeling uncertainties (given the
code-specified spectrum) can be expressed by a Lognormal complementary cumulative
distribution function (CCDF) as following χ = {ηY, βY}:

P(Y(θ ) > 1) = 1 − �

(− log ηY

βY

)
, (13)

where � is the Gaussian CDF, Y is the structural performance index, and ηY and βY are
the median and the standard deviation (of the logarithm) for the probability distribution of
the structural performance index. Using the Bayesian updating framework, the posterior
probability distribution for median and standard deviation based on data Y is written as
[Box and Tiao, 1992]:

P(ηY , βY |Y) = kβ−(n+1)
Y exp

(
−νs2 + n(log ηY − log Y)2

2β2
Y

)
(14)

k =
√

n

2π

(
�(ν/2)

2

)−1 (
νs2

2

)ν/2

,

where Y = {Y1, . . ., Yn} is the vector of n different realizations of the structural perfor-
mance index, k is a normalizing constant, �(.) is the gamma function, ν = n − 1, log Y
is the sample mean value for logY, and νs2 is sum of the squares of the deviations from
the sample mean value. The expected value and standard deviation for the probability of
failure are calculated from Eqs. (11) and (12) based on the posterior probability distribu-
tion p(ηY, βY|Y) in (14). Otherwise, the best-estimate values for the median and standard
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deviation can be calculated either as the maximum likelihood pair for the posterior prob-
ability distribution function in (14) or the contour corresponding to a given (e.g., 84%)
confidence level.

In the dynamic case, the structural fragility as a function of spectral acceleration in the
presence of modeling uncertainties and uncertainties in the representation of the GM can
be calculated from the following Lognormal CCDF:

P(Y(θ ) > y|Sa) = 1 − �

(
log y − log ηY|Sa

βUT

)
(15)

β2
UT = β2

Y|Sa
+ β2

UC,

where ηY|Sa is the median for the probability distribution of the structural performance index
and βUT is the total standard deviation for the probability distribution of the structural per-
formance index including the contribution from record-to-record variability and the overall
effect of the structural modeling uncertainties. The terms βY|Sa and βUC represent the effect
of the uncertainty in the GM representation and the uncertainty in the material properties
and the structural details, respectively. It should be noted that (15) yields the structural
fragility; after integrating it with the hazard function for the spectral acceleration, the MAF
that the structural performance variable Y exceeds a specific value or the structural risk
curve is obtained.

Suppose that a selection of n ground motion records are used to represent the effect of
GM uncertainty on the structural performance index. Let Sa,i and Yi represent the spectral
acceleration and the performance index for the GM record i, respectively. The posterior
probability distribution for standard deviation is calculated as:

P(βUT |Y) =
[

1

2
�
(υ

2

)]−1 (
νs2

2

) ν
2

β
−(ν+1)
UT exp

(−νs2

2β2
UT

)
(16)

The data pairs (Y, Sa) are gathered by calculating Y for the set of n GM records applied to
the structural model generated by different realizations of material mechanical properties
and structural detailing parameters. ν is the degrees of freedom and is equal to n − 2, νs2

is equal to the sum of the square of the residuals for a linear regression of log Y on log Sa,
and a and b are the regression coefficients. The joint posterior probability distribution for
the coefficients of the linear regression ω = (log a, b) are calculated as:

P(ω|Y , Sa) = k

[
1 + (ω − �

ω)TXTX(ω − �

ω)

νs2

]− n
2

(17)

k =
�
(

n
2

)√
n
∑

log S2
a,i − (

∑
log Sa,i)2

νs2�
(

1
2

)2
�
(

n
2 − 1

)
which is a bivariate t-distribution where X is a n × 2 matrix whose first column is a vector
of ones and its second column is the vector of log Sa,i, ω is the 2 × 1 vector of regres-
sion coefficients log a and b, and ω̂ is the vector (log a, b) of the coefficients of the linear
regression of structural performance parameter Y vs. Sa in the logarithmic space (due to
record-to-record variability only). The median and the standard deviation for the probabil-
ity distribution for Y|Sa are taken equal to the maximum likelihood estimates ηY|Sa = aSa

b
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and βY|Sa = s, that is, the conditional median value for Y is estimated by a power-law func-
tion of Sa and the conditional standard deviation (of the logarithm) of Y given Sa is assumed
to be constant. The robust estimates for the expected value and the standard deviation of
the failure probability are obtained from (11) and (12) based on the product of the poste-
rior probability distributions p(ω|Y,Sa) and p(βUT|Y,Sa) in (16) and (17), assuming they are
independent χ = (ω, βUT) = (log a, b, βUT).

2.4. Estimating the Parameters of the Analytic Safety-Checking Formats

The previous sub-section lays out an efficient Bayesian method for calculating the structural
reliability for different KL’s taking into account both the structural modeling uncertainties
and the uncertainty due to record-to-record variability. This sub-section discusses how the
SAC-FEMA safety-checking format and the confidence interval formulation described in
Secs. 1.3 and 1.4 are modified and how their corresponding parameters can be estimated
using the efficient Bayesian method.

In the static case, the formulation in (6) for obtaining the x percentile of the structural
performance parameter is re-written as follows:

Ŷ · γ · e�−1(x)βY ≤ 1 , (18)

where γ is a bias factor and βY is the standard deviation of the robust fragility curve.
Ŷ represents the structural performance parameter calculated for the structural model cor-
responding to the median material properties based on the test results and nominal values
for the structural detailing parameters. The bias factor γ represents the (usually larger-
than-unity) factor that once multiplied by the nominal value Ŷ leads to the median value
ηY. Comparing with (6), γ can be calculated as:

γ = ηY

Ŷ
(19)

Likewise, when the uncertainty in the GM representation is considered, the formulation in
(5) can be re-written as:

Ŷ · γ · e
1
2

k
b β2

Y|Sa ≤ e−�−1(x)
√

β2
Y|Sa

+β2
UC , (20)

where γ is a bias factor and βUC represent the over-all effect of structural modeling uncer-
tainties. Ŷ represents the structural performance parameter calculated based on the median
material properties obtained from the test results and nominal values for the structural
detailing parameters. For instance, Ŷ can be calculated by performing linear least squares
as a function of the first-mode spectral acceleration based on the set of records. The bias
factor γ represents the (usually larger-than-unity) factor that once multiplied by the nomi-
nal value Ŷ leads to the median value ηY(Po) for the structural performance parameter for
an admissible probability value Po:

γ = ηY (Po)

Ŷ
, (21)

where ηY(Po) = a · Sa(Po)b using the maximum likelihood estimates of regression coef-
ficients (log a, b) obtained from the probability distribution in (17) (i.e., the ω = (log
a, b) vector that maximizes P(ω|Y,Sa)), Sa(Po) is calculated as the spectral acceleration
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value corresponding to a MAF of exceedance equal to Po on the spectral acceleration
hazard curve.

3. Numerical Example

As the case study, an existing school structure located in Avellino (Italy) is consid-
ered herein. The structure is situated in seismic zone II according to the former Italian
seismic guidelines [OPCM 3431, 2005]. The structure consists of three stories and a semi-
embedded story and its foundation lies on soil type B. For the structure in question, the
original design notes and graphics have been gathered. The building is constructed in the
1960’s and it is designed for gravity loads only, as it is frequently encountered in the post
second World War buildings.

In Fig. 4a, the tri-dimensional view of the structure is illustrated; it is observed that
the building is irregular both in plane and elevation. In order to reduce the computa-
tional effort, the main central frame in the structure is extracted and used as the structural
model (Fig. 4b). The columns have rectangular section with the following dimensions: first
story 40 × 55 cm2; second story 40 × 45 cm2; third story 40 × 40 cm2; and forth story
30 × 40 cm2. The beams, also with rectangular section, have the following dimensions:
40 × 70 cm2 at first and second story, and 30 × 50 cm2 for the upper two floors. It is inferred
from the original design notes that the steel re-bar is of the type Aq42 and the concrete has
a minimum resistance equal to 165 kg/cm2 (16.18 N/mm2) [Regio Decreto Legge, 1939].
The finite element model of the frame is constructed assuming that the nonlinear behavior
in the structure is concentrated in plastic hinges located at the element ends. Each beam or
column element is modeled by coupling in series of an elastic element and two rigid-plastic
hinges. The rigid-plastic element is defined by its moment-rotation relation which is derived
by analyzing the reinforced concrete section at the hinge location. In this study, the sec-
tion analysis is based on (the widely adopted in current practice) Mander-Priestly [Mander
et al., 1988] constitutive relationship for reinforced concrete, assuming that the concrete
is not confined, and the reinforcing steel behavior is elastic-perfectly-plastic. The behavior
of the plastic hinge is characterized by four phases, namely: rigid, cracked, post-yielding,
and post-peak. In addition to flexural deformation, the yielding rotation takes into account
also the shear deformation and the deformation related to bar-slip based on the code rec-
ommendations [OPCM 3431, 2005]. Moreover, the shear span used in the calculation of

(1)(a) (b)
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FIGURE 4 (a) The 3-D structural model and (b) the central frame extracted for performing
the analyses.
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the plastic rotation is based on the code formulas. As it relates to the post-peak behav-
ior, it is assumed that the section resistance drops to zero with a post-peak negative slope.
The structural analyses are performed using the Open System for Earthquake Simulation
(OpenSees, http://opensees.berkeley.edu/index.php/).

3.1. The Structural Performance Index: Static Analyses

When only the structural modeling uncertainties are considered, the definition of struc-
tural capacity in this work is based on the limit state of significant damage, as proposed
by Eurocode 8. That is, the onset of critical behavior in the first element, characterized
by member chord rotations larger than 3/4th of the corresponding ultimate chord rota-
tion capacity. The structural demand is characterized by the intersection of the code-based
inelastic design spectrum and the static pushover curve transformed into that of the equiv-
alent single degree of freedom system. As an index for the global structural performance,
the ratio of structural demand to capacity is used. The component shear failure demand
to capacity ratios are also considered; the shear capacity for each component is calculated
using the procedure based the truss action caused by a variable fracture angle. The obtained
results are combined with the CSM demand to capacity using the cut-set concept of the sys-
tem reliability theory in order to find the critical demand to capacity ratio Y which takes
the structure closer to the onset of the limit state.

3.2. Calculating the Structural Fragility Using the Efficient Bayesian Method:
Static Analyses

The structural fragility curve for the structure under study is calculated by employing the
efficient Bayesian method described before based on Y for static analyses for a set of 20
Monte Carlo (MC) realizations of the structural model. These realizations take into account
the uncertainties in the material properties and the structural defects (as listed in Tables 2
and 3). The probability distributions for the uncertain parameters are updated according to
the increasing KL’s. Thus, for each knowledge level, the 20 realizations of the structural
model are generated from the (updated) probability distributions corresponding to the KL’s
(as described in Sec. 2.2) and based on the results of in-situ tests and inspections. Since the
results of tests and inspections actually available for the frame in question did not exactly
match the Eurocode 8 definition of the KL’s (Table 1), the test and inspection results used
herein are simulated assuming that all the results verify the design values indicated in the
original documents. Figure 5 demonstrates the robust fragility curves (the probability of
failure for a given value of Y) obtained. The robust fragility for knowledge levels KL1,
KL2, and KL3 is calculated from (11) as the expected value of the structural fragility in
(13), given that its median and standard deviation are known, where the joint probability
distribution for median and standard deviation is given in (14). For each KL, the standard
deviation in the robust fragility estimate is calculated from (12) as a measure of the error in
the estimation of the structural reliability using the efficient Bayesian method.

It is observed from Fig. 5 that upon increasing KL’s both the median and the dis-
persion in the fragility curves (βY and ηY in [13]) decrease assuming that the test and
inspection results all verify the nominal values. However, it can be immediately observed
that the structure does not verify the confidence-based safety-checking criteria in (1) in any
of the KL’s. That is, because the median ηY is already greater than unity. This is due to
the fact that the structural components do not verify against shear, a typical problem for
existing reinforced concrete structures not designed for seismic loading. Figure 6 shows
the plus/minus one standard deviation confidence interval for the robust fragility curves



376 F. Jalayer et al.

1
Fragility Curve

0.9

0.8

0.7

0.6

0.5

P
(Y

 >
 1

)

0.4

0.3

0.2

0.1

0
0.75 1 1.25 1.5

Y

1.75 2 2.25

KL0

KL1

KL2

KL3

FIGURE 5 The structural fragility curves for the knowledge levels KL0, KL1, KL2,
and KL3.

for each KL together with the structural performance parameter obtained applying the
CFs specified in the code for each KL (the vertical lines). An alternative probability-based
definition of the CF is used herein, based on the global performance of the structure, by the
CF leading to a structural performance parameter that has a specific (say 95%) probabil-
ity of not being exceeded. The horizontal lines in the figure illustrate the 95% confidence
level and the star indicates the structural performance parameter that has 95% probabil-
ity of not being exceeded. Comparing this alternative confidence-based definition to the
values obtained by applying the code procedure for knowledge levels KL1, KL2, and KL3,
it is observed that, for this case study example, the two definitions agree reasonably well
and that the code-based values are slightly conservative (keeping in mind however, that the
95% level is chosen arbitrarily).

The robust fragility curves and their corresponding plus/minus standard deviation con-
fidence intervals are also obtained based on two alternative hypotheses with respect to the
original hypothesis in which all the tests and inspections verify the nominal values. The
first hypothesis states that none of the test results confirm the nominal value and the second
hypothesis states that only 50% of the test results verify the nominal value. The result-
ing robust fragility curves are shown in Fig. 7 for the three KL’s. It is observed that the
standard deviation for the fragility curves remains more-or-less invariant with respect to
the test results while the median value significantly changes. Obviously, these hypotheses,
assuming that the percentage of not verifying the test results is constant for all the tests and
inspections performed, are quite simplified with respect to the reality.

3.3. Verification of Results Using the Standard Monte Carlo Simulation (MCS)

The standard Monte Carlo Simulation is used as a benchmark for verifying the accuracy of
the efficient Bayesian method described in Secs. 2.3 and 3.2 for the static case. The fragility
curve for the prior knowledge level KL0 is obtained using 500 Monte Carlo simulations.
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FIGURE 6 The plus/minus standard deviation interval structural fragility curves for the
knowledge levels KL0, KL1, KL2, and KL3..
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FIGURE 7 The structural fragility curves for the knowledge levels KL0, KL1, KL2, and
KL3 corresponding to different percentages of the construction detail inspections verifying
the nominal values.

For knowledge levels KL1, KL2, and KL3, the fragility curves are obtained using 200 simu-
lations (given the reduced dispersion in the corresponding updated probability distributions
for KL1, KL2, and KL3 with respect to KL0, less simulations were necessary in order to
obtain the fragility curve). It should be noted that the number of samples generated in the
Monte Carlo simulations is limited due to the fact that the failure probability P(Y > 1|KL)
is almost unity. In other words, the failure zone can be simulated with less simulations.
For very rare events (small failure probabilities), a Monte Carlo simulation procedure may
involve around thousands of analyses.
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FIGURE 8 Comparison between the plus/minus standard deviation interval structural
fragility curves obtained with the efficient Bayesian method and the fragility curves
calculated based on MCS for the knowledge levels KL0, KL1, KL2, and KL3.

Figure 8 illustrates that the plus/minus one standard deviation fragility curves obtained
by the efficient Bayesian method agree well with MCS results.

3.4. The CF Method for Considering the Structural Modeling Uncertainty: Dynamic
Analyses

Section 3.2, Fig. 6, shows how applying the CF’s can affect the overall structural per-
formance using the nonlinear static analyses. In a similar way, this section shows how
applying CF’s can influence the structural performance using the nonlinear dynamic anal-
ysis. A set of seven GM records described in more detail in Sec. 2.1 are chosen. In order
to have a set compatible with the code-specified spectrum (EC8), the suite of records has
been scaled. In Fig. 9, the scaled spectra with corresponding scaled factors are plotted. For
each KL specified in the code, the structural performance variable for the set of records is
calculated for a structural model (without defects) with material properties divided by the
corresponding CF. The structural performance variable Y, calculated for each GM record,
as described Sec. 1.1 from (2), is related to the spectral acceleration using linear regres-
sion with parameters ηY|Sa and βY|Sa; that is, the conditional median and standard deviation
of logarithm of the structural performance parameter given spectral acceleration, respec-
tively. The structural fragility is calculated from (15) setting βUC equal to zero. Finally, the
structural fragility is integrated with the hazard curve for spectral acceleration at the fun-
damental period of the structure equal to 0.75 s (extracted from the official Italian seismic
hazard at http://esse1.mi.ingv.it/d3.html for the coordinates of the site lat. 40.915 and lon.
14.78) in order to calculate the mean annual probability of exceeding a specific value of
Y . The resulting curves corresponding to different values of CF are plotted in Fig. 10. As
mentioned in Sec. 1.1, the MAF that the performance parameter Y exceeds unity serves as
a measure of structural reliability in the case of dynamic analyses.
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FIGURE 9 Scaled acceleration spectra (7 GM records). The ground motion records are all
scaled by a factor of 1.50 except for one (Umbria-Marche) that is scaled by 3.50.
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FIGURE 10 Seismic risk curves obtained following the CF approach for knowledge levels
KL0, KL1, KL2, and KL3.

3.5. Calculating the Structural Reliability Using the Efficient Bayesian Method:
Dynamic Analyses

The curves of the MAF of exceeding a given value of Y (or more concisely, the seismic
risk curves) for increasing levels of knowledge are calculated in this stage by integrating
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the robust fragilities, obtained from the efficient Bayesian method, and the spectral acceler-
ation hazard curve at the site of the structure. For each KL, the robust fragility is calculated
from (11), (15), (16), and (17) using a set of 30 MC realizations of the structural model. The
conditional median, ηY|Sa, and standard deviation of the logarithm, βY|Sa, for the structural
performance parameter Y are estimated by employing the linear least squares of natural
logarithm of Y as a function of the natural logarithm of spectral acceleration at the funda-
mental mode of the structure. The joint probability distribution for the linear least squares
coefficients ω = (log a, b) is calculated from (17). The probability distribution for the
standard deviation of the fragility curve βUT (related to βY|Sa and βUC through [15]) is cal-
culated from (16) based on the results of a small set of 30 Monte Carlo simulations. The
standard deviation as it is seen in (15) can be calculated as the square root of the sum of
squares of two parts representing the effect of GM uncertainty denoted by βY|Sa and the
structural modeling uncertainty denoted by βUC.

The set of MC realizations for each KL are generated based on the corresponding
(updated) probability distributions. The suite of 30 records described in Sec. 2.1 are used
(Fig. 11, Appendix A).

The resulting seismic risk curves are plotted in solid lines in Fig. 12 for knowledge
levels KL0, KL1, KL2, and KL3. For each KL, the curve obtained by following the code
procedure and applying the corresponding CF is plotted in dashed lines. The horizontal line
in each sub-figure represents the allowable probability level, here taken as 10% probability
of exceedance in 50 years. It is observed that for an acceptable probability of Po = 0.002
or 10% in 50 years, the structure does not meet the safety criterion Y < 1 (i.e., the MAF of
failure in (3) is greater than the acceptable probability level Po) for any of the KL. The inter-
section of the admissible level with the risk curves obtained using the CF method and the
risk curves obtained using the efficient Bayesian method are shown with circles and stars,
respectively. It is observed, that for this case study, there is very good agreement between
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FIGURE 12 The seismic risk curves obtained from the efficient Bayesian method (solid
lines) and the seismic risk curves obtained based on the CF approach (dashed lines) for
knowledge levels KL0, KL1, KL2, and KL3.

the CF results and those of the efficient Bayesian method for KL1 and KL2. However, the
CF results are on the unconservative side for KL0 and KL3. These results are particularly
interesting since they benchmark the code-based CF method with a probabilistic method in
which the effect of both structural modeling uncertainty and the record-to-record variability
are explicitly taken into account.

3.6. Estimating the Parameters of the Performance-Based Safety-Checking Formats
Using the Efficient Bayesian Method

The fragility curves calculated for both the static and dynamic case using the efficient
Bayesian method can be used in order to estimate the parameters of the analytical safety-
checking formats discussed beforehand. For the static case, the bias factor γ is calculated
from (19) and the standard deviation βY is calculated from the fragility curve obtained
employing the efficient Bayesian method as half of the logarithm of the ratio of the 84th

and 16th percentiles. Tables 4 and 6 outline the parameters βY and γ values for the three
KL’s considered for the case study structure and based on static analyses. The three columns
represent the three simplified hypotheses adopted previously regarding the outcome of the
test results. Table 7 outlines these parameters for the knowledge level KL0 before the tests
are preformed. It is observed that the βY values remains quasi-invariant with respect to
the hypotheses regarding the outcome of the tests and inspections. However, they reduce
as the knowledge level increases. For instance, for KL0, βY is close to 15% which means
that based on the prior distributions considered herein, considering the structural modeling
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TABLE 4 Table of values for βUC (uncertainty in the material properties
and in the structural details)

100% verified 50% verified 0% verified

SPO
KL1 0.0641 0.0835 0.0586
KL2 0.0527 0.0616 0.0556
KL3 0.0531 0.0554 0.0527

DYN
KL1 0.0800 0.0868 0.1142
KL2 0.0393 0.0635 0.0742
KL3 0.0216 0.0472 0.0682

TABLE 5 Table of values for βUT (includes the uncertainty in the material
properties, the uncertainty in the structural details, and the uncertainty in
the ground motion representation)

100% verified 50% verified 0% verified

DYN
KL1 0.1784 0.1816 0.1938
KL2 0.1643 0.1717 0.1759
KL3 0.1609 0.1663 0.1735

TABLE 6 Table of values for the bias factor γ

100% verified 50% verified 0% verified CF

SPO
KL1 0.9933 1.2343 1.4255 1.35
KL2 0.9782 1.2272 1.4294 1.20
KL3 0.9701 1.2206 1.4349 1.00

DYN
KL1 1.0984 1.3306 1.4698 1.35
KL2 1.0521 1.3046 1.4812 1.20
KL3 1.0362 1.2632 1.4953 1.00

uncertainties influences the structural reliability up to 15%. The values for βY reduce to 5%
for KL3. The bias factor γ remains more-or-less invariant with respect to the KL; however,
it changes as a function of the percentage of the test and inspection results that verify the
nominal value. For example, γ is approximately equal to 1.40, 1.20 and 1.0 for percentages
verified equal to 100%, 50% and 0%, respectively.

The observation that βY depends on the KL unlike the bias factor γ that remains
more-or-less invariant, is somehow to be expected. That is, given a fixed percentage of the
inspections results that verify the nominal values, the increase in knowledge level (i.e.,
the increase in the total number of inspections) is expected to reduce the dispersion in
the structural performance parameter Y . On the other hand, the bias factor is expected to
depend on the number of inspections that verify rather than the total number of inspections.



Knowledge-Based Performance Assessment 383

TABLE 7 Table of values for KL0

γ βUC

SPO KL0 1.5245 0.1455
DYN KL0 1.3342 0.1783

For the dynamic case, the parameters for the safety-checking format in (20) are also
calculated by employing the efficient Bayesian method. The bias factor γ is calculated from

Eq. (21). The total standard deviation βUT =
√

β2
UC + β2

Y|Sa
is calculated from the robust

fragility curves obtained from the efficient Bayesian method as half of the logarithm of the
ratio of the percentiles 84th and 16th, respectively. The standard deviation βY|Sa is estimated
as the square root of the mean of the squared residuals of the regression of log Y versus
log Sa without considering the structural modeling uncertainties (for the structural model
constructed based on the median value of the test results for material properties and the
nominal values for construction details). Hence, the value for βUC is calculated as βUC =√

β2
UT − β2

Y|Sa
. Tables 4 and 6 tabulate the γ and βUC for different KL’s and test outcomes

based on nonlinear time-history analyses. The same coefficients for the knowledge level
KL0 are listed separately in Table 7. It is observed that the value for βUC reduces with
increasing the KL; that is, βUC is close to 18% for KL0 and it reduces to 2% for KL3

(when 100% of the results verify) and 7% (when 0% of the results verify). The bias factor
γ which is observed to be more-or-less invariant with respect to the KL, is approximately
equal to 1.50, 1.30, and 1.0 for 0%, 50%, and 100% of the test and inspections verifying the
nominal tests and inspections. Table 5 outlines the estimates for βUT for the dynamic case
for knowledge levels KL1, KL2, and KL3 for different percentages of the test and inspection
results verifying. It is observed that βUT decreases a small amount (19% to 16%) with the
increasing KL. The small variation in βUT is attributed to the fact that it includes also the
dispersion βY|Sa due to record-to-record variability. Since the value of βUC (around 2–11%,
depends on the KL and the percentage of the inspections verified) is small with respect to
βY|Sa (around 16%, by definition depends neither on the KL nor on the percentage of the
test results verified), the resulting βUT values in Table 5 show little sensitivity to the KL.

It is emphasized that the values tabulated herein depend, in addition to being case
study specific, on the simplifying assumption regarding the outcome of the test results and
the assumptions regarding the prior probability distributions. However, they represent an
example where given the structure, the type of analysis and the outcome of the tests and
inspections, the parameters of the safety-checking formats in Sec. 2.4 are calibrated.

In perspective, with regard to possible code implementations, similar tables can be
obtained by characterizing the representative building types for a given location and their
period of construction. The tabulated parameters can be potentially used within the safety-
checking formats discussed in this work, in lieu of thorough case-specific assessments, for
performance-based assessment of existing buildings.

4. Conclusions

Quantifying the uncertainty in the structural modeling parameters, related to the level of
knowledge about an existing structure, is one of the main challenges in seismic performance
assessment of existing buildings. The discrete knowledge levels (KL) defined by the current
European codes for the performance assessment of existing buildings leave some room
for interpretation and they do not lead to a unique configuration of tests and inspections.



384 F. Jalayer et al.

Moreover, it is not clear which level of structural reliability does the application of the
confidence factors guarantee. Hence, with the emerging of performance-based design and
life-cycle cost analysis in earthquake engineering, there is need for code-based methods
that map the different knowledge levels for an existing building to the global structural
performance and the structural reliability.

This work proposes two alternative methods for the performance assessment of exist-
ing buildings. An efficient simulation-based Bayesian method is presented which estimates
the expected value and the standard deviation for the structural fragility (static case) and
the MAF of exceeding the structural performance parameter (dynamic case) with relatively
small number of structural analyses (N = 20 – 30). It is observed, upon comparison with
the standard Monte Carlo simulation results, that the efficient simulation-based method
provides sufficiently accurate plus/minus one standard deviation intervals for the structural
fragility in the static case. As a proposal for possible code implementations, the parameters
(a bias factor and a dispersion parameter) for the analytical probabilistic safety-checking
format adopted in the SAC-FEMA guidelines (known as the demand and capacity factor
design, DCFD) for dynamic analyses and the confidence interval formulation for the static
case are estimated using the efficient Bayesian method for the case study structure. Once the
bias factor and the dispersion parameter are estimated, these safety checking formats can
be used for evaluating the performance of an existing building, with a certain confidence,
based on only one analysis (i.e., the result of code-based procedure for CF = 1). Table 8
provides a synthesis of these two proposals and their advantages/disadvantages. For the
sake of comparison, these methods are compared in Table 8 with the standard Monte Carlo
simulation at one extreme as the most computationally demanding method (e.g., number of
analyses N = 200 – 10000) and the code-based CF method (N = 1) at the other.

The methods proposed herein characterize the uncertainty in the structural modeling
parameters such as mechanical material properties and the construction detailing parame-
ters by probability distributions. For each KL, the probability distributions for the uncertain
parameters are updated using the Bayesian updating framework. In the absence of test
results abiding exactly with the code prescriptions, an idealized situation is considered in
which all of the test results verify the original design values. Obviously, the methodology
presented is general with respect to the outcome of the test and inspections. The uncertain
parameters are divided into groups (emulating various construction zones). It is assumed
that the uncertain parameter belonging to distinct groups are fully un-correlated and only
the uncertain parameters inside a given group can be correlated. It should be noted that
decisions on possible groupings of the uncertain parameters may affect significantly the
global performance assessment of the structure.

For the case study structure examined in this work, the code-based CF method can lead
in some cases (depending on both the KL and the percentage of the inspections verifying
the nominal values) to un-conservative results with respect to the efficient Bayesian method
proposed herein, for both static and dynamic analyses. Obviously, these observations are
case-specific and cannot be generalized.

As a final note relative to the case study building considered, it should be mentioned
that the critical value for the structural performance variable is almost always governed
by the shear failure in structural components. This is a typical problem for the existing
reinforced concrete structures designed only for the gravity loads.

In perspective, the probability-based analytical safety-checking formats calibrated for
the case study building herein, are potentially suitable candidates for implementation
in the guidelines for existing buildings. It should be mentioned that in order to make
accurate performance assessments, the best way to approach would be to carry out case-
specific assessments based on the outcome of the tests and inspections. However, the
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probability-based analytical safety-checking formats and their tabulated parameters can
offer significant improvements in the assessments with respect to the current CF approach;
they can serve as a less-than-ideal, approximate solution with a rigorous basis.
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