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Abstract
Earthquakes are clustered in time and space; therefore, structures may be sub-
jected to multiple consecutive instances of potentially damaging shaking, with
insufficient in-between time for repair operations to take place. Methodolo-
gies to evaluate the risk dynamics in this situation require vulnerability models
that are able to capture the transitions between damage states, from the intact
conditions to failure, due to multiple damaging earthquakes, that is, state-
dependent fragility curves.One of the state-of-the-artmethods for the assessment
of structure-specific state-dependent fragility curves relies on a variant of incre-
mental dynamic analysis (IDA), which is often termed back-to-back or B2B-IDA.
The computational costs typically involved in B2B-IDA motivate attempts to
simplify the evaluation of state-dependent fragility curves. This paper presents
a simplified method for multi-story moment-resisting frame structures, based
on pushover analysis in conjunction with a predictive model for the main fea-
tures of a damaged structural system, such as residual deformations and loss
of stiffness and/or strength. The predictive model enables the probabilistic def-
inition of the post-earthquake pushover curve of a damaged structural system,
given the displacement demand imposed by a preceding damaging shock. The
state-dependent fragility curves are then evaluated via IDA of single-degree-
of-freedom oscillators based on these pushover curves. Illustrative applications
validate the ability of the proposed methodology to provide state-dependent
fragilities with reduced computational costs compared to the back-to-back IDA
method.
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1 INTRODUCTION

The usual practice of seismic risk assessment does not consider that structural failure can be reached progressively due
to damage accumulation in multiple earthquakes. Moreover, it is generally assumed that a structure is initially in intact
conditions. These assumptions can be justified by considering that, for example, after some seismic event damages the
structure of interest, enough time will elapse until the next earthquake to repair it.1 However, the nature of seismic events
is such that they typically occur in time-space clusters, which means that the necessary repair time between shocks may
not be available and that damage to buildings and infrastructure may accumulate rapidly.1,2

Earthquake Engng Struct Dyn. 2024;53:2099–2121. © 2024 John Wiley & Sons Ltd. 2099wileyonlinelibrary.com/journal/eqe

https://orcid.org/0000-0002-0460-6558
https://orcid.org/0000-0002-4076-2718
mailto:georgios.baltzopoulos@unina.it
https://wileyonlinelibrary.com/journal/eqe
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feqe.4105&domain=pdf&date_stamp=2024-02-23


2100 ORLACCHIO et al.

A practical quantitative model for structural vulnerability, in the context of seismic risk assessment, is represented by
the fragility function that provides the conditional probability that the structure fails to meet some performance objective,
given that a ground-shaking intensity measure (𝐼𝑀) has some specific value (𝑖𝑚). This failure is often termed exceedance
of a so-called damage-state (𝐷𝑆). Although seismic structural damage could be quantified by continuous measures, prac-
tical considerations typically dictate the definition of a finite number of 𝐷𝑆. In the simplest of cases, damage states can
be defined by means of an engineering demand parameter (𝐸𝐷𝑃), and a series of threshold values, whose exceedance is
taken to signify the transition of the structure from its initial state to another one representing worse conditions.
Certain risk assessment methods, able to model damage accumulation,3,4 require a set of fragility curves for each

structure. These curves provide the probability of the structure transitioning between any pair of damage states from
intact conditions to failure; therefore, these curves are named state-dependent fragility functions. More specifically, state-
dependent fragility can be defined as the conditional probability that, given the occurrence of any shaking intensity, a
structure that was in a damage state 𝐷𝑆𝑖 , goes into a more severe damage state 𝐷𝑆𝑗:

𝑃
[
𝐷𝑆𝑗|𝐷𝑆𝑖 ∩ 𝐼𝑀 = 𝑖𝑚

]
= 𝑃

[
𝐸𝐷𝑃 > 𝑒𝑑𝑝𝐷𝑆𝑗 |𝐷𝑆𝑖 |𝐷𝑆𝑖 ∩ 𝐼𝑀 = 𝑖𝑚

]
. (1)

For example, if one assumes four discrete damage states that a structure can be in, then 𝑖 = 0, 1, 2, 3 and 𝑗 = 1, 2, 3, 4

with 𝑗 > 𝑖. In this context, 𝐷𝑆0 can be taken to mean the intact state, while the notation 𝑒𝑑𝑝𝐷𝑆𝑗 |𝐷𝑆𝑖 signifies the response
threshold that a structure in damage state 𝑖 must cross to transition into damage state 𝑗.
State-of-the-art analytical derivation of classical structural fragility, 𝑃[𝐷𝑆𝑗|𝐷𝑆0 ∩ 𝐼𝑀 = 𝑖𝑚], entails subjecting the

numerical model of the structure to numerous nonlinear dynamic analyses, for example, via incremental dynamic analy-
sis (IDA),5,6 which consists in collecting the non-linear responses of an (initially undamaged) structure to a set of records,
each one progressively scaled in amplitude to represent different levels of seismic intensity. For the evaluation of state-
dependent fragility curves, an extended version of IDAhas been suggested, referred to here as back-to-back or B2B-IDA.7–14
According to this method, the structural model is first subjected to a set of records, representing a first seismic event hit-
ting the structure at its intact state. Each record of the set is scaled in amplitude to the lowest value of 𝐼𝑀 that causes the
structure to reach the damage state𝐷𝑆𝑖, 𝑖 = 1, 2, 3. Thus, at the end of each record, a different realization of the damaged
structural model is produced. Subsequently, each incarnation of the structural model in𝐷𝑆𝑖 is subjected to another (or the
same) set of accelerograms simulating an aftershock. Each record of the second set is scaled until the damaged structure
reaches a more severe damage state, say 𝐷𝑆𝑗 , with 𝑗 > 𝑖. The state-dependent fragility 𝑃[𝐷𝑆𝑗|𝐷𝑆𝑖 ∩ 𝐼𝑀 = 𝑖𝑚] can then
be derived by collecting the scaled intensities of all records in the second set, possibly fitting a parametric model based on
those results, as will be discussed in more detail later on.
The derivation of fragility curves via IDA can be computationally demanding.14–16 This has motivated the develop-

ment of simplified procedures for analytical fragility development, based on static nonlinear analysis (pushover analysis).
These methods consist in substituting the complex numerical model with an equivalent inelastic single-degree-of-
freedom (SDoF) system, whose definition is based on the original structure’s pushover curve. One such example, used
in the case of traditional fragility assessment, is the method proposed by Vamvatsikos and Cornell,17 which has been
recently streamlined into a dedicated software tool.18 Because the number of required dynamics analyses is increased
by orders of magnitude in the case of B2B-IDA, the need of simplified procedures to derive state-dependent fragility
is even greater.19 This has motivated the study presented herein, where a pushover-based methodology is proposed
for the assessment of state-dependent fragility curves for multi-story moment-resisting frame structures. While this
method uses equivalent SDoF models to simplify the fragility assessment, it also seeks to further reduce the computa-
tional cost by eschewing the need for the first step dynamic analysis required to bring the structure to the damage state
of interest, 𝐷𝑆𝑖 . Instead, instances of the damaged structural configuration are obtained via Monte-Carlo simulation.
This simulation is based on a model that enables the generation of a series of realizations of the pushover backbones
representing the structure’s SdoF approximation when it is in the given damage state of interest. The development of
this analytical model, which provides the joint probability distribution of residual displacement, stiffness deterioration
and strength degradation for inelastic SDoF systems with evolutionary hysteresis, is also an integral part of the present
study.
The presentation of this work is organized as follows: first, the development of the predictive model needed for the

stochastic generation of backbone curves for the structure that is in a specific damage state is outlined. Subsequently,
the model’s application in a Monte-Carlo simulation context is presented. Then, the simplified methodology for state-
dependent fragility derivation is presented, incorporating the aforementioned model. This method is further illustrated

 10969845, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.4105 by iunio iervolino - C

ochraneItalia , W
iley O

nline L
ibrary on [09/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ORLACCHIO et al. 2101

Pushover of i structurentact
Pushover of damaged structure
Initial point of equilibrium

Residual displacement δ

Fmax
'

Fmax

-Fmax

Fy

-Fy

δ-δ yy

K

δ

res

+

-Fmax-

'K

δres δmax-δmax

'

Backbone of intact structure

(B)

δ

Backbone curves of damaged
structures

(C)

F
Backbone of intact structure

(A)

Damage state thresholds

DS1 DS2
DS2 DS1

δ

F IGURE 1 Definition of damage via deformation thresholds (A); post-shock backbones and residual displacements of an SDoF system
evaluated for three different records scaled to cause the same damage state (B); examples of an SDoF structure’s monotonic pushover
(backbone) curve before and after the seismic damage for a generic stiffness- and strength-degrading system (C).

via an application, and the results are compared to those obtained via the rigorous procedure involving sequential dynamic
analysis. Finally, some concluding remarks close the paper.

2 SIMULATION OF THE STATIC PUSHOVER OF A DAMAGED STRUCTURE

The simplified method for state-dependent fragility assessment developed herein is based mainly on two simplifications.
The first one consists in replacing the multi-degree-of-freedom structural model with a surrogate structure in the form
of an equivalent inelastic single-degree-of-freedom (ESDoF) system, defined based on the original structure’s pushover
curve. The second simplification consists in generating a sample of SDoF models representing the structure in some
damage state, without performing nonlinear dynamic analyses, but based on a predictive model instead. In this context,
the transition of a structure from one damage state to another during an earthquake shock is defined based on crossing
some threshold transient displacement, 𝛿𝑚𝑎𝑥, (Figure 1A) as per common earthquake engineering practice.20
However, 𝛿𝑚𝑎𝑥 is a convenient but indirect measure of structural damage and there is no guarantee that if a specific

structure is nominally brought to the same damage state by different base-acceleration time histories, other mechanical
characteristics such as stiffness, strength and residual displacement will be the same. For example, one can take a SDoF
inelastic structure whose response to cyclic loading is characterized by evolutionary hysteretic rules and whose backbone
curve is shown in Figure 1B. This structure was subjected to three different accelerograms that all brought it at the same
peak transient displacement and, consequently, the same damage state. The figure also shows the three pushover curves
obtained after each of the accelerograms has nominally led the structure to the same 𝐷𝑆. It can be observed that there is
some variability in the reloading stiffness, maximum restoring force and residual displacement that each incarnation of
the damaged structure exhibits and the present study seeks to capture that variability with an analytical model. As will be
shown later, these structural properties exhibit similar record-to-record variability, for a given inelastic excursion, when
it comes to multiple degree-of-freedom frame structures.

2.1 Methodology

The first stepping-stone in the direction of simplified state-dependent fragility is the development of a semi-empirical
model for the static pushover curve (or monotonic backbone) of a SDoF oscillator after it has been subjected to an earth-
quake shock that has resulted in a given displacement demand. This model was developed for simple inelastic systems
that can be deemed to be representative of high- and low-code frame structures with flexure dominated inelastic response.
These systems are yielding oscillators characterized by piece-wise linear backbone and peak-oriented hysteretic behaviour,
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F IGURE 2 Peak-oriented modified IMK hysteretic model. Backbone curve and quasi-static cyclic response of an inelastic SDoF system
without any cyclic strength degradation, shown in dimensionless {𝑅, 𝜇} coordinates (A); quasi-static cyclic response that includes cyclic
strength degradation (B).

potentially exhibiting cyclic strength degradation. The analytical model adopted for the numerical implementation of the
hysteretic rule was the modified Ibarra-Medina-Krawinkler (IMK) model.21,22 An example trilinear backbone is shown in
Figure 2A using dimensionless {𝑅, 𝜇} coordinates, where 𝑅 = 𝐹∕𝐹𝑦 is the strength ratio of the elastic force over the yield
base shear of the system, and 𝜇 = 𝛿∕𝛿𝑦 stands for the response-to-yield displacement ratio, that is, the ductility.2 The
analyzed systems have backbone curves consisting of an elastic branch followed by a post-yield hardening segment, the
latter defined by a hardening slope 𝛼ℎ and ending at a capping point ductility 𝜇𝑐.
Among the various types of degradation contemplated by this hysteretic model, two types are considered in this study:

(i) degradation of the reloading stiffness inherent in the peak-oriented model, where the direction of the loading path
targets the maximum displacement on the opposite side, once the horizontal axis is intersected in each reloading cycle
(e.g., Figure 2A); (ii) cyclic strength degradation, where the maximum attainable restoring force is reduced every half-
cycle of response, by an amount proportional to the dissipated hysteretic energy.23 Figure 2 displays the cyclic response
of two of the simple inelastic systems considered here, behaving according to the modified IMK rule; the one in panel
(A) corresponds to a case without cyclic strength degradation, whereas panel (B) shows a system that does exhibit cyclic
strength deterioration. Note that cyclic strength degradation is so-termed to distinguish it from in-cycle degradation, the
latter being a designation often used in the literature24 to describe situations where ductility demand exceeds the capping
point 𝜇𝑐 and strength is lost as the response follows down the softening branch of the monotonic backbone. It should be
clear that no ductility demands 𝜇 > 𝜇𝑐 are considered in this investigation, and therefore no in-cycle strength degradation
ever comes into play in the development of the model; the descending softening branch, defined by a post-capping slope
𝛼𝑐 and intercepting the zero-strength axis at a failure ductility, 𝜇𝑓 , is only shown for completeness.
The static pushover of the damaged structure shown in Figure 1B is defined by three parameters, that is, the residual

displacement, 𝛿𝑟𝑒𝑠, the post-shock reloading stiffness, 𝐾′, and the post-shock lateral resistance, 𝐹′𝑚𝑎𝑥± . For the specific
hysteretic rule considered here, if these three parameters are known, in addition to the initial backbone of the undamaged
structure, it is possible to completely define the backbone curve of the damaged structure.25 In fact, themethod developed
in this study revolves around a probabilistic description of the aforementioned main parameters that enable simulation:
(i) the constant-ductility residual displacement ratio, 𝐶𝜇, (ii) the relative period elongation, Δ𝑇 and (iii) the loss of lateral
strength Δ𝑅. 𝐶𝜇 is defined as:

𝐶𝜇 =
𝛿𝑟𝑒𝑠
𝛿𝑚𝑎𝑥

, (2)

that is the ratio of the residual displacement, 𝛿𝑟𝑒𝑠, and peak transient displacement, 𝛿𝑚𝑎𝑥, both caused by the same base-
acceleration.26,27 Δ𝑇 is a measure of the loss of lateral stiffness of the structure during ground shaking and is defined
as:

Δ𝑇 =

(
𝑇′ − 𝑇

)
𝑇

, (3)

where 𝑇′ is the post-shock period and 𝑇 is the period of the SDoF structure in intact, pre-shock condition. The elongated
period is calculated as 𝑇′ = 2 ⋅ 𝜋 ⋅

√
𝑚∕𝐾′, where 𝐾′ was defined as the post-shock reloading stiffness as shown in

Figure 1C. Finally, Δ𝑅 quantifies a normalized loss of lateral strength and is defined as:
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F IGURE 3 Three conventional levels of strength degradation used in this study, defined on the basis of strength loss after a quasi-static
cyclic loading protocol: low-degradation peak-oriented hysteretic rule (A); medium-degradation (B); high-degradation (C).

Δ𝑅 = 1 −
𝐹′𝑚𝑎𝑥+ + ||𝐹′𝑚𝑎𝑥− ||

2 ⋅ 𝐹𝑚𝑎𝑥
, (4)

where 𝐹max = 𝐹𝑦 ⋅ [1 + 𝛼ℎ ⋅ (𝜇 − 1)] is the maximum restoring force reached along the hardening branch of the initial
backbone when pushed at ductility 𝜇 under static loading (i.e., in the absence of cyclic strength degradation), 𝐹𝑦 and 𝛼ℎ
are the yield force and hardening slope of the intact structure, respectively; 𝐹′𝑚𝑎𝑥± is the maximum force in both the
horizontal loading directions, that corresponds to the same ductility on the deteriorated backbone after the system has
been subjected to cyclic loading; that is, on the pushover of the damaged structure, as shown in Figure 1C (the evaluation
of 𝐹′𝑚𝑎𝑥+ and 𝐹′𝑚𝑎𝑥− and is performed upon the backbones of the damaged structure that have been shifted from the
initial point of equilibrium by the residual displacement 𝛿𝑟𝑒𝑠 ). Hereafter, 𝐹′𝑚𝑎𝑥 is used to express the deteriorated lateral
resistance at maximum ductility demand, evaluated as 𝐹′𝑚𝑎𝑥 = 1∕2 ⋅ (𝐹′𝑚𝑎𝑥+ + |𝐹′𝑚𝑎𝑥− |), which simplifies Equation (4)
to Δ𝑅 = 1 − 𝐹′𝑚𝑎𝑥∕𝐹𝑚𝑎𝑥. Because these parameters are affected by record-to-record variability, the model developed
treats parameters 𝐶𝜇, Δ𝑇 and Δ𝑅 as random variables (RVs). The objective of the model is to provide their conditional
joint probability distribution, given the maximum transient ductility demand 𝜇 = 𝛿𝑚𝑎𝑥∕𝛿𝑦 that has been induced by an
earthquake shock to a series of SDoF oscillators. That joint distribution of the three RVs, in turn, enables the definition of
a set of pushover curves representing multiple realizations of the corresponding structure at a damage state 𝐷𝑆𝑖 , that can
be associated with ductility demand 𝜇.
Overall, the SDoF systems considered for the development of the predictive model had eight different periods of natu-

ral vibration; that is, 𝑇 = {0.3𝑠, 0.6𝑠, 0.9𝑠, 1.0𝑠, 1.2𝑠, 1.5𝑠, 1.8𝑠, 2.0𝑠} , eight distinct hardening stiffness ratios ranging from
zero to ten percent of the elastic stiffness, 𝛼ℎ = {0%, 0.5%, 1%, 2%, 3%, 4%, 5%, 10%} and four levels of cyclic strength degra-
dation. These cyclic strength degradation levels will be hereafter arbitrarily referred to as cases of low-, medium- and
high-degradation, also including a non-degrading case. This conventional labelling of the three degradation levels was
calibrated so that Δ𝑅 would result approximately equal to 0.20, 0.30 and 0.40 for the low-, medium- and high-degradation
levels, respectively, at the end of a displacement-controlled quasi-static cyclic loading, as shown in Figure 3 (for more
details on the degradation-controlling parameters of the modified IMK rule, the interested reader can consult the work
of Lignos and co-authors).22 The loading protocol used for this definition based on Δ𝑅, which is used to quantify loss of
strength as illustrated in the figure, consisted of performing two symmetric full cycles, gradually increasing ductility from
𝜇 = 2 to 6 in five steps. For the sake of parsimony in notation, the index DL is hereafter used to distinguish the SDoF
systems according to level of strength degradation, taking values of 0, 1, 2 and 3 in order to indicate: no degradation, low,
medium and high levels of degradation, respectively.
The combination of all these variants led to a total of two-hundred and fifty-six inelastic SDoF systems used in the

analyses that will be described in what follows. Each SDoF oscillator was modelled numerically using the OpenSees
platform (Open System for Earthquake Engineering Simulation)28 via the DYANAS software,12 and subjected to a suite of
one hundred single-horizontal-component earthquake ground motions, selected from the NESS dataset.29 These records
were recorded on firm soil at a closest-to-rupture-plane distance ranging from 0 to 44.5 km and were produced by
earthquakes with moment magnitude belonging to the 6.1–7.6 range. The records are devoid of apparent pulse-like direc-
tivity effects and exhibit peak ground acceleration ranging from 0.05 to 1.40 g. Each accelerogram was iteratively scaled
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F IGURE 4 Examples of regression of 𝛿𝑟𝑒𝑠∕𝛿𝑚𝑎𝑥 against ln(Δ𝑇) and against ln(Δ𝑅), highlighting their (negative) linear correlation.
Shown here are the cases of an SDoF system with 𝛼ℎ = 1%, 𝑇 = 1.0𝑠 and 𝜇 = 5 without strength deterioration (A); 𝛼ℎ = 5%, 𝑇 = 1.2𝑠 and
𝜇 = 4 with a medium level of strength deterioration (B); 𝛼ℎ = 10%, 𝑇 = 1.2𝑠 and 𝜇 = 4 with a high level of strength deterioration (C).

via IDA5 to result in nine levels of ductility demand for each SDoF structure, specifically 𝜇 = {1.5, 2, 3, 4, 5, 6, 7, 8, 9} .
It is recalled that all these ductility values end-up on the hardening branch of the oscillators’ backbones, with no in-
cycle degradation being involved in the inelastic excursions. The viscous damping ratio of all SDoF models was set
at 𝜉 = 5%.
At the end of each dynamic analysis, during which the SDoF systems reach fixed ductility levels, whose attainment can

be regarded as defining a damage level for the structure, the residual displacement 𝛿𝑟𝑒𝑠 is recorded and a static pushover
analysis is performed, in both positive and negative loading directions. Zero-padding the end of the acceleration record
provides the time needed for damping-out any remaining velocity of the mass, prior to the measurement of 𝛿𝑟𝑒𝑠 and
onset of the pushover. Therefore, for each SDoF system and fixed ductility demand, one-hundred manifestations of the
damaged structure’s static pushover curve are obtained, from which the degraded reloading stiffness 𝐾′ and deteriorated
lateral resistance at maximum ductility demand 𝐹′𝑚𝑎𝑥 can be measured, along with 𝛿𝑟𝑒𝑠. These analytical results are
subsequently used for the development of the model.

2.2 Model for residual displacement

The analyses described in the preceding section provided samples of residual displacement 𝛿𝑟𝑒𝑠, remaining at the end of
a seismic excitation causing given displacement demand 𝛿𝑚𝑎𝑥. This is accompanied by the post-event backbone of the
SDoF system, which means that the corresponding stiffness- and possible strength-degradation can be quantified. This
data is used to derive a model for 𝐶𝜇 = 𝛿𝑟𝑒𝑠∕𝛿𝑚𝑎𝑥 .
The natural logarithm of the relative increase in period ln(Δ𝑇), already defined in Equation (3), is the chosen measure

of stiffness degradation. Strength degradation is quantified via ln(Δ𝑅), with Δ𝑅 given by Equation (4). Note that the few
cases exhibiting Δ𝑅 > 0.50, that is, loss of lateral resistance exceeding fifty percent of the initial, were held to represent
situations of incipient collapse and were not given further consideration.
The starting point for defining the model is the relation that was observed between the ratio of residual to peak tran-

sient displacement 𝐶𝜇 and ln(Δ𝑇), for the simplest case where strength degradation is absent. It was observed30 that
𝐶𝜇 exhibits persistently negative correlation with ln(Δ𝑇), for varying 𝑇, 𝜇 and 𝛼ℎ, that is, the correlation coefficient,31
𝜌ln(Δ𝑇),𝐶𝜇 , between these two quantities ranges from −0.50 to −0.99 with |𝜌ln(Δ𝑇),𝐶𝜇 | ≥ 0.7 for the majority of cases
examined, with the few exceptions corresponding to cases of ductility demand of 𝜇 ≥ 7.0, and some of the longer peri-
ods of natural vibration considered; that is, 𝑇 ≥ 1.8𝑠. This is illustrated in Figure 4A, where one-hundred 𝛿𝑟𝑒𝑠∕𝛿𝑚𝑎𝑥
responses against the corresponding ln(Δ𝑇) values are plotted, along with the regression line of the former versus the
latter.
Both 𝛿𝑟𝑒𝑠 and 𝛿𝑚𝑎𝑥 preserve their sign in this formulation, so that the ratio becomes negative when the two occur

in opposite directions. Furthermore, the same level of negative correlation between 𝐶𝜇 and ln(Δ𝑇) also persists in the
case of SDoF systems exhibiting cyclic strength deterioration, which can be seen in the second panel of the figure. For
example, the cases shown in the first two panels of Figure 4 are characterized by 𝜌ln(Δ𝑇),𝐶𝜇 equal to −0.93 and −0.88,
respectively.
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F IGURE 5 Central tendency and standard deviation of the model for the residual displacements in case of absent strength deterioration.
Central tendency for 𝛼ℎ = 0 and multiple ductility demands (A); central tendency for 𝛼ℎ = 0 and 𝜇 = 5 (B); central tendency for 𝛼ℎ = 0

and 𝜇 = 8 (C); standard deviation 𝜎𝛿 for 𝛼ℎ = 3% (D).

In cases with cyclic strength degradation, a negative correlation was also observed between 𝐶𝜇 and ln(Δ𝑅), across all 𝑇,
𝜇 and 𝛼ℎ considered (see Figure 4C), with correlation coefficients ranging from −0.3 to −0.8, and with |𝜌ln(Δ𝑅),𝐶𝜇 | ≥ 0.5

for the majority of analyzed cases. Based on this observed trend, a linear model was adopted for the expected value of
𝐶𝜇 in case of no strength degradation ( 𝐷𝐿 = 0 ). In this case, the slope and intercept of the model are only func-
tions of the ductility demand 𝜇 and of the post-yield hardening ratio 𝛼ℎ. Thus, the model for 𝐶𝜇 without strength
degradation is:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐶𝜇 = 𝜃1 ⋅ ln (Δ𝑇) + 𝛽1 + 𝜀0 ⋅ 𝜎𝛿

𝜃1 = 𝑏𝐶1 + 𝑏𝐶2 ⋅
√
𝜇 − 1 + 𝑏𝐶3 ⋅ 𝛼ℎ

𝛽1 = 𝑐𝐶1 + 𝑐𝐶2 ⋅
√
𝜇 − 1 + 𝑐𝐶3 ⋅ 𝛼ℎ ⋅

√
𝜇 − 1

𝜎𝛿 = 𝑑𝐶1 ⋅ 𝑇 + 𝑑𝐶2 ⋅ (𝜇 − 1) + 𝑑𝐶3 ⋅ 𝛼ℎ + 𝑑𝐶4 ⋅ 𝛼ℎ ⋅ (𝜇 − 1) + 𝑑𝐶5 ⋅ (𝜇 − 1) ⋅ 𝑇 ⋅ 𝛼ℎ

(5)

where 𝜀0 is a standard Normal random variable, 𝜃1 and 𝛽1 represent the slope and intercept of the model and 𝜎𝛿 is the
standard deviation of the regression residuals. 𝜃1 and 𝛽1 are modelled as functions of 𝜇 and 𝛼ℎ. The model parameters,
𝑏𝐶k and 𝑐𝐶𝑘 with 𝑘 = 1, 2, 3, were estimated by means of robust regression31 of 𝐶𝜇 against {ln(Δ𝑇),𝜇,𝛼ℎ} using iteratively
re-weighted least squares with bisquare weighting. The analytical form of the model for 𝜃1 and 𝛽1 was determined by per-
forming preliminary linear regressions against the analysis results, separately for the various SDoF systems and ductility
levels considered (e.g., Figure 4) and observing the variation of these two parameters with respect to 𝜇, 𝛼ℎ and Δ𝑇 graph-
ically. The heterogeneity of data around the mean, expressed via the standard deviation of the logs 𝜎𝛿, was found to be
non-constant, varying with themodel covariates, and was thusmodelled using least-squares curve-fitting of the analytical
expression in Equation (5).
Figure 5 shows a plot of the models for 𝛿𝑟𝑒𝑠∕𝛿𝑚𝑎𝑥 and standard deviation 𝜎𝛿 in case of 𝐷𝐿 = 0. Panel (A) refers to the

case of 𝛼ℎ = 0 and for the cases with 𝜇 = 5 and 𝜇 = 8 in panels (B) and (C), respectively, whereas the remaining plot
shows the model of standard deviation 𝜎𝛿 in the case of 𝛼ℎ = 3%.
The model for 𝐶𝜇 in case of 𝐷𝐿 = 1, 2, 3 was defined as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐶𝜇 = 𝜃1 ⋅ ln (Δ𝑅) + 𝛽1 + 𝛾1 ⋅ ln(Δ𝑅)
−2
+ 𝜀0 ⋅ 𝜎𝛿

𝜃1 = 𝑏𝐶1 + 𝑏𝐶2 ⋅
√
𝜇 − 1 + 𝑏𝐶3 ⋅ 𝛼ℎ

𝛽1 = 𝑐𝐶1 + 𝑐𝐶2 ⋅
√
𝜇 − 1 + 𝑐𝐶3 ⋅ 𝛼ℎ ⋅

√
𝜇 − 1

𝜎𝛿 = 𝑑𝐶1 ⋅ 𝑇 + 𝑑𝐶2 ⋅ (𝜇 − 1) + 𝑑𝐶3 ⋅ 𝛼ℎ + 𝑑𝐶4 ⋅ (𝜇 − 1)
2

(6)
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deviation 𝜎𝛿 in the case of 𝛼ℎ = 1% (B).
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F IGURE 7 Examples of correlation between ln(Δ𝑇) and ln(Δ𝑅) for an SDoF system with 𝛼ℎ = 5%, 𝑇 = 0.3𝑠 and 𝜇 = 6 in case of low
level of strength deterioration (A); medium level of strength deterioration (B) and high level of strength deterioration (C).

The model of the expected value of 𝐶𝜇 in case of 𝐷𝐿 = 1, 2, 3 is a function of the variable ln(Δ𝑅) and includes a
non-linear term, that is ln(Δ𝑅)−2. Also in this case, 𝜃1 and 𝛽1 are expressed as linear combinations of various simple
functions of 𝜇 and 𝛼ℎ. The parameters 𝑏𝐶k and 𝑐𝐶𝑘 with 𝑘 = 1, 2, 3 and model parameter 𝛾1 are again estimated using
robust regression, applied for each 𝐷𝐿 separately. Standard deviation 𝜎𝛿 was found to be non-constant in these cases as
well, and was modelled, by means of least-squares curve-fitting, as shown in Equation (6). The figure below shows an
example of the 𝛿𝑟𝑒𝑠∕𝛿𝑚𝑎𝑥 from the model (Figure 6A) and 𝜎𝛿 (Figure 6B) for a system with 𝛼ℎ = 1%, 𝜇 = 6 and 𝑇 = 0.6𝑠,
considering 𝐷𝐿 = 2.
The alternative use of the predictor variables ln(Δ𝑇) and ln(Δ𝑅) in the regression model of Equations (5) and (6) can

be justified by the correlation between these two random variables observed for all 𝐷𝐿 and 𝑇, 𝜇, 𝛼ℎ ranges considered,
as shown in Figure 7. Completeness of the model required the definition of the joint distributions of 𝐶𝜇, ln(Δ𝑅) and
ln(Δ𝑇) in case of strength degradation, or that of 𝐶𝜇 and ln(Δ𝑇) in the case where strength degradation is absent. To
this end, the relationship between ln(Δ𝑇) and ln(Δ𝑅) was examined and Mardia’s test32 was performed with the null
hypothesis being that the two are jointly Normal distributed, for given initial characteristics of the structure 𝑇 , 𝛼ℎ, 𝐷𝐿
and for a fixed ductility demand 𝜇. The results showed that in almost all cases the null hypothesis could not be rejected at
a 5% significance level. Based on this result, it was assumed that {ln(Δ𝑇), ln(Δ𝑅)} is a bivariate Gaussian random vector,
whose joint distribution can be completely defined knowing the marginal distributions of ln(Δ𝑇) and ln(Δ𝑅), and their
correlation coefficient, 𝜌ln(Δ𝑇),ln(Δ𝑅).

2.3 Model for period elongation

The model for period elongation was first developed for the case of no strength degradation, 𝐷𝐿 = 0, with subsequent
modifications introduced for the three levels 𝐷𝐿 = 1, 2, 3. The marginal distribution of period elongation was defined
assuming a Lognormal model for Δ𝑇. The functional form adopted for the expected value of Δ𝑇 stems from observing
trends of Δ𝑇 data against the inelastic portion of the ductility demand, (𝜇 − 1), for each pair of 𝑇 and 𝛼ℎ. Fitting of the
model’s parameters to the data was performed via weighted least squares regression because of the non-constant variance
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F IGURE 8 Model for period elongation in case of no strength degradation. Model for the central tendency of period elongation (A);
median period elongation for 𝛼ℎ = 0.03 (B) and for 𝛼ℎ = 0.05 (C).

μ-1

Δ
T D

L
=

1
,2

,3

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5
Mean Data ΔT

from Equation ( )8ΔTDL=1

DL=1 Mean Data ΔT
from Equation ( )8ΔTDL=2

DL=2 Mean Data ΔT
from Equation ( )8ΔTDL=3

DL=3

α =0.0% α =2.0%
h

α =5.0%
hh

(A) (B) (C)

F IGURE 9 Increments in terms of Δ𝑇 for the three levels 𝐷𝐿 = 1, 2, 3 in case of 𝛼ℎ = 0 (A); 𝛼ℎ = 2% (B) and 𝛼ℎ = 5% (C).

and the analytical form of the model in case of 𝐷𝐿 = 0 is reported in Equation (7):{
Δ𝑇 = 𝑏𝑇1 + 𝑏𝑇2 ⋅ 𝛼ℎ ⋅ 𝜇

−1∕2 + 𝑏𝑇3 ⋅ 𝛼ℎ ⋅ 𝜇 + 𝑏𝑇4 ⋅ 𝜇
1∕2

𝜎Δ𝑇 = 𝑑𝑇1 + 𝑑𝑇2 ⋅ Δ𝑇
(7)

where Δ𝑇 is the mean of the Lognormal model with standard deviation 𝜎Δ𝑇 , which is estimated as the standard error of
the regression residuals. The terms 𝑏𝑇k with 𝑘 = 1, .., 4 are the model parameters.
An analytical expression was also proposed for expressing 𝜎Δ𝑇 as a function only of Δ𝑇. The parameters 𝑑𝑇 𝑘, 𝑘 =

1, 2, appearing in Equation (7) are estimated from curve-fitting against the regression residuals for the level of strength
degradation 𝐷𝐿 = 0. Figure 8 shows a graph of the model, highlighting the dependence of its central tendency on 𝛼ℎ
and 𝜇, with panels (b) and (c) showing the expected value for period elongation in absence of strength degradation for the
cases of 𝛼ℎ = 0.03 and 𝛼ℎ = 0.05.
It was observed that the Δ𝑇 data for 𝐷𝐿 = 1, 2, 3 followed a trend similar to 𝐷𝐿 = 0, with somewhat larger values, on

average. For this reason, this part of the model was developed by processing the data of each degradation level separately
and modelling the differences obtained between the data and the expected value of Δ𝑇 from Equation (7). In the end, the
period elongation mean, Δ𝑇𝐷𝐿 = 1,2,3, was evaluated by adding to Δ𝑇 another two terms with some dependence on 𝜇, as
shown in Equation (8): {

Δ𝑇𝐷𝐿=1,2,3 = Δ𝑇 + 𝑏𝑇5 + 𝑏𝑇6 ⋅ 𝜇
2

𝜎Δ𝑇,𝐷𝐿=1,2,3 = 𝑑𝑇1 + 𝑑𝑇2 ⋅ Δ𝑇𝐷𝐿 = 1,2,3

. (8)

In the cases of𝐷𝐿 = 1, 2, 3, the standard deviation of period elongation, 𝜎Δ𝑇,𝐷𝐿 = 1,2,3 was alsomodelled as a function of
the mean, Δ𝑇𝐷𝐿 = 1,2,3. The parameters 𝑏𝑇5, 𝑏𝑇6, 𝑑𝑇1, 𝑑𝑇2, were calibrated for each level of strength degradation. Figure 9
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F IGURE 10 Model for strength loss for the case of low-level strength degradation. Model for mean ln(Δ𝑅) in case of 𝛼ℎ = 0.01 (A);
central tendency of strength reduction in case of 𝛼ℎ = 0.01 and 𝑇 = 0.6 𝑠 (B); central tendency of strength reduction in case of 𝛼ℎ = 0.01 and
𝑇 = 1.5 𝑠 (C); model of standard deviation 𝜎ln(Δ𝑅) (D).

shows the Δ𝑇 increments for the three levels of strength degradation in cases of 𝛼ℎ = 0, 𝛼ℎ = 2% and 𝛼ℎ = 5%.

2.4 Model for strength loss

Themodel for strength loss provides the Δ𝑅 parameter of the post-shock structure at a fixed ductility demand 𝜇, given the
initial characteristics of the structure 𝑇 , 𝛼ℎ and 𝐷𝐿. The data showed a linear trend of Δ𝑅 with (𝜇 − 1), in log-space, for
each pair of 𝑇 and 𝛼ℎ and for each level of strength degradation. The proposed model is:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ln (Δ𝑅) = 𝜃3 ⋅ ln (𝜇 − 1) + 𝛽3 + 𝜀2

𝜃3 = 𝑏𝑅1 + 𝑏𝑅2 ⋅ 𝛼ℎ

𝛽3 = 𝑐𝑅1 + 𝑐𝑅2 ⋅ 𝛼ℎ + 𝑐𝑅3 ⋅ 𝑇 + 𝑐𝑅4 ⋅ 𝑇
2

𝜎ln(Δ𝑅) = 𝑑𝑅1 + 𝑑𝑅2 ⋅ 𝑇 + 𝑑𝑅3 ⋅ 𝑇
2 + 𝑑𝑅4 ⋅ (𝜇 − 1) + 𝑑𝑅5 ⋅ (𝜇 − 1)

2

. (9)

The central trend of ln(Δ𝑅) was found to exhibit some dependence on the initial period of natural vibration, 𝑇, and
on the post-yield hardening ratio 𝛼ℎ. In Equation (9), the parameters 𝑏𝑅k with 𝑘 = 1, 2 and 𝑐𝑅𝑘 with 𝑘 = 1, .., 4, were
evaluated by curve fitting of the results performed for each level of strength degradation using a weighted least squares
regression because of the non-constant variance. The term 𝜀2 is a zero mean Gaussian variable with standard deviation
𝜎ln(Δ𝑅), which was estimated as the standard error of the regression residual and was found to be dependent on the period
of the intact structure and the ductility demand, as reported in Equation (9). The parameters 𝑑𝑅𝑘, 𝑘 = 1, 2, .., 5 appearing
in Equation (9), were estimated from curve-fitting against the regression residuals. Examples of the models for the mean
and standard deviation of ln(Δ𝑅) are reported in Figure 10. The first panel of the figure shows the model for the mean of
ln(Δ𝑅) for a system with hardening slope 𝛼ℎ = 0.01 and low strength deterioration level, while the last panel shows the
model of 𝜎ln(Δ𝑅) for the same level of degradation.
To define the joint distribution of ln(Δ𝑇) and ln(Δ𝑅), the definition of the covariancematrix Σ of the bivariate Gaussian

vector {ln(Δ𝑇), ln(Δ𝑅)} is needed:

Σ =

[
𝜎2
ln(Δ𝑇)

𝜎ln(Δ𝑇) ⋅ 𝜎ln(Δ𝑅) ⋅ 𝜌ln(Δ𝑇),ln(Δ𝑅)

𝜎ln(Δ𝑇) ⋅ 𝜎ln(Δ𝑅) ⋅ 𝜌ln(Δ𝑇),ln(Δ𝑅) 𝜎2
ln(Δ𝑅)

]
. (10)

The covariance matrix is defined by the (estimated) standard deviations of the logarithms of period elongation 𝜎ln(Δ𝑇)
and strength loss 𝜎ln(Δ𝑅) and their (estimated) correlation, 𝜌ln(Δ𝑇),ln(Δ𝑅), with the standard deviations being obtainable
from Equations (8) and (9) . The correlation coefficient 𝜌ln(Δ𝑇),ln(Δ𝑅) was modelled as a linear function of the ductility
demand and hardening slope until a transition ductility 𝜇𝑡 is reached:

 10969845, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.4105 by iunio iervolino - C

ochraneItalia , W
iley O

nline L
ibrary on [09/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ORLACCHIO et al. 2109

ρ
ln

(
),l

n(
)

Δ
Δ

T
R

estimated
for and  =0.04 =2 from Eq. (1 )DL 1ρ ln( ),ln( )Δ ΔT R
ρln( ),ln( )Δ ΔT R

0.65

2 24 46 68 8

0.75

0.85

0.95

μ μ

αh

μt

μt

(A)     (B)       

F IGURE 11 Model for 𝜌ln(Δ𝑇),ln(Δ𝑅) in case of medium strength degradation and 𝛼ℎ = 0.04 for 𝑇 < 1.5 s (A) and 𝑇 ≥ 1.5 s (B).

𝜌ln(Δ𝑇),ln(Δ𝑅) = 𝑒1 + 𝑒2 ⋅ (𝜇 − 1) + 𝑒3 ⋅ 𝛼ℎ 1.5 ≤ 𝜇 ≤ 𝜇𝑡. (11)

In case of 𝜇 > 𝜇𝑡, 𝜌ln(Δ𝑇),ln(Δ𝑅) varies only as function of 𝛼ℎ and can be evaluated from Equation (11) assuming 𝜇 = 𝜇𝑡 .
The value of 𝜇𝑡 differs by level of strength degradation, that is, it is assumed equal to 7 for 𝐷𝐿 = 1 ; 6 for 𝐷𝐿 = 2 and
5 for 𝐷𝐿 = 3 based on data observation. The coefficients 𝑒𝑘, 𝑘 = 1, 2, 3 in Equation (11) were defined by curve-fitting
of the results performed separately for each level of strength degradation. Moreover, it was necessary to distinguish the
fitting procedure of the model parameters into two separate cases 𝑇 < 1.5s and 𝑇 ≥ 1.5s. Figure 11 shows the model of
𝜌ln(Δ𝑇),ln(Δ𝑅) evaluated for the medium strength degradation and 𝛼ℎ = 0.04 for the case of 𝑇 < 1.5s and 𝑇 ≥ 1.5s.
All the coefficients in the equations from Equations (5) to (11) are reported in tabular form in Orlacchio (2022)33 and

also as an electronic supplement to the present paper (see Data availability section).

2.5 Model implementation and validation

Once the models for period elongation, strength deterioration and residual displacement have been completely specified,
it is possible to determine the joint distribution of {ln(Δ𝑇), ln(Δ𝑅), 𝐶𝜇}, given the ductility demand 𝜇, period 𝑇, hardening
slope 𝛼ℎ and the level of strength degradation𝐷𝐿. The implementation discussed herein relies onMonte Carlo simulation,
the first step of which entails selecting fixed values of 𝜇, 𝑇, 𝛼ℎ, and DL, and then calculating ln(Δ𝑅), and 𝜎ln(Δ𝑅) via
Equation (9). Then, a realization of ln (Δ𝑅) = 𝑥𝑖 is extracted from a normal distribution having these parameters (here
i subscript indicates that the context is that of the i-th out of N programmed simulations). At this point, it is possible to
define the distribution of ln(Δ𝑇) conditional on ln (Δ𝑅) = 𝑥𝑖 as:

⎧⎪⎨⎪⎩
E [ln (Δ𝑇) |ln (Δ𝑅) = 𝑥𝑖 ] = ln (Δ𝑇) + 𝜌ln(Δ𝑇),ln(Δ𝑅) ⋅ (𝜎ln(Δ𝑇)∕𝜎ln(Δ𝑅)) ⋅ [𝑥𝑖 − ln (Δ𝑅)]

𝜎ln(Δ𝑇)|ln(Δ𝑅) =
√(

1 − 𝜌2
ln(Δ𝑇),ln(Δ𝑅)

)
⋅ 𝜎2

ln(Δ𝑇)

, (12)

where E[ln(Δ𝑇)|ln (Δ𝑅) = 𝑥𝑖 ] represents the conditional mean of ln(Δ𝑇) and 𝜎ln(Δ𝑇)|ln(Δ𝑅) the conditional standard
deviation. Both Normal distribution parameters ln(Δ𝑇) and 𝜎ln(Δ𝑇) are calculated from Equation (8) using known trans-
formations from the lognormal model parameters Δ𝑇 and 𝜎Δ𝑇 . Then, a value of ln (Δ𝑇) = 𝑦𝑖 is sampled from the Normal
distribution whose parameters are given by Equation (12). Finally, the conditional mean and standard deviation of the
ratio 𝐶𝜇 is evaluated from Equation (6) given the sampled vector of {𝑥𝑖, 𝑦𝑖} and the i-th random sample of 𝐶𝜇,𝑖 = 𝑧𝑖 is
extracted from the corresponding Normal distribution. (In the case of no strength degradation, the Monte-Carlo scheme
degenerates into sampling a value ln (Δ𝑇) = 𝑦𝑖 , from the marginal distribution of ln(Δ𝑇), and then directly sampling
𝛿𝑟𝑒𝑠∕𝛿𝑚𝑎𝑥 = 𝑧𝑖 from its conditional distribution.)
By repeating the sampling procedure an arbitrary number of times, say N, one can obtain a representation of the joint

densities of these RVs in the form of relative frequency diagrams of the sampled values. An example of such a represen-
tation is reported in Figure 12, which was constructed using one million samples. A feature that is worth commenting
is the slight distortion exhibited by the simulated joint distribution of period elongation and residual displacement ratio,
shown in Figure 12B, towards the region of higher ln(Δ𝑇) values. This can be attributed to the contribution of the non-
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F IGURE 1 2 Monte-Carlo-based representation (relative frequency) of the joint distribution of period elongation and strength reduction
(A), of period elongation and residual displacement (B), of strength reduction and residual displacement (C), for the case of ductility demand
𝜇 = 4, post-yield hardening ratio 𝛼ℎ = 3%, period of the initial structure 𝑇 = 0.8 𝑠 and medium level of strength degradation; Monte Carlo
based representation of the marginal distribution of 𝐶𝜇 (D); flowchart of the simulation procedure in the context of the proposed
methodology for state-dependente fragiltity assessment on the left side.

linear terms involving ln(Δ𝑅) in Equation (9). For the same reason, there is a similar effect visible in the shape of the joint
density of 𝐶𝜇 and ln(Δ𝑅) in panel c.
Each sample of the random vector {ln(Δ𝑇), ln(Δ𝑅), 𝐶𝜇} obtained according to the procedure described enables to uni-

vocally define the corresponding bilinear backbone curve of the SDoF oscillator at the end of a seismic excitation causing
a given ductility demand. In other words, the Monte-Carlo simulation provides realizations of the post-shock pushover
curve of the SDoF system, representing a relation of the damaged state of the considered system, as illustrated in Figure 13.
This figure shows the coordinates of the points defining the initial and post-shock curve in the displacement-force plane,
using the notation with primes for the parameters of the damaged system. The elastic branch of the damaged system’s
pushover can be determined by evaluating the yield force 𝐹′𝑦± and displacement 𝛿′𝑦± in the positive and negative direc-
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F IGURE 13 Parameters defining the pushover curves; parameters for the definition of the intact structure’s pushover curve (A); and of
the post-shock pushover curve (B).

tions, whereas the post-yield branch is defined by the hardening slope 𝛼′ℎ, the capping point displacements in the two
directions, 𝛿′𝑐± and corresponding forces 𝐹′𝑐± . The relations allowing to assess the parameters defining the post-shock
curve as function of the parameters defining the pushover curve of the initial structure and the ductility demand are:

⎧⎪⎪⎨⎪⎪⎩
𝐹′𝑦± =

[
𝐹′max − 𝐹

′
max ⋅

𝛼ℎ

𝛿𝑦
⋅

𝐹𝑦

𝐹max
⋅
(
𝜇 ⋅ 𝛿𝑦 ∓ 𝛿𝑟𝑒𝑠

)]/[
1 −

𝐹′max

𝐹max
⋅ 𝛼ℎ ⋅

(
𝑇′

𝑇

)2]
𝛿′𝑦± = 𝛿𝑦 ⋅

𝐹′𝑦±

𝐹𝑦
⋅
(
𝑇′

𝑇

)2
± 𝛿𝑟𝑒𝑠, 𝛼

′
ℎ = 𝛼ℎ ⋅

𝐹′max

𝐹max
⋅

(
𝐹𝑦

𝐹′𝑦±
⋅
𝛿′𝑦±∓𝛿𝑟𝑒𝑠

𝛿𝑦

) . (13)

It is worth recalling that themodel was developed considering only ductility demands thatmaintain structural response
displacement along the hardening branch, without crossing into any potential softening branch where in-cycle strength
degradation would occur. In the example shown in the figure, the capping point and softening branch are included solely
for illustrative purposes, under the arbitrary assumption that the post-cap slope 𝛼𝑐 and rupture displacement 𝛿𝑓 would
remain invariant during the system’s transition from intact to damaged.
A twofold validation of the predictive model was undertaken. First, the distributions of 𝐶𝜇 resulting from the model via

theMonte-Carlo resampling schemewere comparedwith the data used for the development of themodel for various SDoF
systems and ductility demands. Subsequently, for a single case, the damaged structure pushovers predicted by the model
were compared to dynamic and static non-linear analysis results of multiple-degree of freedom (MDoF) systems. For the
first case, the validation was made by calculating the 25th, 50th and the 75th percentiles of residual displacement ratio for
each combination of 𝜇, 𝛼ℎ, 𝑇 and 𝐷𝐿 and comparing the results from the resampling procedure with the corresponding
percentiles estimated from the initial data set. For the sake of brevity, two comparisons are reported here as examples,
showing general agreement of the distribution percentiles obtained from the model with those of the data set used in
the regressions. Figure 14 shows the results obtained for the case of no strength degradation ( 𝐷𝐿 = 0 ) and 𝛼ℎ = 0.01

considering 𝜇 between 1.5 and 9.0 and four natural vibration periods 𝑇 (i.e. 0.3, 0.9, 1.2, 1.8 s). Figure 15 shows the results
obtained for the case of high strength degradation ( 𝐷𝐿 = 3 ) and 𝛼ℎ = 0.02 for all the values of 𝜇 from 1.5 to 9.0 and
the same four 𝑇 as the previous figure (i.e. 0.3, 0.9; 1.2; 1.8 s). In both the figures, the results obtained from the model
are represented using black lines (dashed lines for 25th and 75th percentiles and solid line for the 50th percentile). On
the other hand, the reference data are reported using a box plot representation in which the central mark indicates the
median, and the top and the bottom edges of the box indicate the 25th and 75th percentiles, respectively.
For the second instance of model validation, three moment-resisting frames (MRFs) were used: a reinforced concrete

(RC) four-story MRF without masonry infills and two steel perimeter MRFs. All are fixed-base plane models, with the RC
MRF shown in Figure 16A. A lumped plasticity approach was adopted for modelling nonlinear structural behavior, using
multi-linear moment-plastic rotation relations and the modified IMK model without cyclic strength degradation for the
definition of the hysteretic behaviour. The RCMRF has a first-mode period of natural vibration equal to 0.53 and exhibits
first-mode dominated dynamic elastic response with a participating mass ratio at the first mode close to 90%. Capacity
design against shear means that inelastic response of the constituent beams and columns is flexure-dominated.
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F IGURE 14 Comparison of the summary statistics in case of no strength degradation and 𝛼ℎ = 0.01% for periods equal to 0.3 s (A); 0.9 s
(B); 1.2 s (C); and 1.8 s (D).
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F IGURE 15 Comparison of the summary statistics in case of high level of strength degradation and 𝛼ℎ = 0.02% for periods equal to 0.3 s
(A); 0.9 s (B); 1.2s (C); and 1.8 s (D).
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F IGURE 16 Comparison of model predictions with dynamic analysis results of the RC MRF: characteristics of the example four-story
frame (A); pushover of the frame and equivalent SDoF backbone (B); IDA curves of the MDoF structure (C); pushover curves for the damaged
frame after each record (D); comparison of predicted and empirical distributions of the stiffness reduction (E) and residual roof drift ratio (F).
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ORLACCHIO et al. 2113

TABLE 1 Mean and standard deviation defining the distributions of the period elongation and of the constant-ductility residual
displacement ratio.

Structure 𝐥𝐧(𝚫𝑻) 𝝈𝐥𝐧(𝚫𝑻) 𝑪𝝁 𝝈𝜹

Four-storey RC MRF Predictive model 0.494 0.168 0.223 0.112
MDoF results 0.467 0.153 0.209 0.127

Two-storey steel MRF Predictive model 0.215 0.048 0.130 0.075
MDoF results 0.208 0.061 0.159 0.095

Four-storey steel MRF Predictive model 0.458 0.075 0.163 0.080
MDoF results 0.475 0.113 0.218 0.140

The two steel MRFs, a two- and a four-storey frame with first-mode periods of 0.94 and 1.21 s, respectively, are part
of a series of steel buildings designed for the purposes of a past study,34 where more detailed information on geometry
and dynamic properties can be found. Of these frames, the response of the four-storey steel MRF is the most sensitive to
higher-mode effects, having a first-mode participating mass ratio near 80% and influence of higher-mode effects doc-
umented in past work.18 For the purposes of this validation, equivalent SDoF systems were defined, based on static
nonlinear analyses that were carried out by applying a gradually increasing lateral force profile corresponding to each
structure’s first-mode excitation to base acceleration, shown for the RC frame in Figure 16B. The predictive model was
applied for the equivalent SDoF systems representative of the intact structure. The backbone of each equivalent SDoF
oscillator was obtained by dividing each frame’s pushover force and roof displacement values by the first-mode partic-
ipation factor, Γ, and obtaining a multi-linear approximation of the resulting curve. In the multi-linear approximation
for the RC MRF shown in the figure, Γ = 1.309 and the nominal yield point of the equivalent SDoF system is taken
to correspond to a roof drift ratio (RDR) of 0.0033, that is, the point of formation of a global plastic mechanism for
the structure, while its mass 𝑚∗, period 𝑇∗ and hardening slope 𝛼ℎ are 147 t, 0.77s and 0.017, respectively. It is arbi-
trarily assumed that entry of the frame into a generic damage state occurs when the RDR exceeds a threshold value of
0.01. The MDoF system was subjected to incremental dynamic analysis using as input a set of fifty acceleration records,
none of which were included in the suite of records employed for the development of the model. For the execution
of the IDA, the pseudo-acceleration at the fundamental period of vibration, 𝑆𝑎(𝑇1), was assumed as intensity mea-
sure. Similar to the methodology used to develop the predictive model and presented in the previous paragraphs, the
IDA results were used to determine the scale factor needed for each record to bring the structure at assumed damage
state threshold, that is, a RDR of 0.01 (Figure 16C). Subsequently, the records thus scaled were used for the execu-
tion of dynamic analyses that were immediately followed by static non-linear analyses, again mimicking the previously
described analysis methodology, resulting in different realizations of the damaged structure’s pushover to be obtained,
as shown in Figure 16D. On the other hand, the damage state threshold assumed for the two steel MRFs was a RDR of
0.02.
From these analyses, the residual roof displacements of the frame structures, 𝛿𝑀𝐷𝑜𝐹𝑟𝑒𝑠 , were collected, along with

the pushovers of the damaged systems, which were then approximated via piece-wise linear functions, for the sake of
comparison with the results deriving from the application of the model. The mean and the standard deviation defin-
ing the distribution of the period elongation ln(Δ𝑇), from Equation (7) and the mean and standard deviation of the
constant-ductility residual displacement ratio 𝐶𝜇, obtained by means of Equation (5) and the Monte-Carlo simulation
procedure, were compared with the estimates obtained from the analysis results of the MDoF model and are reported in
Table 1.
The cumulative distribution functions of percentile loss of stiffness, Δ𝐾, and residual RDR, 𝛿𝑀𝐷𝑜𝐹𝑟𝑒𝑠 ∕𝐻𝑡𝑜𝑡, obtained by

means of the model and empirically using the RC frame’s analyses results are compared in Figure 16E, F. In the figure,
𝑥 represents a generic realization of the random variables Δ𝐾 and 𝛿𝑀𝐷𝑜𝐹𝑟𝑒𝑠 ∕𝐻𝑡𝑜𝑡, while the percentile loss of stiffness is
computed as Δ𝐾 = |(𝐾′ − 𝐾)∕𝐾| = |(𝑇∕𝑇′)2 − 1| . The same results for the two steel frames are shown in Figure 17. It
emerges that, for these case-study structures, the model was able to predict the statistics of the parameters defining the
loss of stiffness of the damaged frame structures. While the same can be said about the residual displacements of the RC
and two-storey steel MRFs, the results show somewhat larger values of mean and dispersion for the MDoF model of the
four-storey steel MRF, with respect to the equivalent SDoF predictions. This can be attributed to the larger influence of
higher modes to this frame’s seismic response, alluded to previously, suggesting that provisions for MDoF effects should
be taken in applications (to follow).
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F IGURE 17 Comparison of model predictions with dynamic analysis results of two steel MRFs: comparison of predicted and empirical
distributions of the stiffness reduction (A) and residual roof drift ratio (B).

3 STATE-DEPENDENT SEISMIC STRUCTURAL FRAGILITY

The proposed simplified procedure for deriving sets of state-dependent fragility curves, consists of obtaining an equiv-
alent SDoF system for the structure of interest, as described directly above, and then applying a parsimonious version
of back-to-back IDA to that simpler inelastic system. In the original back-to-back IDA, each IDA curve is the product
of two consecutively applied acceleration records: one scaled so as to bring the structure to the damage state 𝐷𝑆𝑖 and
another scaled to increasing levels (𝑖𝑚) of the ground-shaking intensity measure until the structural response reaches the
𝑒𝑑𝑝𝐷𝑆𝑗 |𝐷𝑆𝑖 threshold which signals the transition from damage state 𝐷𝑆𝑖 to 𝐷𝑆𝑗 , 𝑗 > 𝑖. Generally speaking, the shaking
intensity that will bring the structure to𝐷𝑆𝑖 is not known beforehand, so a full IDAneeds to be run before the back-to-back
analysis can start.
According to the procedure developed herein, the first part of back-to-back IDA can be replaced by generating a set

of backbone curves for an equivalent SDoF system, via the model presented. As discussed, these backbones represent
realizations of the damaged structure that has transitioned to 𝐷𝑆𝑖 due to a previous shock within an earthquake cluster.
The second phase of the procedure consists of subjecting each damaged SDoF realization to a single-record IDA, similar
to the analysis strategy used in an analogous context.35 The result of this procedure is a set of IDA curves that can be used
to evaluate the state-dependent fragilities. As with traditional IDA curves, the assessment of the state-dependent fragility
function can be conducted using the IM-based approach, which introduces the RV of shaking intensity causing transition
from damage state 𝐷𝑆𝑖 to 𝐷𝑆𝑗 , or 𝐼𝑀𝐷𝑆𝑗|𝐷𝑆𝑖 . Therefore, a lognormal state-dependent fragility can be defined as:

⎧⎪⎨⎪⎩
𝑃

[
𝐸𝐷𝑃 > 𝑒𝑑𝑝𝐷𝑆𝑗|𝐷𝑆𝑖 |𝐷𝑆𝑖 ∩ 𝐼𝑀 = 𝑖𝑚

]
= 𝑃

[
𝐼𝑀𝐷𝑆𝑗|𝐷𝑆𝑖 < 𝑖𝑚]

= Φ [(ln (𝑖𝑚) − 𝜂) ∕𝛽]

𝜂 = 𝑙𝑛
(
𝐼𝑀50%

𝐷𝑆𝑗|𝐷𝑆𝑖
)
, 𝛽 = 0.5 ⋅ 𝑙𝑛

(
𝐼𝑀84%

𝐷𝑆𝑗|𝐷𝑆𝑖∕𝐼𝑀16%
𝐷𝑆𝑗|𝐷𝑆𝑖

) (14)

where 𝜂 and 𝛽 are the parameters (median and logarithmic standard deviation) of the lognormal model for 𝐼𝑀𝐷𝑆𝑗|𝐷𝑆𝑖 ,
and where Φ(⋅) is the standard Gaussian (cumulative) function. According to the equation, these fragility parameters 𝜂
, 𝛽 are estimated based on the median and 84%,16% fractiles, respectively denoted as 𝐼𝑀50%

𝐷𝑆𝑗|𝐷𝑆𝑖 , 𝐼𝑀84%
𝐷𝑆𝑗|𝐷𝑆𝑖 and 𝐼𝑀16%

𝐷𝑆𝑗|𝐷𝑆𝑖 ,
obtained from analysis. More specifically, in the context of a complete back-to-back IDA analysis, these are the fractile
values from a sample of 𝑛 IDA curves, as shown in Figure 18, where 𝑖𝑚𝐷𝑆𝑗,𝑘 is the realization of the RV coming from the
k-th two-record sequence, 𝑘 = 1, .., 𝑛. In other words, 𝐼𝑀𝐷𝑆𝑗|𝐷𝑆𝑖 = 𝑖𝑚𝐷𝑆𝑗,𝑘 is the shaking intensity of the second shock
that causes 𝐸𝐷𝑃 = 𝑒𝑑𝑝𝐷𝑆𝑗 |𝐷𝑆𝑖 , after a previous shock has caused 𝐸𝐷𝑃 = 𝑒𝑑𝑝𝐷𝑆𝑗|𝐷𝑆0 .
In the context of the simplified procedure proposed here, 𝑖𝑚𝐷𝑆𝑗,𝑘 would represent a realization of the same RV but

coming from a single accelerogram acting on an SDoF system with backbone curve obtained from the k-th Monte-Carlo
simulation, according to the simulation procedure described earlier.
Note that, for the applications shown herein, all IDA curves use as intensity measure the spectral pseudo-acceleration

at the period on the intact structure, 𝑆𝑎(𝑇), and an 𝐸𝐷𝑃 that involves the maximum transient displacement, 𝛿𝑚𝑎𝑥. How-
ever, several studies have observed that maximum transient displacement alone may not be able to adequately capture
cumulative damage effects from multiple shocks.3,36 Case-in-point, it was shown in the previous paragraphs that, for
a given displacement demand, other structural parameters that can be said to be related to the degree of damage of a
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F IGURE 18 Example of (back-to-back) IDA curves and intensities causing damage state transition: transition EDP thresholds
dependent on residual displacements (A); translated IDA curves to align transition intensities (B); state-dependent fragility assessment via the
IM-based approach (C).

structure, such as the amount of stiffness or maximum restoring force lost, exhibit variability. It has also been suggested
that, due to this variability, displacement-based thresholds may have to be adjusted for the purposes of state-dependent
fragility definition,37 or more elaborate 𝐸𝐷𝑃𝑠 should be used instead.38 In this study, the amount of residual displace-
ment is also involved in the damage measure for state-dependent fragility assessment, by assuming that the transition
thresholds from damage state 𝐷𝑆𝑖 to 𝐷𝑆𝑗 can be obtained as:

𝛿𝐷𝑆𝑗|𝐷𝑆𝑖 = 𝛿𝐷𝑆𝑗|𝐷𝑆0 − |||𝛿𝑟𝑒𝑠,𝐷𝑆𝑖 ||| (15)

where 𝛿𝐷𝑆𝑗|𝐷𝑆0 is the displacement threshold defining the transition into the damage state 𝐷𝑆𝑗 when the structure starts
from intact conditions and 𝛿𝑟𝑒𝑠,𝐷𝑆𝑖 is the residual displacement characterizing each realization of the damaged struc-
ture at 𝐷𝑆𝑖 . Under this assumption, each record’s 𝑖𝑚𝐷𝑆𝑗,𝑘 value would correspond to a different realization of maximum
displacement, as shown in Figure 18A. An alternative representation, more familiar to traditional IDA-based fragility
assessment, is to shift each back-to-back IDA curve to the right by an amount equal to its first shock’s residual |𝛿𝑟𝑒𝑠,𝐷𝑆𝑖 |,
as shown in the second panel of the figure, so that the 𝑖𝑚𝐷𝑆𝑗,𝑘 values can be obtained from the intersection of each
IDA curve with the vertical line passing from 𝛿𝐷𝑆𝑗|𝐷𝑆0 . The last panel of the figure provides an example state-dependent
fragility curve for the transition from 𝐷𝑆𝑖 to 𝐷𝑆𝑗 that would have resulted from these IDA curves in accordance with
Equation (14).
In the following, the simplified procedure for state-dependent seismic fragility assessment is showcased through an

illustrative application. It should be noted that the specific choice of 𝐸𝐷𝑃 for the illustrative example, does not itself con-
stitute a limitation for the procedure or an inextricable part thereof; since the procedure is based on analytical simulation
of the damaged structure’s backbone curve, any other 𝐸𝐷𝑃 can be used, that is based on the information conserved in
that simplified representation of the structure. Nevertheless, there are natural limitations for the applicability of the pro-
posed procedure, that stem directly from the preceding discussion. First, applicability clearly hinges on the validity of
associating a ductility (transient inelastic displacement) demand to a damage-state of the structure. This assumption is
widely used for ductile frames, where capacity design principles allow most of the structural elements to develop plastic
deformations and mobilize their inherent ductility in a uniform manner across the height, so that global measures of
inelastic deformation such as RDRs can be held to be representative of the level of damage at a local level. In fact, recent
studies have shown that using the simplification of a single 𝐸𝐷𝑃 threshold to signify transition of such a structure from
one𝐷S to another, produces almost identical seismic reliability results as when the damage level of every single structural
or non-structural element is monitored at every step of dynamic analysis to determine said transition.20 Second, there are
the relatively well-documented limitations dictated by the applicability of pushover-based procedures in general,39 that is
for the validity of using a surrogate SDoF inelastic oscillator to represent the displacement demand of theMDoF structure.
These limitations include regularity in plan to avoid coupling of response in the two principal directions due to torsion,
exclusion of high-rise frames due to influence of higher modes that cannot be captured by a surrogate SDoF system and
seismic response characterized by evenly-distributed damage from plastic deformation across a multitude of structural
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F IGURE 19 Backbone curve and definition of the damage states of the system 1 (A), backbone curve and definition of the damage states
of the system 2 (B).

TABLE 2 Characteristics of the SDoF systems.

Systems 𝑻 [𝒔] 𝑭𝒚 [𝒌𝑵] 𝜹𝒚 [𝐦] 𝜶𝒉

1 0.77 304.81 0.0306 0.017
2 0.45 400.00 0.0137 0.032

TABLE 3 Damage states considered for the assessment of state-dependent fragility curves.

Damage state 𝑫𝑺𝟏 𝑫𝑺𝟐 𝑫𝑺𝟑 𝑫𝑺𝟒

Systems 𝝁 2 4 6 8
1 𝛿𝐷𝑆𝑗 |𝐷𝑆0 [m] 0.061 0.122 0.184 0.244
2 𝛿𝐷𝑆𝑗 |𝐷𝑆0 [m] 0.027 0.055 0.082 0.110

elements, rather than localized damage possibly giving rise to brittle failure modes, with this last one being a requirement
also shared by the first limitation above. Recent studies have shown that, in caseswhere these prerequisites hold, surrogate
SDoF-based estimates of seismic reliability are in good agreement with those stemming from more elaborate numerical
models.40

3.1 Illustrative application

The objective of the application is to introduce in more detail the simplified method for state-dependent fragility assess-
ment, and also to evaluate it, by comparing its results with fragility curves obtained using back-to-back IDA. For the
application, two SDoF systems are considered as representative of moment-resisting RC frame structures. Although in
pushover-based based methods the SDoF system is a proxy for the actual structure, which introduces additional sources
of approximation, these examples consider directly SDoF systems, so as to isolate the consequences of the developed pro-
cedure from effects stemming from the multi- to single-DoF substitution. The periods of the two systems are 𝑇 = 0.77𝑠

and 𝑇 = 0.45𝑠, the hysteresis is assumed non-degrading for the first system and with the high level of strength degra-
dation for the second one in order to test the effectiveness of the procedure in both cases. The bilinear backbone curves
defining the SDoFs are shown in Figure 19 and their defining parameters are reported in Table 2.
To showcase the procedure, four damage states are arbitrarily defined, denoted from 𝐷𝑆1 to 𝐷𝑆4. The transition of the

intact structures to the damage state 𝐷𝑆1 is considered to occur when the structural response of each system exceeds the
threshold 𝛿𝐷𝑆1|𝐷𝑆0 defined by a seismic ductility demand, 𝜇, equal to 2, which corresponds to 𝛿𝑚𝑎𝑥 = 0.061 𝑚 for the first
system and to 𝛿𝑚𝑎𝑥 = 0.027 𝑚 for the second one. In the same way, it is considered that the direct transition of the intact
structure into 𝐷𝑆2, 𝐷𝑆3 and 𝐷𝑆4 (i.e. when the transition from intact to each 𝐷𝑆𝑗 is due to a single earthquake shock)
occurs when 𝜇 exceeds the value of 4, 6 and 8, respectively, as reported in Table 3. The four damage state thresholds for
each system, are also shown in Figure 19.
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F IGURE 20 IDA curves obtained from the application of the simplified methodology for the first SDoF in case of DL = 0 and
conditioning ductility equal to 4(A); for the second SDoF in case of DL = 3 and conditioning ductility equal to 4 (B).

TABLE 4 Median, 𝑒𝜂 , and logarithmic standard deviation, 𝛽, defining the fragility curves for the two intact structures.

Median 𝒆𝜼 (g) Standard deviation 𝜷
System

Cyclic
degradation 𝑫𝑺𝟏 𝑫𝑺𝟐 𝑫𝑺𝟑 𝑫𝑺𝟒 𝑫𝑺𝟏 𝑫𝑺𝟐 𝑫𝑺𝟑 𝑫𝑺𝟒

1 None 0.475 0.788 1.063 1.309 0.220 0.329 0.405 0.431
2 High 0.570 0.973 1.241 1.521 0.191 0.326 0.399 0.449

The threshold values 𝛿𝐷𝑆𝑗|𝐷𝑆0 , used for the transition of the intact systems into one of the four generic damage states
𝐷𝑆𝑗 due to a single earthquake shock, are also considered in the definition of the thresholds defining the transition of the
already-damaged system, according to Equation (15).
For each value of ductility demand considered, one-hundred backbone curves are generated according to the Monte

Carlo procedure described. The backbones represent one hundred possible realizations of the pushover of the structure
that has reached one of the four damages state corresponding to the ductility values. As an example, the backbone curves
obtained considering 𝜇 = 4 are given in Figure 19. (Note that in absence of strength degradation, see Figure 19A, the
backbone curves of the damaged structure differ among themselves only in residual displacement and elastic stiffness.)
Subsequently, for each set of one-hundred backbone curves each realization of the damaged system is subjected to IDA,
using one record per extracted pushover, which is scaled upwards until the transition from the initial damage state ( 𝐷𝑆1
, 𝐷𝑆2 or 𝐷𝑆3 ) to a more severe one occurs, that is, up to 𝐷𝑆4. These analyses were also run using the OPENSees finite-
element platform, where a custom-made version of the modified IMK hysteretic model was implemented, which also
allows for user-defined unloading stiffness. The IDA curves obtained in this manner are shown in Figure 20 for the two
systems and for 𝜇 = 4 where the 𝑖𝑚𝐷𝑆𝑗 points, obtained from their intersection with the vertical lines passing through
𝛿𝐷𝑆𝑗|𝐷𝑆0 , are shown as red crosses. At this point, these 𝑖𝑚𝐷𝑆𝑗 values of each 𝐷𝑆 can be used to estimate the parameters
of a lognormal model for the state-dependent fragility curves according to Equation (14). The IDA curves and all the
results reported to follow are obtained using the pseudo-acceleration at the fundamental period of vibration of the intact
structure, 𝑆𝑎(𝑇1), as intensity measure.
To obtain a reference for comparing the results of this procedure, the same state-dependent fragilities were developed

using back-to-back IDA, using a set of 20 records to represent the first damaging shock of the cluster, scaled to cause
a ductility demand of two, four or six, and another 20 subsequent-shock accelerograms per initial shock, for a total of
four-hundred curves (there was no overlap between the two sets of twenty records, but the same second-shock set was
always paired to each first-shock record). Additionally, a 20-record IDA was used to estimate the intact structure’s tradi-
tional fragility curves for the four damage states reported in Figure 19, that is, 𝑃[𝐷𝑆𝑗|𝐷𝑆0 ∩ 𝑆𝑎 (𝑇1) = 𝑠𝑎]. These runs
were performed using an OPENSees user interface developed to streamline the back-to-back IDA.12 The resulting median
and standard deviations defining the fragility curves of the intact structures are reported in Table 4. The corresponding
cumulative probability functions for the two SDoF systems are shown in Figure 21. Tables 5 and 6 collect the values of
the median, 𝜂, and logarithmic standard deviation, 𝛽, defining the parametric state-dependent fragility curves for the two
systems evaluated by means of the simplified procedure and of B2B-IDA procedure, respectively. In the tables, the third
column gives the starting (conditioning) damage state𝐷𝑆𝑖 , whereas the subsequent comluns report the fragility parameter
per final damage state. The corresponding cumulative probability functions evaluated with the simplified procedure and
the rigorous method of back-to-back IDA are shown in Figure 22 for the first system and in Figure 23 for the second one.
Each figure shows the comparison between the state-dependent fragility curves evaluated using the simplified method
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F IGURE 2 1 Fragility curves of intact structure evaluated considering four damage states using IDA for the SDoF system 1 (A) for the
SDoF system 2 (B).

TABLE 5 Median, 𝜂, and logarithmic standard deviation, 𝛽, defining the state-dependent fragility curves of the two SDoF systems
evaluated using the simplified methodology ( 𝑒𝜂 in g).

𝑫𝑺𝟐 𝑫𝑺𝟑 𝑫𝑺𝟒

System
Cyclic strength
degradation 𝑫𝑺𝒊 𝒆𝜼 𝜷 𝒆𝜼 𝜷 𝒆𝜼 𝜷

1 none 𝐷𝑆1 0.716 0.322 1.009 0.362 1.265 0.374
𝐷𝑆2 ∖ ∖ 0.971 0.405 1.264 0.431
𝐷𝑆3 ∖ ∖ ∖ ∖ 1.037 0.414

2 high 𝐷𝑆1 0.885 0.391 1.228 0.423 1.538 0.451
𝐷𝑆2 ∖ ∖ 1.049 0.450 1.329 0.470
𝐷𝑆3 ∖ ∖ ∖ ∖ 1.218 0.501

TABLE 6 Median, 𝜂, and logarithmic standard deviation, 𝛽, defining the state-dependent fragility curves of the two SDoF systems
evaluated using back-to-back IDA ( 𝑒𝜂 in g).

𝑫𝑺𝟐 𝑫𝑺𝟑 𝑫𝑺𝟒

System
Cyclic strength
degradation 𝑫𝑺𝒊 𝒆𝜼 𝜷 𝒆𝜼 𝜷 𝒆𝜼 𝜷

1 None 𝐷𝑆1 0.738 0.327 1.030 0.392 1.287 0.424
𝐷𝑆2 ∖ ∖ 0.953 0.400 1.264 0.437
𝐷𝑆3 ∖ ∖ ∖ ∖ 1.090 0.469

2 High 𝐷𝑆1 0.888 0.336 1.183 0.404 1.474 0.448
𝐷𝑆2 ∖ ∖ 1.095 0.422 1.410 0.462
𝐷𝑆3 ∖ ∖ ∖ ∖ 1.253 0.490
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F IGURE 22 State-dependent fragility curves evaluated with the simplified methodology and the back-to-back IDA approach for the first
case-study system.

 10969845, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.4105 by iunio iervolino - C

ochraneItalia , W
iley O

nline L
ibrary on [09/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ORLACCHIO et al. 2119

0.0

0.2

0.4

0.6

0.8

1.0
P

D
S

[
2|

Sa
(T

)
D

S
]

1
1

0.0 0.5 1.0 1.5 2.0 2.5
Sa (T ) [g]1

0.2

0.4

0.6

0.8

P
D

S
[

3|
S a

(T
)

D
S

]
1

i

Sa (T ) [g]1

0

0.2

0.4

0.6

0.8

P
D

S
[

4|
Sa

(T
)

D
S

]
1

i

0.0 0.5 1.0 1.5 2.0 2.50.0

1.0 1.0

Sa (T ) [g]1

0.0 0.5 1.0 1.5 2.0 2.5

DS |DS B2B12

DS |DS SM12

DS |DS B2B13

DS |DS  SM13

DS |DS B2B23

DS |DS  SM23

DS |DS B2B14

DS |DS  SM14

DS |DS B2B14

DS |DS  SM14

DS |DS B2B14

DS |DS  SM14

(A) (B) (C)

F IGURE 2 3 State-dependent fragility curves evaluated with the simplified methodology and the back-to-back IDA approach for the
second case-study system.

‘SM’ and those deriving by back-to-back IDA ‘B2B’. Panels (A) of Figures 22 and 23 refer to transitions having 𝐷𝑆2 as the
final damage state, whereas panel (B) and (C) refer to the final damage states 𝐷𝑆3 and 𝐷𝑆4, respectively.
Additionally, given that the first SDoF system shares the dynamic characteristics (Table 2 ) and initial hardening slope as

the equivalent SDoF of the frame structure shown in Figure 16, and that the threshold for𝐷𝑆2 shown in Figure 19 is prior to
the capping point of the latter’s pushover, it is possible to compare the state-dependent fragility 𝑃[𝐷𝑆2|𝐷𝑆1 ∩ 𝐼𝑀 = 𝑖𝑚]

resulting from the simplified procedure with its counterpart obtained from B2B-IDA of the MDoF frame. As discussed
earlier, application of the predictive model for MDoF systems may need to account for higher-mode effects influencing
response in the non-linear range. Thus, for this comparison, the IDA curves from the simplified method are modified to
account for higher-mode effects on themedian and dispersion according to themethodology of the SPO2FRAG algorithm,
which tends to correspond to a larger participating mass along the first mode when higher mode influence is of concern
(more details can be found in Baltzopoulos and co-authors).18 Another aspect of this comparison is an assessment of the
savings in computational cost achieved by implementing the simplified procedure to derive the state-dependent fragility
curves. This assessment can be performed at two levels, the first one being to compare the computing times required for
implementation of the simplified procedure, versus the time required for running back-to-back IDA on a complete MDoF
model. While it is intuitive to assume that this should depend on the complexity of the MDoF numerical model (e.g.
by the number of structural elements involved), for the application presented here, the time required for the simplified
procedure was about one-tenth of the time needed for the rigorous analysis of the MDoF system. The second level is
to compare the time required for backbone simulation and dynamic analysis, compared to a full back-to-back IDA of
the same equivalent SDoF system. Although, for this second case, the time saving varies from one acceleration record
to another, an average of 30% reduction of computational time was calculated from the applications conducted herein,
attributable to the substitution of some of the needed runs with Monte-Carlo simulations using the analytical model.

4 FINAL REMARKS

The objective of the study presented in this paper was to present a simplified pushover-based procedure aimed at the
development of state-dependent seismic fragility curves for multi-story moment-resisting frame structures to be used in
seismic risk assessment accounting for damage accumulation. The procedure uses a semi-empiricalmodel,which provides
throughMonte-Carlo simulation the joint distribution of residual displacement, normalized elongated period and strength
degradation, for a given ductility demand. This information can be used to define a set of realizations of the damaged
structure’s pushover curve. The usefulness of this method lies in the fact that, due to the record-to-record variability of
structural response to strong earthquakes, a structure subjected to a single instance of base-acceleration may fall under
a generic damage state while exhibiting different realizations of basic dynamic properties, such as resistance to inertial
load, stiffness and residual displacement. Such variability is typically accounted for via sequential runs to accelerogram
couples that represent the alternation of two damaging shocks within an earthquake cluster, as in the case of back-to-back
incremental dynamic analysis procedure.
In the simplified procedure, the first part of the sequential analysis is avoided, replaced by a simulation of the principal

characteristics of the equivalent SDoF system at a given damage state. Test runs of the simplified method on plane models
of ductile mid-rise moment resisting frames, showed a 90% reduction in computation cost against back-to-back IDA of a
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MDoF model, or a 30% average reduction against back-to-back IDA of a surrogate SDoF system. The illustrative applica-
tion presented as final part of this paper shows that the proposed methodology can represent an alternative to the more
computationally intensive procedures, at least for regular structures for whom pushover-based procedures are a viable
approximation.
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No t e s
1Another very relevant motivation is that classical seismic hazard analysis only accounts for one event per cluster (i.e., the so-called
mainshock).41

2The notation 𝜇 is used herein to denote both maximum transient ductility demand due to base acceleration, |𝛿𝑚𝑎𝑥|∕𝛿𝑦 , and normalized dis-
placement response under quasi-static loading 𝛿∕𝛿𝑦 , as per the typical convention in earthquake engineering literature. In all cases presented
herein, the normalizing yield displacement 𝛿𝑦 is that of the intact structural system.
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