
1 INTRODUCTION  

Probabilistic seismic hazard analysis (PSHA; e.g., 
McGuire, 2004) usually refers to homogeneous 
Poisson process (HPP) to probabilistically model 
earthquake occurrence. The latter is an independent- 
and stationary-increment (i.e., memory-less) model, 
which may prove suitable when several (independ-
ent) sources contribute to the seismic threat for a 
site. However, when a single fault is of concern 
and/or the time scale is different from that of the 
long term, other models may be more appropriate to 
probabilistically describe the earthquakes occurrence 
process.  

The long-term mainshock occurrence is consid-
ered in this paper, neglecting other cases as the 
short-term aftershock sequence modeling (e.g., Yeo 
and Cornell, 2005) or the multi-scale operational 
forecasting (e.g., Jordan et al., 2011). In fact, the 
study focuses on two types of history-dependent 
models. The first category is that of renewal pro-
cesses, which applies when characteristic earth-
quakes are of concern, that herein is when the con-
sidered source may produce a specific magnitude. 
The second type, which can be formalized on the ba-
sis of the theory of Markov renewal processes, ena-
bles, as an additional feature, modeling of correla-

tion between magnitude and interarrival time; e.g., 
Anagnos and Kiremidijan (1988); Cornell and Win-
terstein (1988). 

The study is structured such that assumptions 
common to all the considered models are presented 
first. Then, modeling of the random variables (RVs) 
involved in each of them, is reviewed. Moreover, an 
illustrative application is set-up with respect to eval-
uate the conditional probability of exceedance of a 
ground motion intensity measure (IM) value for a 
site of interest, and in a given time-frame.  

To this aim, the Paganica fault (in central Italy; 
believed to be the source of the 2009 L’Aquila 
earthquake) and a site close to it are considered. This 
allows to compute, for each history-dependent mod-
el, the probability of observing one event in the time 
interval of interest, and the probability of exceed-
ance of an IM-level, as a function of the time 
elapsed since the last earthquake.  

2 RENEWAL PROCESSES FOR EARTHQUAKE 
OCCURRENCE 

A renewal process (RP) is, by definition, a se-
quence of independent and identically distributed 
(i.i.d.) non negative RVs (whose distribution com-
pletely characterizes the model). In the considered 
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application the RV of interest is the time between 
successive occurrences of earthquakes (i.e., interar-
rival time, T). 

In the seismic context, RPs appear suitable to de-
scribe a sequence of similar and large magnitude 
events on a specific seismic source in the context of 
the elastic-rebound theory (Reid, 1910), which sug-
gests that large tectonic earthquakes may recur at the 
onset of large elastic strain in the crust. Strain will 
then re-accumulate slowly by steady tectonic forcing 
until the next event.  

In fact, in all RPs it is assumed that the system 
(i.e., the earthquake source) restarts as-new after the 
occurrence of each earthquake. In this sense, they 
appear suitable to model occurrence of characteristic 
earthquakes, that is sources that tend to produce spe-
cific-magnitude events.  

The renewal processes considered are: (1) an in-
verse Gaussian RP, related to the Brownian relaxa-
tion oscillator model, (2) an Erlang RP, featuring an 
analytically tractable counting process; (3) and final-
ly an inverse gamma RP, related to a model in which 
load increases deterministically over time with ran-
dom loading rate. 

2.1 Inverse Gaussian RP 

This RP relates to the Brownian relaxation oscil-

lator model. According to this model, load state, 

 X t , increases gradually over time until it reaches 

an earthquake-triggering threshold. The model as-

sumes that earthquake occurrence instantaneously 

relaxes back the system to some ground level.  

Load state process is modeled through a process 

with independent and stationary Gaussian-

distributed increments, as in Equation (1) and 

sketched in Figure 1. In the equation u  is the rate, 

 W t  is the standard Brownian motion, which has 

stationary and independent Gaussian increments, 

and   is a scaling factor that models process vari-

ance (Matthews et al., 2002). The deterministic (lin-

early increasing) part of the process, takes into ac-

count the constant-rate average loading, the random 

part represents contributions of all other factors af-

fecting the eventual rupture of the considered 

source. 

   X t u t W t   
 

(1)  

It is possible to show that, according to the above 

assumptions, the probability density function (PDF) 

of interarrival time,  Tf t , follows an inverse 

Gaussian distribution, Equation (2). This PDF, 

which is also called the Brownian passage time 

(BPT) distribution, is entirely described by two pa-

rameters: the mean recurrence time (  , the mean in-

terarrival time, also referred to as the return period, 

Tr) and the coefficient of variation, or aperiodicity, 

of interarrival time   . The return period is in rela-

tion with the load rate  u  and the threshold  u . 
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The mean interarrival time or its reciprocal, the 

mean rate of occurrence, is the parameter of first or-

der interest, that is the best-estimate of frequency at 

which events occur. The aperiodicity is a measure of 

irregularity in the event sequence, that is, a deter-

ministic sequence features 0  .  
 

 
 
Figure 1. Sketch of source load modeling in the BPT model. 

2.2 Erlang-distributed interarrival time RP 

To define this process, an Erlang distribution (i.e., 

a gamma PDF with, k , as the integer shape parame-

ter and   as the scale parameter) for the interarrival 

time is considered. The interarrival time distribution 

is given in Equation (3), where   is the gamma 

function. This PDF has a flexible shape that can eas-

ily characterize any data-derived distribution 

(Takahashi et al., 2004).  

Note that the mean and the coefficient of varia-

tion (CoV) in this case are given by k /   and 

1 k , respectively. These may be put in relation 

with the return period and the aperiodicity of the 

BPT model. 
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One of the main advantages of this process is that 

it allows a closed-form solution for the probability 

of occurrence of at least one event in time interval 

 0t ,t , given that the last earthquake occurred at 



0t  , Equation (4). In the equation, 0t  is the time of 

the probabilistic assessment, and  N t  is the func-

tion counting events in  0,t . 
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  (4) 

If the probability of having exactly one event is 
computed as in Equation (5), it is possible to evalu-
ate how likely is that more than one earthquake oc-
curs in the time-frame of interest as a function of the 
time elapsed since the last event, Figure 2. 

This allows to understand that if the interval of 
interest is small with respect to the average recur-
rence time, as it usually happens for seismic risk 
analysis of engineering interest, the probability of 
having more than one event is very close to the 
probability of one event. In other words, it is unlike-
ly that more than one earthquake occurs in a small 
time interval. This result will be helpful in probabil-
istic seismic hazard analysis discussed in Section 4.  
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Figure 2. Comparison between the probability of observing ex-

actly one event, and at least one event, for the renewal process 

with gamma interarrival time distribution in a 50 yr time frame, 

as a function of the time elapsed since the last earthquake. 

2.3 Inverse-Gamma-distributed interarrival time 
RP 

This RP relates to a (simple) model, which as-
sumes that the load on the fault increases linearly 
and deterministically over time, with a rate that var-
ies randomly from event to event. Rate is modeled 
as a gamma-distributed random variable. The earth-
quake occurs once a threshold is reached. Then, the 
system resets itself until the next event, Figure 3.  

It is possible to show that these hypotheses lead 
to a renewal process characterized by an inverse-
gamma-distributed (IG) interarrival time (Pandey 
and van Noortwijk, 2004). The latter is given in 
Equation (6), where γ and β are the shape and scale 
parameters, respectively. In the equation the mean 
and variance of the RV are also given as a function 
of the parameters. 
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Figure 3. Representation of loading in the renewal process with 
Gamma-distributed load rate. 

2.4 Homogeneous Poisson process 

It is to note that the HPP model may also be seen 
as a renewal process with exponential interarrival 
time, Equation (7), with mean and standard devia-
tion equal to   and Poisson distribution for the in-
crements of the associated counting process, Equa-
tion (8). The latter has independent and stationary 
increments that render the process memory-less. 
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3 MARKOV RENEWAL PROCESSES 

The models reviewed in this section are of partic-
ular earthquake engineering interest, as they allow 
modeling the relationship between the time and the 
magnitude of the earthquake (i.e., correlation be-
tween these RVs). Two simple examples of these 
Markov renewal processes (MRPs) are herein con-
sidered: the time-predictable and the slip-predictable 
models. 

3.1 Slip-predictable model 

The slip-predictable model (SPM), similarly to 
those in Section 2, may represent the case in which 
the stress accumulates starting from some initial lev-
el for a random period of time until an earthquake 
occurs (Kiremidjian and Anagnos, 1984).  

Interarrival times are modeled as Weibull inde-
pendent and identically distributed RVs. The PDF, 
along with mean and variance, are given in Equation 
(9), where b  and 1 / a  are the shape and scale pa-
rameters, respectively.  
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In particular, in SPM, the magnitude (M) of the 

next event depends on the time since the last earth-

quake (Figure 4) via the functional relationship, 

 m g t , taken deterministic herein. Hence, assum-

ing that the next event will occur in the interval 

 0t ,t , the PDF of M depends on 0t  and t  as in 

Equation (10).  

This will be more clearly addressed in the appli-

cation discussed in Section 4; it is to note here, how-

ever, that the SPM implies to not assume a fixed 

threshold for earthquake-related energy release. 
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Figure 4. Loading and energy release in the SPM. 

3.2 Time-predictable model 

The time-predictable model (TPM) assumes that 
the time of occurrence of the next earthquake de-
pends on the size and the time of occurrence of the 
last event (Anagnos and Kiremidjian, 1984). In fact, 
the larger the last earthquake, the longer is, on aver-
age, the time to the next event. 

This hypothesis is different from the slip-
predictable assumption, which implies that the size 
of the preceding event does not affect the occurrence 
time of the next earthquake.  

TPM may represent the stress buildup until a 
threshold at which an earthquake occurs and a ran-
dom part of the accumulated energy is released 
(Figure 5).  

The magnitudes of events are assumed to be in-
dependent and identically distributed random varia-
bles. On the other hand, the interarrival times are 
Weibull-distributed RVs, conditional on the size of 
the last earthquake, Equation (11).  

The PDF is the same as in Equation (9), except 

that its parameters depend on the magnitude, 0M ,of 

the last event or, in other words, on time that is 

needed to accumulate sufficient stress to reach again 

the threshold.  
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Figure 5. Loading and energy release in the TPM. 

4 PROBABILISTIC SEISMIC HAZARD 
ANALYSIS IN THE CASE OF HYSTORY-
DEPENDENT EARTHQUAKE OCCURRENCE 
PROCESS 

Considering each of the models above, the proba-

bility that the ground motion intensity measure ex-

ceeds a certain threshold, at least once in the next 

0t t  years (with 0t t ) given 0t  years passed since 

the last event, indicated as  0 0P IM im| tN     

for simplicity, can be written as in Equation (12). In 

the equation, the term 
*P IM im| m,r 

   represents 



the probability that intensity threshold is exceeded 

given an earthquake of magnitude m on the consid-

ered source. The latter is assumed to be separated 

from the site of interest by a distance equal to R; in 

the equation a fixed R value, r*, is considered. This 

probability may be computed via ground motion 

prediction equations, or GMPEs. 
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It is to note that Equation (12) avails of some ap-
proximations allowed by results of Section 2. It was 
found that in most of the cases of engineering inter-
est, the interval of concern is much smaller than the 
return period of the characteristic event. Therefore, 
the probability in question can be computed consid-
ering only one term. Furthermore, the probability of 
occurrence of one event is about equal to that of at 
least one event (see Figure 2), which is relatively 
easy to compute. 

5 ILLUSTRATIVE APPLICATION 

Hazard, in terms of peak ground acceleration 
(PGA), was computed according to the all reviewed 
models, considering the Paganica fault (central Italy) 
as a case-study (Figure 6). Hazard, here, is condi-
tional on the time elapsed since the last event and its 
magnitude. Indeed, this kind of comparison is ex-
pected to highlight main differences among the re-
viewed models. 

Models are calibrated so that they can be consid-
ered homogeneous only in terms of return period of 
an event of about M 6.3. Hence, more than on spe-
cific values of hazard, attention will be put on their 
trends. 

In the case of BPT-, ERP-, and IG-RP, parame-
ters of the interarrival time distributions were cali-

brated so that Tr is equal to 750 yr and the coeffi-
cient of variation is 0.43, which, according to Pace 
et al. (2006), characterize M 6.3 events on the Pa-
ganica fault.  

 For the HPP the magnitude distribution was tak-

en as a truncated exponential defined in the 

 5 8 6 8. , .  interval as in Equation (13), while the rate 

of occurrence of HPP-described earthquakes was as-

sumed to be 1/750 event/yr, Figure 7. 
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Figure 6. Source-site scheme. 

 

 
 

Figure 7. Exponential magnitude distribution for the HPP pro-

cess on the fault. 

 

For TPM, it was assumed that the last earthquake 

was a 0 6 3M .  event, while M of the next charac-

teristic event was considered to follow a truncated 

Gaussian distribution in the interval  5 8 6 8. , . , that 

is, the mean value is set equal to 6.3, while a stand-

ard deviation equal to 0.1667 is adopted.  

Finally, for SPM, all magnitudes were considered 

to be related to time of occurrence via Equation (14). 

A plot of the relationship is given in Figure 8. 

0 680 039 10   . mt .

 

(14) 



 The interarrival time distribution was calibrated in 
such a way that the mean of the interarrival time is 
equal to 750 yr and CoV is still 0.43. This leads to 
the same parameters of the TPM interarrival time 
PDF; however, it is to underline that the return peri-
od of a M 6.3 event does not result in exactly 750 yr 
for this SPM, yet it is close to it. Indeed, even if 750 
yr is the expected time to the next event, which can 
virtually be of any magnitude, such an event, by vir-
tue of the time-magnitude relationship adopted, will 
be larger than M 5.8 with 0.91 probability. 
 

 
 
Figure 8. Time-magnitude relationship assumed. 

 
In Table 1, the resulting parameters are given for 

all the models ; note that in the Erlang case the mean 

value ant the CoV are slightly different because of 

the integer shape parameter. Figure 9 shows the 

PDFs (that in this section are all indicated as  Tf t , 

also in the case of TPM) computed via these values. 
 

Table 1. Parameters of time to next event PDFs. 

Model Distribution Parameters Tr [yr] CoV 

BPT μ = 750 α = 0.43 750 0.43 

Erlang k = 5 𝜆 = 0.0072 693 0.45 

IG γ = 7.3 β = 4725 750 0.43 

SPM a = 0.00118 b = 2.5 752 0.43 

TPM a6.3 = 0.00118 b6.3 = 2.5 752 0.43 

 

 
 
Figure 9. PDFs of interarrival time according to the considered 
processes. 

5.1 Results and discussion 

Figure 10 shows the probability of at least one 

event in a 50 yr time interval, calculated adopting 

 Tf t  defined in Table 1. 

 

 
 
Figure 10. Probability of at least one event in 50 years as a 
function of the time since the last earthquake. 

 
Trend observed in figure strictly depends on the 

shape of the hazard-rate function, Equation (15), 
which gives the instantaneous probability of an 
event occurrence given that no event had occurred 
until t. 
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It is noteworthy that, for some processes, after a 
certain time spent since the last earthquake, proba-
bility computed in figure tends to decrease. This de-
pends on the fact that the hazard-rate function, asso-
ciated to some of the considered  Tf t , has a non-
monotonic trend. In fact, as shown in Figure 11, 
BPT and IG models may have a non-monotonic haz-
ard-rate functions that increase after the last earth-
quake, then decrease eventually (Matthews et al., 
2002; Glen, 2011). Erlang RP with shape parameter 

1k   has a (bounded) increasing hazard-rate. Final-
ly, SPM and TPM, with shape parameter of the 
Weibull distribution 1b  , feature a diverging haz-
ard-rate (Matthews et al., 2002). HPP has a constant 
hazard rate which is 1/750. 

To compute seismic hazard expressed in terms of 
probability of exceedance of an IM-value in 50 yr, 
the approximation in Equation (12), whose suitabil-
ity was shown for the Erlang renewal model, was as-
sumed for all the other processes because of the sim-
ilarity of the PDFs of the time to the next event 
(Figure 9). 

 



 
 
Figure 11. Hazard rate function for the different models. 

 

To evaluate the 
*P IM im| m,r 

   term, the 

Sabetta and Pugliese (1996) GMPE was considered. 

The site was set at fixed Rjb distance (Joyner and 

Boore, 1981) equal to 5 Km (Figure 6).  

In Figure 12 the probability that the PGA exceeds 

a certain threshold is plotted versus the time passed 

since the last event. The IM-threshold was assumed, 

as an example, equal to 0.447g. It is the median 

PGA given M 6.3 and r* = 5 km for shallow alluvi-

um site according to the considered GMPE.  

 All history-dependent models, especially RPs, 

provide similar results for a time spent since the last 

earthquake of about one half of the return period of 

the event. Conversely, probabilities start to be in-

creasingly different as 0t  gets significantly large. 

This may render critical the selection of which one 

of the models to choose for a specific fault when the 

last known event is not recent. 

The non-monotonic hazard-rate function of some 

of them also shows up in the results given in Figure 

12, which indicates that the probability of exceed-

ance of IM may decrease after a certain time since 

the last event, a behavior that may not be easy to jus-

tify. 
 

 
 
Figure 12. Hazard for PGA = 0.447 g. 

6 CONCLUSIONS 

The memory-less homogeneous Poisson process, 
where interarrival times are independent and identi-
cally distributed exponential random variables, is of-
ten used in hazard assessment for engineering seis-
mic risk analysis. However, when a single fault is of 
concern and/or the time scale is different from that 
of the long term, history-dependent processes may 
be considered. In this paper, models for mainshock 
occurrence on an individual source, were reviewed 
with working examples. The models considered re-
fer to the renewal, and Markov renewal point pro-
cesses. 

 The Paganica fault (in central Italy) was consid-
ered to compute both the probability of occurrence 
of one event in the time interval of interest, as well 
as the seismic hazard, expressed in terms of (condi-
tional) probability of exceedance of an intensity val-
ue in a given time-frame. 

The magnitude is considered to be that of charac-
teristic events, that is when the considered source 
generates almost fixed-magnitude earthquakes. To 
homogenize the models, these were calibrated to 
have mean and variance of time to next event distri-
butions as similar as possible.  

Considering the time intervals of common engi-
neering interest, it was assumed that the probability 
of more than one event is negligible (showed for the 
Erlang renewal process), simplifying hazard calcula-
tions.  

It was also observed that because of the hazard-
rate function, some processes show a decreasing 
probability of occurrence after a certain time has 
passed since the last event. This appears not to be 
the result of explicit representation of actual earth-
quake physics, while rather a collateral effect of the 
mathematics of the assumed models. 

Engineering hazard analysis show that history-
dependent models have a similar trend, especially 
renewal processes, until a time of about a half of the 
mean return period of the event, and that the results 
from all models tend to relatively diverge as the 
elapsed time since the last event increases.  

This means that the longer is the time spent since 
the last known earthquake on the source, the more 
critical is the selection of the process which is con-
sidered to be appropriate to represent earthquake oc-
currence.  
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