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Summary

Response‐history nonlinear dynamic analysis is an analytical tool that often sees

use in risk‐oriented earthquake engineering applications. In the context of

performance‐based earthquake engineering, dynamic analysis serves to obtain

a probabilistic description of seismic structural vulnerability. This typically

involves subjecting a nonlinear numerical computer model to a set of ground‐

motions that represent a sample of possible realizations of base acceleration at

the site of interest. The analysis results are then used to calibrate a stochastic

model that describes structural response as a function of shaking intensity.

The sample size of the ground‐motion record set is nowadays usually governed

by computation‐demand constraints, yet it directly affects the uncertainty in

estimation of seismic response. The present study uses analytical and numerical

means to investigate the record sample size, n, required to achieve quantifiable

levels of mean relative estimation error on seismic risk metrics. Regression‐

based cloud analysis in the context of Cornell's reliability method and incremen-

tal dynamic analysis using various intensity measures were employed to derive a

relation of the formΔ=
ffiffiffi
n

p
, where Δ is a parameter that depends on both the dis-

persion of structural responses and the shape of the hazard curve at the site. For

the cases examined, n can be kept in the 40 to 100 range and achieve 10% mean

relative error. The study can contribute to guide engineers towards an informed

a‐priori assessment of the number of records needed to achieve a desired value

for the coefficient of variation of the estimator of structural seismic risk.
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1 | INTRODUCTION

In the context of performance‐based earthquake engineering (PBEE1), one of the main objectives is the probabilistic
quantification of structure‐specific seismic risk. A risk metric typically adopted in PBEE is the annual rate of earth-
quakes able to cause structural failure, with failure defined as the structure falling short of a seismic performance objec-
tive. This failure rate, denoted as λ f , can be calculated via Equation 1, where P[ f |im] represents a function providing
the probability of failure given the value of some ground motion intensity measure (IM)—typically termed the struc-
ture's fragility function—and λim is a measure of seismic hazard at the site, defined as the annual rate of earthquakes
exceeding that value of shaking intensity.
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λf ¼ ∫
im
P f imj½ �⋅ dλimj j (1)

The state‐of‐the‐art for PBEE applications entails the analytical estimation of fragility functions by means of various
procedures that require multiple dynamic analysis runs of a numerical model of the structure, while the evaluation of
λim for various intensity levels, that is the hazard curve, is typically obtained by means of a probabilistic seismic hazard
analysis (PSHA; eg, McGuire2). In principle, both PSHA and the analytical derivation of structural fragility involve the
use of ground motion records; in the former case, this is implicit, as PSHA usually models IM via ground motion pre-
diction equations (GMPE; eg, Campbell and Bozorgnia3), which are semi‐empirical models based on recorded strong
motion, while in the latter case it is explicit, as one has to select a certain number of accelerograms to conduct the anal-
yses. The number of records typically used for nonlinear dynamic analysis is mainly dictated by the large computation
times required for running complex structural models at high nonlinearity levels. However, the number of records
directly determines the structural response sample size to be used in estimating fragility and, ultimately, the failure rate.
As highlighted, for example, in Iervolino,4 since these descriptors of seismic fragility and risk are inferred from samples,
they are only estimates of the corresponding true values and are therefore affected by estimation uncertainty. In fact, the

estimator of λ f , denoted as bλf , obtained using a specific sample of ground motions of certain size, can be considered at

the same time a random variable and a function of the sample. If one were to re‐compute bλf a number of times using
different sets of accelerograms, equal in number to the first one and equivalent in characteristics to the analyst, one
would keep obtaining different values for the estimator due to the record‐to‐record variability of inelastic structural
response (eg, Shome et al5).* In order to illustrate this concept, an example will be provided in the context of incremen-
tal dynamic analysis (IDA,8), which is one of the simpler methods that can be used for the derivation of fragility. IDA
consists of running a series of analyses for a nonlinear structure, using a suite of accelerograms, n in number, that are
scaled in amplitude in order to represent a broad range of IM levels. At each IM level, a measure of structural response
is registered, generically named an engineering demand parameter or EDP. At the conclusion of the analysis, an EDP‐IM
relationship is obtained, termed an IDA curve (Figure 1). At this point, it is assumed that a certain threshold value of
the EDP can be defined, edp f , such that the condition EDP > edp f can be held to signify failure (eg, violation of some
limit state). This implies that seismic fragility can be expressed as the probability of EDP > edp f conditional to IM = im;
ie, P[ f |im] = P[EDP > edp f |IM = im]. To derive the fragility curve in this way is known as the EDP‐based approach, and
although it should be noted that, in some cases, response can approach numerical instability, meaning that lack of
convergence is observed so that the EDP cannot be measured, yet fragility can still be fitted.9

An alternative, widely used way of expressing seismic fragility is provided by the so‐called IM‐based approach. IM‐

based fragility entails the introduction of a new random variable, IM f , that can be regarded as the seismic intensity able
to cause structural failure.10 By this definition, fragility can be expressed as the complementary cumulative distribution
function of IM f ; ie, P[ f |im] ≡ P[IM f ≤ im]. Returning to the IDA example, one can obtain the lowest IM value that
causes each record to reach the failure criterion, by finding the height im f ,i , i = {1, 2,…,n}, where the i‐th IDA curve
intersects the vertical line EDP = edp f , as shown in the figure. These im f ,i values can be considered as a sample of IM f .
Common statistical methods (Baker11) can then be employed to fit a parametric probability distribution model to the
sample, such as the lognormal model indicated by a dark line in Figure 1B; alternatively, one may even assume that
the observed sample values approximate the fragility in a non‐parametric way, also depicted in Figure 1B as a stepwise
function. However, if one were to repeat the procedure over a large number of times, each time performing IDA with a
different set of records, it is to be expected that each repetition will lead to a different fragility curve. This variability will
then reflect on the evaluated failure rate via Equation 1, and a quantitative measure can be obtained according to
Equation 2:

CoVbλf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR bλfh ir
E bλfh i ; (2)
*There may be more sources contributing to estimation uncertainty in the fragility and the risk estimate; eg, when accounting for variability in the
numerical model properties that may be based on samples of experimental data (eg, Lignos and Krawinkler6 and Panagiotakos and Fardis7). Never-
theless, the present study deals exclusively with estimation uncertainty related to record‐to‐record variability of structural response to earthquakes,
since the intended focus is on the choice of record sample size.



(A) (B)

FIGURE 1 Schematic representation of possible derivation of seismic fragility functions using IDA. The intersection of the n IDA curves

with the threshold EDP value defining failure A, provides a sample of failure intensities used to define a cumulative probability function B,

[Colour figure can be viewed at wileyonlinelibrary.com]
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where the notation CoVbλf indicates the coefficient of variation of the failure rate estimator, and VAR bλfh i
, E bλfh i

denote

its variance and expected value, respectively.† In fact, in the case of unbiased estimators, CoVbλf provides the mean

relative (with respect to the true value) estimation error.
Past PBEE‐oriented research on the topic has seen discussion on the number of records that ought be used for esti-

mating the distribution of EDPs at a single level (or stripe) of intensity.5,12 In Gehl et al,13 the estimation uncertainty in
the case of parametric fragility for simplified structural systems was examined, while Eads et al14 examined the effect of
record sample size on the confidence intervals of various fractiles of collapse fragility. The effect of estimation uncer-
tainty on the parametric fragility model stemming from cloud analysis was considered in Jalayer et al.15 The number
of records issue has also been studied in a somewhat different context: Hancock et al16 studied its effect under various
proposals for spectral‐matching and scaling of accelerograms and Reyes and Kalkan17 paid particular attention to eval-
uating the ASCE/SEI‐7 record selection and scaling procedure. In some of these previous studies that examined estima-
tion uncertainty for the fragility parameters (eg, Gehl et al and Eads et al13,14), it was recognized that further research
was needed to investigate the effect of this uncertainty to the actual end result; ie, the seismic risk estimate.

The objective of the present study is to further investigate this issue and illustrate methodologies to be used as tools
for making informed decisions about the number of accelerograms to employ in earthquake engineering applications, in
order to achieve a given value of CoVbλf . Two distinct paths are followed in tandem to reach this aim: an analytical

approach based on the Cornell reliability method18 and a computational approach based on IDA. In the former case,
some additional simplifications are explored, intended to render a closed‐form expression for CoVbλf tractable. The ana-
lytical result is then evaluated with the aid of cloud analysis10 performed for some simple yielding oscillators, exposed to
varying hazard scenarios. In the computationally oriented case, a relatively large pool of records is assembled and used
to run IDA for an assortment of low‐rise code‐conforming frames and simple inelastic structures. In this context, various
limit states and alternative IMs are considered. Based on these IDA results, a Monte‐Carlo methodology is used to sim-

ulate statistics of the estimator bλf , for a wide range of record sample sizes n.
What follows is structured in such a way that the analytical treatment to the problem is presented first, starting from

the classical approximate seismic reliability formulation, that is the Cornell reliability method. Following that, risk
assessments using IM‐based parametric and non‐parametric fragility are examined. Subsequently, the procedures for
†These are typically unknown; however, estimates are obtainable via methods such as those presented in Iervolino.4

http://wileyonlinelibrary.com
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determining the suitable record sample size, by setting thresholds of tolerable estimation uncertainty, are illustrated,
also considering spectral‐shape‐based (advanced) ground motion IMs. Finally, some concluding discussion is provided
to summarize the main findings of the study.
2 | CORNELL RELIABILITY METHOD

Cornell's seismic reliability method uses some simplifying assumptions to provide an elegant closed‐form solution to

estimate the annual failure rate bλf .18 The analytical expression is given below as Equation 3, where k is the (absolute
value of) the hazard curve's slope, calculated in logarithmic‐space at IMC, that is the IM corresponding to the median
capacity, λIMC is the annual exceedance rate of IMC at the site of interest, βC is the standard deviation of the structural

failure threshold, and bb and bβD are the slope parameter and the standard deviation of the logarithm of EDP that come
with the assumption of an EDP‐IM relationship as the one expressed by Equation 4.

bλf ¼ λIMC ⋅e
1
2⋅
k2

b̂2
⋅ β̂2Dþβ2Cð Þ (3)

log EDPð Þ ¼ baþ bb⋅ log IMð Þ þ ε (4)

The parameters ba;bb;bβDn o
can be obtained via ordinary least squares linear regression in the context of cloud anal-

ysis (eg, Jalayer and Cornell10), which is typically performed considering EDP responses to a set of unscaled

accelerograms from dynamic structural analysis, withbβD estimated as the standard deviation of ε; ie, the regression resid-
ual.19 The hat symbol over the notation serves as a reminder that these parameters are estimates obtained from finite
samples of ground‐motion and hence also subject to estimation uncertainty. A graphical representation of the parame-
ters and quantities relevant to the Cornell method is provided in Figure 2.

In Iervolino,4 the delta method (eg, Oehlert20) was used to provide analytical expressions that allow calculating the

mean and variance of bλf in the framework of Cornell's method, reported herein in Equation 5, where COV[⋅] represents
the covariance operator and the derivatives are those of Equation 3. By adopting CoVbλf as the measure of estimation

uncertainty behind the seismic risk metric bλf , these two expressions can be used to derive a single formula for its quan-
tification, via Equation 2.

E bλfh i
¼ bλf þ 1

2
⋅VAR ba½ �⋅∂

2bλf
∂ba2 þ 1

2
⋅VAR bbh i⋅∂2bλf

∂bb2 þ 1
2
⋅VAR bβ2Dh i

⋅
∂2bλf

∂ bβ2D� �2 þ COV ba;bbh i
⋅
∂2bλf
∂ba⋅∂bb

VAR bλfh i
¼ VAR ba½ �⋅ ∂bλf

∂ba
 !2

þ VAR bbh i⋅ ∂bλf
∂bb

 !2

þ VAR bβ2Dh i
⋅

∂bλf
∂ bβ2D� �
264

375
2

þ 2⋅COV ba;bbh i
⋅
∂bλf
∂ba ⋅∂bλf∂bb

8>>>>>>>><>>>>>>>>:
(5)
FIGURE 2 Left: Cloud analysis for a simple SDOF inelastic structure situated in Naples, Italy. Right: Local linearization of the hazard

curve assumed in Cornell's seismic reliability method [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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By examining applications of Cornell's method, functional to this study, it was observed that some of the terms of

Equation 5 containing second derivatives of bλf , and especially ∂2bλf =∂ bβ2D� �2
, were providing much smaller contributions

to the summations than the other terms of the Taylor expansion. In particular, the term VAR bβ2Dh i
⋅ ∂bλf =∂ bβ2D� �h i2

was

consistently found to be around two orders of magnitude lower than the other terms comprisingVAR bλfh i
. Furthermore,

it was observed that E bλfh i
can be adequately approximated by the first two terms in the Taylor expansion; ie,bλf þ 1=2⋅VAR ba½ �⋅∂2bλf =∂ba2. Thus, under these hypotheses, some terms can be dropped from Equation 5 in pursuit of sim-

plification, as they appeared less influential in practical applications (see also the applications that follow), resulting in

Equation 6, which provides the approximate estimates for E bλfh i
,VAR bλfh i

to plug into Equation 2.

E bλfh i
≈ bλf ⋅ 1þ k2

2⋅bb2⋅VAR ba½ �
 !

VAR bλfh i
≈ VAR ba½ �⋅ ∂bλf

∂ba
 !2

þ VAR bbh i⋅ ∂bλf
∂bb

 !2

þ 2⋅COV ba;bbh i
⋅
∂bλf
∂ba ⋅∂bλf∂bb

8>>>>><>>>>>:
(6)

With reference to Figure 2, by denoting the abscissa of the cloud analysis point corresponding to the i‐th ground
motion as log(imi) and representing the sample mean and standard deviation of the logarithms of these records' IM

values by log imð Þ ¼ 1=n⋅ ∑
n

i¼1
log imið Þ and s log imð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n⋅ ∑

n

i¼1
log imið Þ− log imð Þ
h i2s

, respectively, then it is known19 that

VAR ba½ � ≈
bβ2D
n
⋅ 1þ log imð Þ2

s2log imð Þ

 !

VAR bbh i ≈ bβ2D
n⋅s2log imð Þ

COV ba;bbh i
≈
bβ2D
n
⋅

− log imð Þ
s2log imð Þ

 !
:

8>>>>>>>>>>><>>>>>>>>>>>:
(7)

By combining Equations 2, 6, and 7, and substituting the partial derivatives of bλf (that can be obtained from Equa-
tion 3, but are also given explicitly in Iervolino4), then Equation 8 is obtained. In that equation,

γ ¼ log IMCð Þ − kbb2⋅ bβ2D þ β2C
� �

and log IMCð Þ ¼ log edpf
� �

− bah i
=bb is the log of the median structural capacity.

CoVbλf ≈
bβD⋅k⋅ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2log imð Þ þ log imð Þ2 − 2⋅ log imð Þ⋅γ þ γ2
q

ffiffiffi
n

p
⋅bb⋅s log imð Þ⋅ 1þ k2

2⋅bb2⋅ 1þ log imð Þ2
s2log imð Þ

 !
⋅
bβ2D
n

" # ≈

bβD⋅kbb⋅s log imð Þ
⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log imð Þ2 − 2⋅ log imð Þ⋅γ þ γ2

q
ffiffiffi
n

p (8)

The simplifications, when passing unto the second (approximate) equality, are due to the observations that

s2log imð Þ þ log imð Þ2 ¼ 1=n⋅ ∑
n

i¼1
log imið Þ½ �2 ¼ log imð Þ2 , and that for most typical earthquake engineering applications bβD

in natural log scale will be in the 0.20 to 0.60 range,21 so for a number of records n of more than 10, the term

1þ k2=2⋅bb2� �
⋅ 1þ log imð Þ2=s2log imð Þ
� �

⋅ bβ2D=n� �
will tend to unity. Thus, apart from the non‐surprising fact that CoVbλf

varies inversely proportional to
ffiffiffi
n

p
, the equation suggests that it depends, among other things, also on the shape of

the hazard curve, around a region of the curve that corresponds to the structural capacity.
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To better illustrate the implications of Equation 8, three yielding single‐degree‐of‐freedom (SDOF) systems were
considered; these SDOFs all had natural vibration period T = 0.70s and bilinear backbone curves following a peak‐
oriented hysteretic rule exhibiting some mild cyclic strength degradation.22 Each structure was assumed situated at a
site of the same subsoil category (class B according to Eurocode 823; ie, soil with 30‐m shear wave velocity vs,30 between
360 and 500 m/s) but characterized by varying levels of seismic hazard. Three Italian sites were chosen for this example,
namely Milan (representing a low seismic hazard), Naples (medium hazard), and L'Aquila (high seismic hazard; see
also Stucchi et al24). Hazard curves in terms of spectral acceleration at their vibration period Sa(T = 0.7s) were obtained
for all three sites using the REASSESS software,25 considering the seismic source model from Meletti et al.26 The yield
displacement dy for all structures was set corresponding to a uniform‐across‐sites yield annual frequency of 0.0021. The
hazard curves at the three sites are shown in Figure 3. Finally, cloud analysis was performed using three sets of 42
records and the MATLAB‐OpenSees27 interface DYANAS28 (the analysis for the SDOF situated at the Naples site is
shown in Figure 2). The ground motion records were selected from the NESS flat‐file29,30 to provide coverage of a
relatively wide range of Sa(T = 0.7s) values.

Using all of these results, CoVbλf was evaluated for various cases of failure threshold edp f , set at ductility demands

(ratio of maximum‐to‐yield displacement d/dy) of four, six, and eight. The results of these calculations are presented in
Table 1, along with the values assumed by the parameters involved in the intermediate computations. The correspond-
ing example of cloud analysis for the L'Aquila SDOF structure, considering d/dy = 4 as the failure threshold, is shown in
Figure 3.

The last two columns of Table 1 provide a direct evaluation for the simplifications adopted in Equation 6: a compar-
ison of the results forCoVbλf given by the delta method implemented as presented in Iervolino4—ie, computingCoVbλf by
substituting Equations 5 into Equation 2—and the simplified Equation 8. It emerges, from this comparison, that the lat-
ter remains a good approximation of the former. Regarding the resulting CoVbλf values themselves, it can be seen that

passing from a hazard curve slope‐at‐median‐capacity k of around 2.0 at the high‐hazard site (L'Aquila) to about 3.5
for the low‐hazard site (Milan), this metric of estimation uncertainty for the failure rate of nominally identical struc-
tures more than doubles. Recalling the inverse proportionality of CoVbλf to

ffiffiffi
n

p
, according to Equation 8, this result
FIGURE 3 Hazard curves calculated for the three Italian sites (left) and cloud analysis for the SDOF structure assumed at a site near

L'Aquila (right). The peak‐oriented, degrading hysteretic behavior characterizing these inelastic SDOF oscillators used in the examples of

Cornell's reliability method is also shown [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Application of Equation 8 to inelastic SDOF systems at sites with varying severity of seismic hazard

d
dy ba bb bβD IMC [g] k0[×10

−5] k λIMC × 10−4½ � bλf × 10−4
� � CoVbλf

Equation 5 Equation 8

L'Aquila 4 1.44 50.0 2.065 2.37 3.638 0.17 0.15
6 −2.06 0.91 0.406 2.24 59.7 2.351 0.89 1.553 0.21 0.18
8 3.08 74.1 2.569 0.41 0.795 0.28 0.25

Naples 4 −2.12 0.88 0.425 0.63 3.19 3.258 1.41 4.834 0.40 0.38

Milan 4 −2.27 0.88 0.424 0.19 0.03 3.574 1.11 4.850 0.45 0.44

http://wileyonlinelibrary.com
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implies that more than four times as many records would be needed to reduce estimation uncertainty for the risk esti-
mate of the SDOF structure in Milan, to the same level as that of the structure in L'Aquila. This difference appears

despite the fact that estimated dispersion of structural responsebβD and failure ratebλf are very similar for both structures.
The same effect is observed at a single site, when considering the failure rate for limit states associated with progres-
sively higher inelasticity levels: for the L'Aquila structure, changing the EDP threshold from four‐ to eight‐times dy
resulted in an increase to CoVbλf from 0.15 to 0.25, as k increased from around 2.0 to 2.5, due to IMC moving farther

to the right of the hazard curve.
The observations stemming from these illustrative examples, albeit quite evident from Equation 8, can be summa-

rized as follows: for a fixed sample‐size of ground motions, the variability, due to estimation uncertainty, of the seis-

mic risk estimator bλf does not increase only with βD, but also with increasing (negative) slope of the hazard curve
around the intensity where mean response matches the failure threshold. In other words, the number of dynamic
analyses required to reduce the estimation uncertainty of a given structure's failure rate to a specific level will
increase with increasing severity of the limit state. Furthermore, for seismic risk analysis studies at sites where
the curve drops off at steeper slopes, one may need a larger number of dynamic analyses to achieve a specific target
coefficient of variation, with respect to a similar analysis performed at a site with a milder‐sloping curve and with all
else being equal structure‐wise. At first sight, one might be tempted to treat these observations with some caution, as
they could be influenced by the simplifying assumptions of Cornell's reliability method (see Vamvatsikos31 for a dis-
cussion). However, the same observations are also generally confirmed under a more rigorous context of seismic risk
assessment, as discussed in the following.
3 | IM ‐BASED FRAGILITY

In this section, the issue of estimation uncertainty is treated for cases of direct application of Equation 1, with the
structure‐specific fragility function P[ f |im] being obtained via IDA. Case‐study structures used in this context are
three SDOF systems at three sites, as before, and two four‐story, plane, code‐conforming, moment‐resisting frames:
a steel perimeter frame, designed to ASCE‐SEI 7‐05 criteria and described in the NIST GCR 10‐917‐8 report,32

and a reinforced concrete bare frame (ie, without masonry infills) designed according to EN‐1998‐1 (see Baltzopoulos
et al33 for structural details). The only differences of the SDOF structures with respect to the previous example is that
softening post‐peak behavior has been modeled on their backbones to allow collapse prediction (eg, Ibarra and
Krawinkler34) and dy has been re‐adjusted in order to ensure that, for collapse, an arbitrary yet uniformbλf ¼ 4:3⋅10−4 results across all sites, when Sa(T = 0.7s) is used as the IM. The steel multiple‐degree‐of‐freedom
(MDOF) structure is placed at the L'Aquila site and the reinforced concrete one at the Naples site. Center‐line
models built in OpenSees are used for both frames; some basic geometrical information and static pushover curves
are shown in Figure 4A,B. For all structural models, IDA is performed using a set of 200 ground motions that are
scaled upwards until numerical instability is observed, signifying side‐sway collapse. These records were selected
primarily from within the NESS database (http://ness.mi.ingv.it/29,30) and, to a lesser extent, from the NGA‐West2
database.35 The selection criteria were to obtain records exhibiting some of the highest available naturally recorded
spectral ordinates at the first‐mode vibration periods of the examined structures (to keep scaling‐up during IDA to a
minimum), to exclude records potentially affected by near‐source directivity or recorded at very soft soil sites and to
avoid over‐representation of any single event.

In all cases, seismic fragility functions are estimated via the 200 records according to the IM‐based procedure (eg
Jalayer and Cornell10) for the collapse limit state; additionally, limit states characterized by various threshold (edp f )
interstory drift ratios (IDRs) are considered for the two frames. This is done assuming, alternatively, lognormal and
non‐parametric fragility functions according to Equations 9 and 10, respectively, where im f ,i represents the i‐th
record's (lowest) scaled IM value causing exceedance of the threshold (ie, referring again to Figure 1, the intersection

of the i‐th record's IDA curve with the vertical EDP = edp f line), bηIMf
and bβIMf

are the point estimates of the log-

normal fragility's parameters, taken as the mean and standard deviation of the logs of im f ,i, Φ(⋅) is the standard
Gaussian function, I imf ;i≤imð Þ is an indicator function that returns 1 if im f ,i ≤ im and 0 otherwise, and n is the total

number of records.

http://ness.mi.ingv.it/


(A)

(B)

(C)

(D)

FIGURE 4 Basic information on the structures and hazard used in the examples. Dimensions and static pushover curves (first‐mode

proportional lateral load) for the two code‐conforming, four‐story, inelastic MDOF frame structures. Steel perimeter moment‐resisting

frame A, and reinforced concrete moment‐resisting frame B. Hazard curves in terms of two IMs, Sa(T1) and Savg, are shown for the L'Aquila

C, and Naples site D

496 BALTZOPOULOS ET AL.
P f imj½ � ¼ P IMf ≤ im
� � ¼ Φ

log imð Þ − bηIMfbβIMf

" #

bηIMf
¼ 1

n
⋅∑
n

i¼1
log imf ;i
� �

bβIMf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1
⋅∑
n

i¼1
log imf ;i
� �

−bηIMf

h i2s
:

8>>>>>>>>>><>>>>>>>>>>:
(9)

P f imj½ � ¼ P IMf ≤ im
� � ¼ 1

n
⋅ ∑

n

i¼1
I imf ;i≤imð Þ (10)

IDA curves are initially obtained in terms of 5% damped, first‐mode spectral acceleration Sa(T1) but, thanks to the
use of the hunt‐and‐fill algorithm,36 they are subsequently converted into another two more efficient IMs that account
for spectral shape: average spectral acceleration Savg (

37,38) and INp ,
39 given by Equations 11 and 12, respectively, where

nT is the number of periods considered in Savg (discussion on IM efficiency to follow).

Savg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏
nT

i¼1
Sa Tið Þ½ �nT

s
(11)

INp ¼ Sa T1ð Þ⋅ Savg=Sa T1ð Þ� �0:40
(12)

Spectral ordinates at different periods Ti are used to define these IMs for each structure. Both Savg and INp for the
SDOF structures use Ti = {0.7s, 1.0s, 1.4s}, while Savg for the MDOF frames uses each structure's first‐mode period T1

and another three periods approximately corresponding to {0.3⋅T1, 1.5⋅T1, 2⋅T1}. Hazard curves for these structure‐
specific IMs are provided in Figure 4C,D for the frames and Figure 5 for the SDOF systems.

For each structure, limit state, and IM, the 200‐record IDA‐based fragilities are treated as the reference—true—
fragility functions for the purposes of the study. Following the derivation of the fragility functions from the vectors of
im f ,i provided by IDA, Monte Carlo simulation is used to calculate the relationship of CoVbλf against n. The simulation

entails randomly sampling l times from the reference distribution of IM levels causing failure, IM f , for different sample



FIGURE 6 Plots of lognormal collapse fragility functions, produced during Monte‐Carlo simulations that sample n = {20, 50, 100} failure

intensities from the lognormal distribution derived from the 200‐record IDA of the steel, four‐story frame. Top row shows fragilities in terms

of Sa(T = 1.8s) and bottom row in terms of Savg. Each panel displays 500 simulations

FIGURE 5 Hazard curves for the structure‐specific IMs INp and Savg that were used for the collapse risk estimates of the example SDOF

structures at the three Italian sites of Milan, Naples, and L'Aquila [Colour figure can be viewed at wileyonlinelibrary.com]
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sizes n = {2, 3,…, 200}.‡ The reference distribution sampled during the simulation is alternatively considered the lognor-
mal function estimated from the 200‐record IDA via Equation 9 and the non‐parametric version of the same. In the for-
mer case, new lognormal fragility parameters are fitted to each individual sample according to Equation 9, while in the
latter, Equation 10 is directly applied to the sample and considered as fragility function. Examples of the resulting sim-
ulated fragility realizations are shown in Figures 6 and 7 for the lognormal and non‐parametric case, respectively. Both
figures refer to the collapse fragility of the four‐story steel frame at the L'Aquila site, expressed in terms of both
Sa(T = 1.8s) and Savg. Each panel displays the reference 200‐record fragility function and 500 simulated fragility reali-
zations for sample sizes n = {20, 50, 100}. These plots provide a visual representation of the effect of estimation uncer-
tainty on structural fragility, as increasing the sample size of structural responses results in the simulated curves
clustering more tightly around the sampled reference fragility.
‡Although this type of simulation is reminiscent of resampling schemes such as the bootstrap, the two methods are only coincident when samples of
equal size to the original 200 are being extracted.

http://wileyonlinelibrary.com


FIGURE 7 Non‐parametric collapse fragility functions, produced during Monte‐Carlo simulations that sample n = {20, 50, 100} failure

intensities from their empirical distribution resulting from the 200‐record IDA of the four‐story steel frame. Top row shows fragilities in

terms of Sa(T = 1.8s) and bottom row in terms of Savg, with each panel displaying 500 simulations. Corresponding simulations performed

under the assumption of a lognormal fragility model are shown in Figure 6
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In either case, using Equation 1 leads to a point estimate of the failure rate at the j‐th simulation bλf ; j, j = {1, 2,…, l},

with a total of l = 5000 simulations used for each application. Finally, by substituting VAR bλfh i
and E bλfh i

in Equation 2

with their estimates from the Monte Carlo simulation‐generated sample, CoVbλf is approximated for each n according to

Equation 13.

CoVbλf ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l − 1
⋅ ∑

l

j¼1

bλf ; j− 1
l⋅ ∑

l

k¼1

bλf ;k	 
2
s

1
l
⋅ ∑

l

j¼1

bλf ; j (13)

The results of this procedure are shown in Figure 8 for the three SDOF systems, in Figure 9 for the steel frame, and
in Figure 10 for the reinforced concrete frame. In these figures,CoVbλf is plotted against n for the various limit states and

IMs considered, and the record sample sizes corresponding to coefficients of variation of 0.10 and 0.20 are denoted for
select cases to facilitate comparison.

From these results, it can be observed that CoVbλf from Monte Carlo simulation is very nearly inversely proportional

to
ffiffiffi
n

p
, especially for n ≥ 3, as suggested by Equation 8. Thus, all of these curves are almost linear in the logarithms with

a slope of −1/2; ie, log CoVbλf
	 


≈ log Δð Þ − 1=2⋅ log nð Þ. It is, therefore, useful to calculate the log‐space intercept of

these curves, log(Δ), equal to Δ ¼ ffiffiffi
n

p
⋅CoVbλf in linear scale, by least‐squares fitting. This information is reported in

Table 2 along with the logarithmic standard deviation βIMf

� �
of the fragility curve for each case, where the hat from

βIMf
is omitted to indicate the reference 200 record‐based estimate, presumed close to the true value. It is evident that



FIGURE 8 CoVbλf against n calculated via Monte Carlo simulation for the three SDOF structures considered [Colour figure can be viewed

at wileyonlinelibrary.com]

FIGURE 9 CoVbλf against n calculated via Monte Carlo simulation for the four‐story steel frame considered at the L'Aquila (high hazard)

site
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Δ bears direct correspondence to the numerator of Equation 8 and that cases exhibiting higher Δ values are subject to

larger estimation uncertainty of bλf than cases with lower Δ, given parity of record sample size.
From the figures and table, it can be observed that for the limit states associated with more severe levels of inelastic

response, the lognormal assumption for fragility leads to higher CoVbλf than the non‐parametric approach. On the other

http://wileyonlinelibrary.com


FIGURE 10 CoVbλf against n calculated via Monte Carlo simulation for the four‐story reinforced concrete frame considered at the Naples

(medium hazard) site
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hand, for limit states corresponding to smaller drifts, both the lognormal and non‐parametric approach lead to similar
levels of estimation uncertainty for the failure rate of the structures examined. This difference hints at the unsurprising
fact that the effect of the hazard curve's shape on the failure rate's estimation uncertainty is, in reality, somewhat more
complex than just due to the slope at median capacity, since both of these representations of the fragility function share
the same median IM f .

This notwithstanding, the behavior of CoVbλf with varying conditions of site‐specific seismic hazard observed within

these results, is generally consistent with the observations made previously, on the basis of the analytical approximation
derived from Cornell's method. In fact, at sites with hazard curves that slope downwards at steeper angles near the

median capacity bηIMf
, the dispersion of the estimator bλf increases for structures with equal sample sizes and ostensibly

equal λ f . This is observed among the SDOF systems examined, as well as between the two MDOF structures. The same
effect is also observed at the same site and structure, when different limit states are concerned: the collapse and IDR > 3%

limit states for the steel frame exhibit almost identical bβIMf
values, but the collapse case is associated with larger disper-

sion of bλf . This can be explained by the fact that collapse is associated with a higher bηIMf
than IDR > 3% (in terms of

Sa(T = 1.8s), e
bηIMf ¼ 0:56g, and 0.37g, respectively). Thus, CoVbλf for the collapse limit state is influenced by a steeper

portion of the hazard curve than for IDR > 3%. This is analogous to what was observed when implementing Equation
8 in Cornell's method, with increasing failure thresholds for the same structure.
3.1 | Number of records and efficient intensity measures

The term efficiency is used in the literature to denote the property of an IM to produce lower dispersion of structural
responses, conditional to that IM, than alternative, less efficient IMs (see for example Shome et al and Luco and Cor-
nell5,40). Efficiency is specific to a given structural typology, EDP, and level of nonlinearity (eg, Kazantzi and
Vamvatsikos37 and Bojórquez and Iervolino39). Past research has shown that for EDPs related to story‐ and roof‐drifts
and for limit states nearing side‐sway collapse, scalar IMs that reflect spectral shape at multiple periods, such as Savg
and INp, are more efficient than the classical Sa(T1).

37-41 High efficiency is typically cited as an important and desirable
characteristic, precisely because it implies that a smaller number of dynamic analysis runs will be required to achieve a
given dispersion level for the estimator of a seismic‐risk‐related parameter (eg, Cornell12). In fact, even though most
studies that have investigated IM efficiency tend to focus on the record‐to‐record variability of structural response, this



TABLE 2 Logarithmic intercept Δ of CoVbλf as a function of n, log CoVbλf
	 


¼ log Δð Þ − 1=2⋅ log nð Þ, calculated via 200 record IDA for

various structures, IMs, site seismic hazard, and limit states

Site Structure Limit State IM βIMf
Fragility Δ

Milan (low hazard) Inelastic SDOF T = 0.70 s Collapse Sa(T1) 0.443 Lognormal 1.874
Non‐parametric 1.247

INp 0.340 Lognormal 1.453
Non‐parametric 1.047

Savg 0.222 Lognormal 0.945
Non‐parametric 0.745

Naples (medium hazard) Inelastic SDOF T = 0.70 s Collapse Sa(T1) 0.444 Lognormal 1.521
Non‐parametric 1.108

INp 0.341 Lognormal 1.271
Non‐parametric 0.960

Savg 0.222 Lognormal 0.881
Non‐parametric 0.727

Four‐story reinforced
concrete frame T1 = 0.53 s

IDR > 0.5% Sa(T1) 0.314 Lognormal 0.856
Non‐parametric 0.791

Savg 0.216 Lognormal 0.734
Non‐parametric 0.747

IDR > 1% Sa(T1) 0.389 Lognormal 1.344
Non‐parametric 1.247

Savg 0.255 Lognormal 1.113
Non‐parametric 1.020

L'Aquila (high hazard) Inelastic SDOF T = 0.70 s Collapse Sa(T1) 0.443 Lognormal 0.956
Non‐parametric 0.737

INp 0.340 Lognormal 0.747
Non‐parametric 0.614

Savg 0.222 Lognormal 0.505
Non‐parametric 0.455

Four‐story steel moment
resisting frame T1 = 1.82 s

Collapse Sa(T1) 0.335 Lognormal 0.884
Non‐parametric 0.866

Savg 0.194 Lognormal 0.637
Non‐parametric 0.616

IDR > 3% Sa(T1) 0.329 Lognormal 0.745
Non‐parametric 0.761

Savg 0.227 Lognormal 0.631
Non‐parametric 0.640
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is actually intended as a proxy for the estimation uncertainty underlying the risk metrics, whose reduction is the end
objective. It is, therefore, quite natural to directly observe the effect of this property on estimation uncertainty, via quan-
tities such as CoVbλf .

In this respect, there are two main observations to be made, on the basis of the mean relative error results obtained
for the example applications. The first observation regards cases with Δ > 1; ie, combinations of the more severe limit
states, low‐to‐medium hazard, and adoption of the classical Sa(T1) as IM. In these situations, the reciprocal relation of
CoVbλf with ffiffiffi

n
p

means that achieving an arbitrary low coefficient of variation of, say, 10% would require sample sizes in

excess of 100 records, which verges on the impracticable. This hints at a more pressing need to adopt efficient IMs in
such cases.

The second observation is that when switching to more efficient IMs, the reductions in the dispersion bβIMf
are not

always consistently reflected in the reduction of the number of records required to maintain any given CoVbλf level. For
example, switching from Sa(T1) to Savg results in about 30% reduction in bβIMf

for both the IDR > 0.5% limit state of the

Naples frame and the IDR > 3% limit state of the L'Aquila frame; however, this translates to a 25% reduction in the
number of records required to maintain any CoVbλf level in the latter case, but only 8% in the former. Similarly,
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performing the same operation for the collapse case of the SDOFs at the Milan and Naples sites results in the same 50%

reduction in bβIMf
, which translates in a 75% reduction in the corresponding number of records for the structure in

Milan, but only 66% for the one in Naples.

Apart from these observations, a comment should be made about the fact that the 200‐record point estimate bλf shifts
when switching IM. This effect is mainly related to the sensitivity of response to seismological parameters when records
are scaled (see, for example, Luco and Cornell,40), which can be different for each IM‐EDP combination. However, this
is not an issue that is directly related to estimation uncertainty, and for this reason, further discussion thereof falls
beyond the scope of this article.
3.2 | Target mean relative error and interquantile range of the risk estimate

The preceding discussion and illustrative applications showcased the influence of various parameters on CoVbλf and pro-

vided some typical ranges of values that it is expected to take for given sample sizes. It was highlighted that the mean

relative estimation error, in the case of IM‐based fragility, varies with n according to CoVbλf ¼ Δ=
ffiffiffi
n

p
, with Δ depending

on the choice of IM and consequent record‐to‐record variability of structural response and on the shape of the corre-
sponding hazard curve. The examples provided indicate that, for the simple inelastic structures examined,
Δ ∈ (0.45, 1.9), which translates into CoVbλf ranging roughly from 0:45=

ffiffiffi
n

p
for a combination of efficient IM and high

seismicity site (mild slope of the hazard curve around average structural capacity) to about 1:9=
ffiffiffi
n

p
for the other extreme

of less efficient IM and low seismicity site (steeper curve). Given that the hazard curve should be known prior to
embarking on dynamic analysis and that the literature is rife with studies on the efficiency of various IMs for specific
EDPs, one should be able to assess the required number of records to be n = (Δ/CoVtar)

2 ≈ [(0.45 ÷ 1.9)/CoVtar]
2, where

CoVtar is a target value for the coefficient of variation of the risk estimate. Once the dynamic analysis has been con-
cluded and structural response results have become available, it will also be possible to use other tools for assessing esti-
mation uncertainty, such as those presented in Iervolino.4

In this context, it may be useful to illustrate the consequences of setting a target CoVbλf of, say, 0.10 or 0.20 on the

precision of the risk estimate, by linking these values to another measure of the estimator's scatter around the mean:

the 5th to 95th interquantile range, bλf ;0:95 − bλf ;0:05.42 This statistic can be calculated from the approximations to the dis-

tribution of bλf obtained by the Monte Carlo simulations for each n, an example of which is provided in Figure 11. The
examples in the figure refer to the IDR > 1% limit state for the reinforced concrete frame and collapse of the steel frame,
in both cases using Savg as IM, and are given for n = {20, 50, 100}. The distribution plots clearly showcase the reduction
in dispersion of the risk estimator, with increasing sample size of records.

On the other hand, the interquantile range bλf ;0:95 − bλf ;0:05 is plotted in Figure 12, normalized by the point estimate at

n = 200: bλf n¼200ð Þ . This is shown for two cases of collapse annual rate: that of the steel four‐story frame, using non‐

parametric fragility in terms of Savg, and that of the SDOF structure at the Naples site, using non‐parametric fragility

in terms of Sa(T1) this time. The underlying implication behind plotting the ratio bλf =bλf n¼200ð Þ is that bλf n¼200ð Þ should be

close to the true rate, and thus the interquantile range appears as a percentage of that value. From the figure, it can

be observed that normalized bλf ;0:95 − bλf ;0:05 ranges corresponding to the same value of CoVbλf are almost identical

between the two cases, even if the latter requires more records to achieve those CoVbλf values than the former. Further-

more, it can be seen that the width of this range shrinks from around 0.70 at CoVbλf ¼ 0:20, to about 0.33 at

CoVbλf ¼ 0:10. These normalized bλf ;0:95 − bλf ;0:05 widths suggest that mean relative errors in the environs of 10%, and

not larger than 20%, should be regarded as acceptable target levels of accuracy in estimation, as higher CoVbλf levels
imply that the width of this interquantile range would approach the reference bλf n¼200ð Þ value in size. In terms of the

required number of records, setting CoVtar = 0.10 and assuming that, as discussed previously, Δ will be maintained
under 1.0 by judicious selection of IM to avoid impractical sample sizes, n would result within a range from 40 to
100 ground motions, depending on IM efficiency with respect to all relevant EDPs and site‐specific hazard and



FIGURE 11 Distributions of the seismic risk estimators bλf , approximated via Monte Carlo simulation, for record sample sizes

n = {20, 50, 100}. The top row corresponds to the IDR > 1% limit state of the reinforced concrete frame situated at the Naples site and the

bottom row to collapse of the steel frame situated at the L'Aquila site. The IM employed in both cases is Savg. The ordinate reports relative

frequency; ie, the number of simulated bλf point estimates contained in each bin of the histogram divided by the total number of simulations

FIGURE 12 Interquantile range bλf ;0:95 − bλf ;0:05 as a function of n, normalized by the 200‐record point estimate bλf n¼200ð Þ . The bλf ;0:95 − bλf ;0:05
range was calculated from the Monte Carlo approximations of the distributions of bλf for various sample sizes: Cases of collapse limit state for

the steel frame (non‐parametric fragility in terms of Savg, left panel) and collapse limit state for the SDOF system located at the Naples site

(non‐parametric fragility in terms of Sa(T1), right panel). Record numbers corresponding to CoVbλf of 0.10, 0.20, and 0.30 for each case are

highlighted by dashed black lines [Colour figure can be viewed at wileyonlinelibrary.com]
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considering the results of the MDOF frames as representative. In fact, for the simple inelastic SDOF structures, this
number starts from as low as around 20 ground motions.
4 | DISCUSSION AND CONCLUSIONS

The complexity of numerical models that simulate the seismic response of structures in the nonlinear range grows at a
pace that rivals advances in computing power. This leads to computational costs for analytical seismic risk assessments

http://wileyonlinelibrary.com
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that remain at constantly high levels, rendering the issue of the appropriate number of response‐history analyses to run,
ever topical. The present article advocates the use of quantitative criteria to determine the sample size of ground motion
records, based on the statistical inference concept of estimation uncertainty. This offers earthquake engineers a means
of making an informed decision, by weighing computation costs against precision of the risk estimates. The study
focused exclusively on the use of naturally recorded acceleration time‐histories (possibly modified by scaling‐in‐
amplitude only), which is becoming the norm, in part thanks to the widespread recent availability of online strong
motion repositories. In order to quantify estimation uncertainty, the coefficient of variation of the estimator of annual
failure rate, CoVbλf , was chosen. The main conclusions to be drawn from this study are listed here.

• A closer look at Cornell's simplified, analytical seismic reliability formulation, showed that the record‐to‐record dis-
persion of structural responses is only part of the story, with CoVbλf also depending on the shape of the site‐specific

hazard curve. The implication of this finding is that for structures located at sites characterized by different seismicity
levels, different numbers of runs may be required to reach the same level of confidence in the risk estimate between
sites, even for the case of similar structures expected to exhibit the same failure rate. The effect of hazard onCoVbλf can
be summarized by the slope of the curve near intensity levels that are most relevant for causing failure: the steeper the

local drop‐off of the curve the greater the estimation uncertainty behindbλf . These observations were generally corrob-
orated by numerical simulations, based on IDA of simple inelastic systems and two code‐conforming frames.

• Both analytical and numerical investigations showed that the mean relative error of the failure rate follows a rela-

tion of the type CoVbλf ¼ Δ=
ffiffiffi
n

p
and suggest that the parameter Δ, as a rule of thumb (based on the applications

developed in this study), varies between around 0.45 and 1.9 for various limit states that can be defined in terms
of maximum drift thresholds, ranging from moderate inelasticity to side‐sway collapse. The lower value corresponds
to cases where advanced, efficient scalar seismic IMs are employed combined with a mild‐sloping hazard curve with
slope k ≈ 2 around median structural capacity, and the higher one to the use of traditional IMs, such as first‐mode
spectral acceleration, coupled with locally steeper hazard curves, eg, with slope k ≈ 3.5 .

• It was observed that, for nominally equivalent structures, variations in the choice of IM and/or site‐specific hazard
can cause the number of records required to achieve a level of CoVbλf around 0.10 to vary from the low tens to a cou-

ple of hundred. This, once again, highlights the importance of selecting efficient IMs in PBEE, which becomes an
almost necessity in the case of collapse failure estimation at low‐seismicity areas, keeping the number of ground
motions needed to achieve a 10% coefficient of variation for the failure rate estimate within the range of 40 to 100.

• Finally, it was observed that the reduction in the dispersion of structural response via efficient IMs, despite its impor-
tance, does not tell the whole tale with regard to the corresponding reduction in computational costs, which can also
be site dependent.

On a concluding note, in the applications presented herein, the general trend was that less records are needed to
reach the same level of mean relative error in the risk estimates for sites exposed to higher seismic hazard, than for sites
exposed to lower hazard levels; however, this result may be a rule‐of‐thumb that is not necessarily generalizable inde-
pendently of the shape of particular site‐specific hazard curves. Generally speaking, it was shown that the results and
observations presented can be useful in practical applications of seismic risk assessment, by providing a quantitative
basis for determining the required number of records for risk‐targeted dynamic analysis. This number can be defined
by setting a target of desired precision for the risk estimate in terms of the mean relative error, CoVbλf .
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