
ORIGINAL RESEARCH PAPER

SPO2FRAG: software for seismic fragility assessment
based on static pushover

Georgios Baltzopoulos1 • Roberto Baraschino2 •

Iunio Iervolino2 • Dimitrios Vamvatsikos3

Received: 30 January 2017 / Accepted: 26 April 2017 / Published online: 8 May 2017
� Springer Science+Business Media Dordrecht 2017

Abstract SPO2FRAG (Static PushOver to FRAGility) is introduced, a MATLAB�-coded

software tool for estimating structure-specific seismic fragility curves of buildings, using

the results of static pushover analysis. The SPO2FRAG tool (available online at http://

wpage.unina.it/iuniervo/doc_en/SPO2FRAG.htm) eschews the need for computationally

demanding dynamic analyses by simulating the results of incremental dynamic analysis via

the SPO2IDA algorithm and an equivalent single-degree-of-freedom approximation of the

structure. Subsequently, fragility functions may be calculated for multiple limit states,

using the intensity-measure-based analytical approach. The damage thresholds may also be

random variables and uncertainty in estimation of the fragility parameters may be

explicitly accounted for. The research background underlying the various modules com-

prising SPO2FRAG is presented together with an operational description of how the

various functions are integrated within the software’s graphical user interface. Two

illustrative SPO2FRAG applications are also offered, using a steel and a reinforced con-

crete moment resisting frame. Finally, the software’s output is compared with the results of

incremental dynamic analysis as validation of SPO2FRAG’s effectiveness.
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1 Introduction

Performance-based earthquake engineering (PBEE) is a structural engineering paradigm

that fully embraces the intrinsic uncertainty associated with strong ground motion and

employs probabilistic tools to evaluate structural performance in seismic areas (e.g.,

Cornell and Krawinkler 2000). Perhaps the most notable example is the problem of esti-

mating the rate of earthquakes leading the structure to fail in meeting a performance

objective (a situation often referred to as exceedance of a limit state). This calculation can

be performed by an implementation of the total probability theorem:

kf ¼
Z
IM

P f IM ¼ imj½ � � dkimj j ð1Þ

The terms appearing in the equation are the sought rate of failure, kf , the rate of

exceeding a certain value of a ground motion intensity measure (IM), kim, and the con-

ditional probability of failure given a certain level of seismic intensity, P f IM ¼ imj½ �; i.e.,
the fragility of the structure. The term kim is a measure of the seismic hazard at a specific

site and can be evaluated by means of probabilistic seismic hazard analysis (note that the

absolute value of the differential, dkimj j, appears in the equation).

The methods used to derive such fragility functions can be classified as empirical,

analytical or hybrid; the interested reader is referred to Calvi et al. (2006) for a com-

prehensive overview. In recent years there has been considerable emphasis on the ana-

lytical approach, which is based on numerical models, especially for structure-specific

fragility functions. State-of-the-art analytical methods rely on advanced numerical

models of the structure subjected to nonlinear dynamic analyses. A classic example of

such analysis is incremental dynamic analysis (IDA, Vamvatsikos and Cornell 2002).

IDA accounts for the variability of structural response (i.e., the so-called record-to-

record variability) by using a sample of recorded accelerograms as seismic input. IDA

entails having each accelerogram in the ensemble scaled in amplitude to increasing levels

of intensity (as measured by the selected IM) and estimating the structural response at

each such level. In fact, because the IM typically does not possess full explanatory power

with respect to structural response, the variability of the latter with respect to the former

has to be captured. Thus, IDA seeks to map seismic structural response statistically, from

the first signs of nonlinear inelastic behavior up to eventual collapse. Proposed exten-

sions of this dynamic analysis methodology reserve the possibility of accounting for

uncertainty in the numerical model itself (e.g., Dolsek 2009; Vamvatsikos and Fra-

giadakis 2010; Vamvatsikos 2014). Alternative-to-IDA dynamic analysis strategies used

for estimating structural fragility are cloud analysis and multiple-stripe analysis (e.g.,

Bazzuro et al. 1998; Jalayer and Cornell 2003).

The main disadvantages of the dynamic-analysis-based derivation of fragility functions

is the computational burden involved and the amount of effort that has to go into modelling

highly non-linear structural behavior. The combination of numerical model complexity,

required number of runs and the need for elaborate result post-processing can add-up to

such demands of human and computing resources that engineers find themselves strongly

motivated to look for simpler, approximate alternatives. The most notable simplifying

alternative, one that has been with PBEE in various forms since its early years, involves

making recourse to an equivalent single-degree of freedom (SDoF) inelastic system. One

key point in this approximation is the assignment of a force–deformation law governing the

SDoF system’s response to monotonic lateral loading, typically referred to as the backbone
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curve. The definition of this backbone is typically based on the (numerically-evaluated)

response of the original multiple-degree of freedom (MDoF) structure to a progressively

increasing lateral force profile, known as its static push-over (SPO) curve. Due to their

approximate nature, SPO-based methods have limitations that have been extensively

documented and discussed (e.g., Krawinkler and Seneviratna 1998; Fragiadakis et al.

2014).

The other key point that is ubiquitous among SPO-based procedures is the calculation of

the seismic demand of the equivalent SDoF system and the subsequent estimation of the

original MDoF structure’s seismic demand (e.g., Fajfar 2000). Throughout the years, semi-

empirical methods available for this calculation have evolved from the equal displacement

rule to equations relating strength ratio to ductility per oscillator period (often abbreviated

as R� l� T relations, e.g., Vidic et al. 1994) and eventually to the static pushover to IDA

(SPO2IDA) algorithm of Vamvatsikos and Cornell (2006). While earlier inelastic-spectra-

based approaches were focused on average response of SDoF oscillators with elastic-

perfectly-plastic or bilinear backbone curves, the more recent SPO2IDA tool has the ability

to treat more complex SPO curves and, more importantly, offers direct estimates of the

dispersion associated with the record-to-record variability of structural response. These

two elements render SPO2IDA particularly suitable for implementation within the PBEE

paradigm, since they facilitate the treatment of uncertainty in seismic structural response

for limit states approaching global collapse.

This article comprehensively discusses the earthquake-engineering-oriented software

SPO2FRAG (first introduced in Iervolino et al. 2016a), an application coded in

MATLAB� environment that permits the computer-aided evaluation of seismic fragility

functions for buildings, based on the results of SPO analysis. The SPO2IDA algorithm lies

at the core of SPO2FRAG, allowing the application to simulate the results of IDA without

running numerous, cumbersome analyses.

The remainder of the paper is structured as follows: first, the background research

behind SPO2FRAG is briefly presented, in order to highlight the connection between the

PBEE paradigm and the program’s functionality. The next section is dedicated to the

detailed description of the program itself, addressing the various internal modules that

comprise SPO2FRAG, the inner workings, methodology and flowchart, as well as the

various options available to the user. Finally two illustrative examples are presented, along

with some evaluation and discussion of the obtained results.

2 Fragility, IDA, and SPO2IDA

2.1 IDA and the IM-based approach

The conceptual basis of SPO2FRAG lies in simulating the results of incremental dynamic

analysis using SPO alone. Therefore, the principal assumptions behind IDA and the

methodologies for fitting analytical fragility models on IDA results are also relevant in this

case and merit briefly recalling them.

IDA collects the responses of a non-linear structure to a suite of accelerograms, as these

accelerograms are progressively scaled in amplitude to represent increasing levels of

seismic intensity. These structural responses are typically represented by a scalar quantity,

the engineering demand parameter (EDP). Examples of EDPs often used for buildings are

maximum roof drift ratio (RDR) and maximum interstorey drift ratio over all floors (IDR).
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Furthermore, a scalar IM is chosen to represent seismic intensity; e.g., peak ground

acceleration (PGA) or first-mode spectral acceleration, Sa T1ð Þ. One basic assumption is

that such an IM is sufficient, that is, the EDP random variable conditioned on the IM is

independent of other ground motion features needed to evaluate the seismic hazard for the

site, such as magnitude and source-to-site distance (e.g., Luco and Cornell 2007). Another

closely related assumption is the so-called scaling robustness of the chosen IM, meaning

that using records scaled to the desired amplitude of the IM, rather than records where said

amplitude occurred naturally, will not introduce bias into the distribution of structural

responses obtained (e.g., Iervolino and Cornell 2005). This allows plotting EDP against IM

as each individual record is scaled upwards, resulting in an IDA curve.

It is assumed that in the numerical model of the structure employed for IDA, stiffness

and strength degradation under dynamic loading are acceptably represented. Consequently,

failure of the analysis to provide an EDP value after scaling a record to a certain IM level

can be attributed to the onset of dynamic instability, which would physically correspond to

the structure’s side-sway collapse (see also Adam and Ibarra 2015). For presentation

purposes, this numerical onset of collapse can be displayed at the end of the IDA curve as a

horizontal segment of ever-increasing EDP-values for a fixed IM value, or a flat-line (see

Fig. 1). In cases where global collapse is deemed to occur at lower IMs due to non-

simulated modes of failure (e.g., shear or axial failure of columns) an appropriate flatline

may be used instead to terminate the IDA curve earlier.

An effective way of summarizing IDA results is to calculate and plot counted fractile

curves of either EDP for fixed IM or vice versa (Vamvatsikos and Cornell 2004). Usually,

fractile IDA curves at 16, 50 and 84% are chosen for presentation, corresponding to the

mean plus/minus one standard deviation of a Gaussian distribution. As a matter of fact,

analytical derivation of fragility functions typically involves fitting a parametric
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probability model to the results of dynamic analysis and the model chosen is very often

lognormal. One way of defining the fragility function for a limit state is to assume that

there exists a threshold (maximum allowable) value of some EDP, edpf , whose exceedance

also signals failure, i.e., exceedance of the limit state, according to Eq. (2).

P f IM ¼ imj½ � ¼ P EDP[ edpf IM ¼ imj
� �

¼ P IMLS
f � im

h i
: ð2Þ

An alternative way of looking at this fragility definition, within the IDA framework, can

be stipulated by considering a random variable representing the IM level at which to scale

a specific record in order to fail the structure (i.e., causing the event EDP[ edpf ), denoted

as IMLS
f . In this case, the fragility function can be written as the probability of this random

variable being equal or lower than the level of seismic intensity possibly occurring at the

site, according to Eq. (2)—see also Jalayer and Cornell (2003). By making the assumption

that IMLS
f follows a lognormal distribution, the fragility function will be completely defined

by estimating the two parameters of the underlying Gaussian, i.e., the mean of the logs g
and the logarithmic standard deviation b. These parameters can be estimated using the

sample of IMLS
f ;i values shown in Fig. 1 as the intersection of the individual IDA curves and

the EDP ¼ edpf vertical line. As a consequence, it is possible to write the fragility function

via the standard Gaussian function Uð�Þ:

P IMLS
f � im

h i
¼ U

ln imð Þ � g
b

� �
: ð3Þ

This approach, expressed by Eqs. (2–3), is known as the IM-based derivation of the

fragility function. As evidenced in Fig. 1, the IM-based approach is particularly convenient

when global collapse becomes the limit state of interest: any vertical line intersecting all

the records’ flat-lines will provide the empirical distribution for collapse intensity to which

a model such as the lognormal appearing in Eq. (3) can be fitted. This, in turn, may be used

to compute the failure rate via Eq. (1). In general, though, pinpointing a fixed value of edpf
that signals the transition between limit states can be hard due to the uncertainties involved.

It should be highlighted that when using IDA to estimate the fragility P f IM ¼ imj½ �
appearing in Eq. (1), the two already mentioned assumptions of sufficiency and robustness

to scaling are endorsed by default, due to the very nature of the analysis. In what follows, it

will be assumed that first mode spectral acceleration, Sa T1ð Þ, is a sufficient-enough IM with

respect to roof and interstorey drifts for the structures considered and thus the problem of

fragility estimation will be treated as site-independent.

2.2 Static pushover analysis and SPO2IDA

SPO analysis finds application in the context of earthquake engineering as part of several

approximate procedures that relate the inelastic seismic response of structures to that of

some equivalent SDoF system. The popularity of such methods can be attributed to their

inherent simplicity and eventual adoption by normative documents and guidelines on

seismic structural design/assessment. Some of the earlier examples of SPO-based proce-

dures made recourse to elastic-perfectly plastic or bilinear SDoF equivalent oscillators and

relied on inelastic displacement ratio predictive equations or R� l� T (strength ratio—

ductility—period) relations to obtain estimates of their average inelastic response. More

recently, the trend has been shifting towards accounting for the variability of inelastic
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seismic response around its central value and towards expanding the limits of structural

assessment to include global collapse (e.g., Vamvatsikos and Cornell 2005). The latter of

these trends practically translates into the adoption of more elaborate numerical models for

the structure and consequently SPO curves that trace monotonic response to lateral loading

down the (in-cycle) strength-degradation descending branch and along an eventual residual

strength plateau. This, in turn, gives rise to the need for analytical models that predict the

response of SDoF systems with more complex backbone curves, such as the quadrilinear

depicted in Fig. 2.

In this format, the quadrilinear backbone can be completely defined by five parameters

shown in Fig. 2a: the hardening slope ah (positive ratio of post-yield stiffness to elastic

stiffness), the capping-point ductility lc (point where loss of strength with increasing

deformation begins), the post-capping slope ac (negative slope corresponding the ratio of

the negative post-capping stiffness divided by the initial elastic stiffness), the height of the

residual strength plateau rp (ratio of residual strength divided by yield strength) and the

fracture ductility lf (point corresponding to sudden, complete loss of strength). It is

recalled that ductility is defined as the ratio of displacement response to yield displace-

ment, l ¼ d
�
dy, while the strength ratio R ¼ Sa Tð Þ=Sa Tð Þy is defined as the ratio of the

spectral acceleration intensity to its value causing yield, or, equivalently, the ratio of the

elastic seismic force over the yield base shear of the system (R is sometimes encountered in

the literature under the term strength reduction factor).

Vamvatsikos and Cornell (2006) proposed a set of semi-empirical analytical equations

aimed at predicting the median and (record-to-record) variability of peak seismic response

of SDoF oscillators featuring quadrilinear SPOs. These equations use the SPO parameters

ah, lc, ac, rp, lf and period of natural vibration T as predictor (independent) variables to

estimate the SDoF structure’s 16, 50 and 84% fractile IDA curves in R; lf g coordinates.

For this reason, this set of equations has been named SPO2IDA. The equations that

comprise SPO2IDA were fit against the responses of SDoF oscillators with critical viscous

damping ratios, f, equal to five percent and with hysteretic behavior exhibiting moderate

pinching but no cyclic degradation of stiffness or strength. These oscillators were subjected

to a suite of thirty recorded ground acceleration time-histories, recorded on firm soil and

most likely unaffected by near-source directivity effects. An example of an SPO2IDA

prediction for a quadrilinear-backbone SDoF system, plotted against the actual (individual

and fractile) IDA responses to a set of forty-four accelerograms, can be found in Fig. 2b.

The limits of applicability for SPO2IDA in terms of the independent variables are the
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Fig. 2 Quadrilinear monotonic backbone curve in dimensionless R; lf g coordinates and defining
parameters (a), SPO2IDA prediction against actual quadrilinear-backbone SDoF oscillator (T = 0.56 s)
IDA curves obtained using all forty-four components of the FEMA P695 far-field ground motion set (b)
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following: 0:10s�T � 4:0s; 0:0� ah � 0:90; 1:0\lc � 9:0; 0:02� acj j � 4:0; and 0:0� rp
� 0:95:

The key observation behind the development of SPO2IDA was the relatively consistent

behavior of the IDA fractile curves corresponding to the various segments of the under-

lying SPO (i.e., hardening, softening, residual). This behavior is visible in Fig. 2b, where

the SPO is plotted along with the IDA fractiles (both calculated and predicted). While an

almost-constant ascending slope characterizes the initial post-yield IDA segments, this

gives way to gradual flattening upon crossing of the capping point. This flattening is

temporarily arrested when the residual plateau is encountered, but only until the fracture

point leads to the flat-lines that indicate collapse. Although analytically complex,

SPO2IDA is an algorithm that has proven well-suited to computer implementation.

SPO2FRAG fully exploits SPO2IDA’s potential as a PBEE tool by surrounding it with a

set of modules that render the SPO-based estimation of seismic structural fragility prac-

tical. The complete conceptual and operational details are presented in the following

sections.

2.3 Definition of an equivalent SDoF system

The choice of an equivalent SDoF system for a given structure lies at the core of all SPO-

based analysis methods. This choice entails the definition of the SDoF oscillator’s mass,

m�, yield strength, F�
y , yield displacement, d�y and as many of the dimensionless backbone

parameters (see Fig. 2a) as are applicable to the case at hand (i.e., depending on whether

one is opting for a bilinear, trilinear or full quadrilinear approximation of the SPO curve).

With reference to Fig. 3, we assume that a generic n-storey frame building is subjected

to a lateral load profile Fi ¼ j � mi � ui, where Fi is the force acting on the i-th storey, mi

represents floor mass, the elements ui define a dimensionless displacement profile, which

is assumed constant with unit value at roof level (un ¼ 1), and j is a scale factor with

dimensions of acceleration. By gradually increasing the scale factor j, recording the dis-

placement response of the deforming structure at roof level, droof , and plotting that dis-

placement against base shear, Fb ¼
Pn

i¼1 Fi, we obtain the SPO curve—Fig. 3c. This

curve is used to determine the monotonic backbone of an SDoF system whose mass, m�, is

mn
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. .
 .
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i i iF m
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Fig. 3 Definition of equivalent SDoF system: SPO analysis of the strtucture (a), definition of dynamic
characteristics of the SDoF system (b), definition of monotonic backbone of the SDoF system based on SPO
curve (c)
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given as a function of the structure’s floor masses by m� ¼
Pn

i¼1 mi � ui and whose reaction

force F� and displacement d� are related to the structure’s base shear and roof displace-

ment by dividing with the modal participation factor C (F� ¼ Fb=C and d� ¼ droof
�
C),

which is calculated as C ¼ m��Pn
i¼1 mi � u2

i (Fajfar 2000).

The period of vibration of the equivalent SDoF system, T�, is calculated as

T� ¼ 2p �
ffiffiffiffiffiffiffiffi
m��d�y
F�
y

r
. As indicated by Fig. 3c, the definition of F�

y and d
�
y depends on the piece-

wise linear approximation adopted for the SPO curve. As far as specific methodologies

towards obtaining said approximation are concerned, the literature offers some variety but

little consensus. Normative documents such as Eurocode 8 (CEN 2004), FEMA-356

(ASCE 2000) and FEMA-273 (BSSC 1997) suggest some procedures for obtaining elastic-

perfectly-plastic or bilinear approximations for the backbone of the equivalent SDoF based

on ad-hoc criteria such as area balancing (CEN 2004). Furthermore, when it comes to

trilinear or quadrilinear SPO fits that bring to the table a larger number of parameters to be

estimated, such simple rules are not enough. In fact, more advanced methods towards

constructing trilinear SPO curve approximations were proposed in FEMA-440 (2005),

ASCE/SEI 41-06 (ASCE 2007) as well as by Han et al. (2010) and Vamvatsikos and

Cornell (2005).

Recently, De Luca et al. (2013) set forth a set of rules for obtaining quadrilinear

approximations that may potentially include a residual strength plateau. In that work, the

optimization of the piece-wise linear fit was performed by comparing the IDA curves of the

multi-linear-backbone SDoF oscillator with those of the system sporting the exact back-

bone. For this reason, this was considered the most suited algorithm for inclusion within

SPO2FRAG’s modules. In the aforementioned study, the authors paid particular attention

to systems with SPOs exhibiting notable changes of stiffness already from the early, low-

base-shear stages, e.g., Fig. 3c. Such behavior, which can be due to, for example, gradual

cracking of reinforced concrete (RC) members makes pinpointing a nominal yield point for

an equivalent SDoF system especially challenging. It was concluded that the elastic seg-

ment of the equivalent system’s backbone should correspond to a secant stiffness at an

early point on the SPO curve, at around 5–10% of maximum base shear. This is due to the

fact that when the elastic stiffness attributed to the equivalent system, F�
y

.
d�y , significantly

departs from the initial tangent stiffness of the actual structure, the IDA curves corre-

sponding to the linearized backbone display poor fit with respect to the IDAs of the exact

backbone at the comparatively low-seismic-intensity region. This is especially relevant in

cases where absence of a clearly defined elastic segment and high initial curvature char-

acterizes the SPOs.

2.4 Consideration of MDoF effects

Once an equivalent SDoF oscillator has been fully determined, SPO2IDA can provide an

approximation for the three fractile IDA curves of this SDoF system in R; lf g coordinates,

as already discussed (see Fig. 4a). The predicted IDAs can be regarded as fractiles of

strength ratio, Rx%, given l, with x ¼ 16; 50; 84%f g. However, two further steps are

needed before this result can be used to obtain a meaningful estimate for the fragility of the

original MDoF structure. First of all, the SDoF IDA curves must be transformed from

R; lf g into an IM—EDP format appropriate for the structure. Second step is to address the

variability of response at the nominal yield point R ¼ l ¼ 1. Prior to this point, the three
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IDA Rx% fractiles of the SDoF system coincide, corresponding to zero response variability

around the median. On the other hand, the MDoF structure does exhibit response vari-

ability at that point. If the nominal yield point corresponds to the structure remaining in the

elastic range, some limited variability will exist due to higher-mode contributions to base

shear. Higher variability may be expected when the nominal yield corresponds to defor-

mation levels where the structure is already manifesting some non-linear behavior (e.g.,

Fig. 3c). In either case, the missing amount of variability should be estimated and injected

back into the SDoF-derived approximation of the IDA curves. This is especially important

when fragility for low-damage limit states is being sought. These operations are

schematically presented in Fig. 4b.

Since the restoring force of the SDoF system depends on spectral acceleration at its

natural period, T�, the transformation of IM is the most immediate operation: the 16, 50

and 84% fractiles of Sa T�; 5%ð Þ are obtained from their counterpart R fractiles according

to Sa T�; 5%ð Þx%¼ Rx% � dyC � 2p
T�

� 	2
; x 2 16; 50; 84f g.

The passage from ductility demand to RDR and IDR can be performed according to

Eq. (4), where hi denotes the height of the i-th storey and Ceff is an effective modal

participation factor that can be used instead of C:

RDR ¼ Ceff �
l � d�yPn
i¼1 hi

IDR ¼ COD � RDR

8<
: : ð4Þ

In Eq. (4), the notation COD stands for coefficient of distortion (e.g., Moehle 1992).

COD is defined as the ratio of maximum IDR (over all storeys) to the roof drift and is a

function of R. This is expressed by Eq. (5), where di represents the SPO displacement of

the i-th storey at base shear level R � Fy and H ¼
Pn

i¼1 hi the total building height:

COD ¼ maxi di � di�1ð Þ=hif g
dn=H

: ð5Þ

On the other hand, the effective modal participation factor Ceff appearing in Eq. (4) is

intended to account for higher-mode effects and possible early (prior to nominal yield)

multi-linear
SPO

(a) (b) (c)

m ax y

R
Sa

Sa
dleiy )

%5 ,
T(aS

*

IDR (%) ln(EDP)

)
MI(nl

limit
state
threshold

16% fractile
of R given μ

84% fractile
of R given μ

median
of R given μ

16% fractile
IDA

84% fractile
IDA

median IDA

Fig. 4 Schematic representation of the conceptual basis of SPO2FRAG: obtaining SPO2IDA-predicted
IDA fractiles for the equivalent SDoF system (a), transforming the SDoF IDA curves to MDoF IM-EDP
coordinates (b), fitting Gaussian models to the transformed IDA fractiles according to the IM-based
procedure (c)

Bull Earthquake Eng (2017) 15:4399–4425 4407

123



non-linear behavior; for an example see Katsanos and Vamvatsikos (2017). Note that Ceff

can be simply substituted by C when such effects are not of concern. In the context of

SPO2FRAG, Ceff corresponds to an approximate analytical model that was developed

using IDA results obtained for twenty-eight plane, steel and RC moment-resisting frames

(MRFs) having two to eight storeys, first-mode periods within 0.25–2.00 s and using both

distributed and concentrated plasticity models. The proposed functional form for Ceff

is:collapse intensity of 5%-damped SDoF systems

Ceff ¼ Cþ R2 �
Pn
i¼1

mi


Pn
i¼1

mi � ui � C

� �
�
fSa T2ð Þ
Sa T�ð Þ � 1

" #
� 1� 0:5 � T�

T1

� �1=2
" #

; 0\R � 1

Ceff ¼ Cþ
Pn
i¼1

mi


Pn
i¼1

mi � ui � C

� �
�
fSa T2ð Þ
Sa T�ð Þ � 1

" #
�
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� �1=2

�1:7 � R� 1

Rcol
50% � 1
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Ceff ¼ Cþ
Pn
i¼1

mi


Pn
i¼1

mi � ui � C

� �
�
fSa T2ð Þ
Sa T�ð Þ � 1

" #
� 0:8 � T�

T1

� �1=2

�0:7

" #
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1:0� T�=T1ð Þ1=2 � 1:50; 1:0�fSa T2ð Þ
.
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8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð6Þ

In Eq. (6), fSa T2ð Þ represents the geometric mean spectral acceleration at the second-

mode period, when all records of the ground motion suite employed by Vamvatsikos and

Cornell (2006) for SPO2IDA are scaled to a common Sa T�ð Þ value. On the other hand,

Rcol
50% represents the median strength ratio causing collapse, taken as the median SPO2IDA

flat-line height.

Note that according to Eq. (6), Ceff can assume values between C(lower bound) andPn
i¼1 mi

�Pn
i¼1 mi � ui (upper bound). The upper bound value corresponds to activation of

the full structural mass along the vibration mode ui. Furthermore, Ceff depends on R,

T�=T1, and fSa T2ð Þ
.
Sa T�ð Þ. The ratio T�=T1 is a measure of how far the nominal yield

point of the equivalent SDoF system trespasses into non-linear territory; higher values of

this ratio correspond to SPO curves with considerable initial curvature. The ratio

fSa T2ð Þ
.
Sa T�ð Þ is in place to account for the response-amplifying effect of higher modes,

when the structure is excited by accelerograms exhibiting larger spectral ordinates at the

second-mode period. It has been known for some time that, in MRF structures, such effects

persist into the non-linear response range (e.g., Shome and Cornell 1999).

The second part of the SDoF to MDoF transition consists of adding the missing vari-

ability at nominal yield, by. Vamvatsikos and Cornell (2005) suggested that this can be

achieved by running a set of linear-elastic response history analyses of the structure.

Although that approach may work when nominal yield of the equivalent SDoF system

coincides with the linear-elastic limit of the structure, in order to deal with a generic case,

when the former delves into non-linear territory, a semi-empirical relation was developed

for the purposes of SPO2FRAG. This relation was calibrated using the same stock of

buildings’ numerical models as for Eq. (6):
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by ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2yo þ b2y;T2

q

byo ¼ 1=2 � ln Sabiliny;84%

.
Sabiliny;16%

 �

by;T2 ¼ 0:04þ 0:04 �
fSa T2ð Þ
Sa T�ð Þ � 2:6� 1:6 � Tsec

T1

� �1=2
" #

Tsec ¼ 2p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� � dy
Fy

s
; 1:0� Tsec=T1ð Þ1=2 � 1:5

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ

According to Eq. (7), two separate contributions are considered in the estimate of by.
The term byo that accounts for early non-linear behavior (i.e., curvature of the SPO curve

prior to the nominal yield point) and the term by;T2 that accounts for purely higher-mode

contribution to variability at yield. The other terms introduced in Eq. (7) are the secant-to-

first-mode period ratio Tsec=T1 and the Sabiliny;x% fractiles that determine byo. The terms Sabiliny;x%

appearing in Eq. (7), correspond to the x% SPO2IDA fractiles of an auxiliary SDoF

system, whose bilinear backbone is fitted using only the SPO segment that precedes the

nominal yield point; this means that byo attains higher values as the nominal yield point

advances into the non-linear part of the SPO curve and reduces to zero whenever nominal

yield is found on the initial linear segment. The Tsec=T1 ratio used in the calculation of the

by;T2 term is another proxy for early SPO curvature; note that according to Eq. (7), the

influence of the higher-mode term by;T2 diminishes for increasing values of Tsec=T1. This is

explained by the fact that larger values of Tsec=T1 imply substantial initial curvature of the

SPO curve, in which case the competing term byo tends to account for most of the vari-

ability. It should be noted that the combination of employing the Ceff concept and injecting

the missing variability at yield by, constitutes a simplified method of dealing with higher-

mode effects in the context of SPO analysis that was tailor-made to suit the needs of the

SPO2FRAG software; therefore, caution is advised should it be used to confront this

complex issue outside this context.

2.5 SPO-based fragility

Having thus simulated the three IDA fractile curves, based on the SPO of the structure, the

parameters of the lognormal fragility model of Eq. (3) can be fitted for each limit-state

(Fig. 4c). Since the SPO-based IDA approximation does not provide the individual IDA

curves, but only fractiles, the fragility parameters can be estimated as:

g ¼ ln SaLS
f ;50%

 �

b ¼ ln SaLS
f ;50%

.
SaLS

f ;16%

 �
8<
: ð8Þ

The terms SaLS
f ;x% represent the x% fractile of the structural intensity causing exceedance

of each limit state LS, as defined when introducing Eq. (2) and IM-based fragility.

Finally, once the lognormal fragility parameters g; bf g have been estimated from the

SPO analysis one may consider two a posteriori modifications. One modification to the

median, in order to account for structural damping other than f ¼ 5% and another modi-

fication to the dispersion that accounts for additional response variability due to structural

modelling uncertainty. In the f 6¼ 5% case, it is considered that it is sufficient to modify the
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median and only for limit states nearing collapse. In fact, Han et al. (2010) proposed a

modification factor, Cf, to be applied to the median collapse intensity of 5%-damped SDoF

systems:

Rcol
50% fð Þ ¼ Cf � Rcol

50% f ¼ 5%ð Þ

Cf ¼ 1� 0:07 � ln fþ 0:20

T�ð Þ0:38 � acj j�0:26 � l�0:44
c

8>><
>>:

ð9Þ

However, even for structures with f 6¼ 5%, it is desirable to maintain Sa T�; 5%ð Þ as IM,

since hazard is typically available in terms of 5%-damped spectral ordinates. Therefore, the

necessary modification boils down to Eq. (10), where gcolf represents the logarithmic mean

collapsing intensity of a f 6¼ 5% structure in terms of Sa T�; 5%ð Þ and gcolf¼5% is the

uncorrected SPO2IDA estimate from Eq. (8), that considers f ¼ 5% by default:

gcolf ¼ gcolf¼5% � lnCf ð10Þ

Apart from the modification of Eq. (10), which is applicable at collapse, a modification

factor is also applied to the median failure intensity of any limit states defined by EDP

thresholds in proximity to collapse. These modification factors are obtained by interpo-

lation, based on the requisite that g increase monotonically with edpf .

When a single deterministic numerical model of the structure is subjected to IDA, the

distribution of the obtained responses reflects record-to-record variability. However, one

may also wish to account for uncertainty underlying the mechanical model parameters

(such as material strength, member hysteretic behavior, mass distribution, etc.). A simple

method for dealing with this issue, adopted by Cornell et al. (2002), is the so-called first-

order assumption, whereby the mean logarithmic failure intensity is itself a normal random

variable, depending on the probabilistic configuration of the structural model, with a

standard deviation bU and mean g. Then, the fragility function remains lognormal with the

same mean, but with variance b2tot ¼ b2 þ b2U , with b representing response variability

estimated directly from SPO2IDA and Eq. (8). The variability due to modelling uncer-

tainty, bU , can either directly assume a value proposed in the literature (e.g., values

suggested in FEMA P-695 for the collapse limit state) or be estimated by combining

SPO2IDA and Monte-Carlo simulation, similar to what was suggested by Fragiadakis and

Vamvatsikos (2010), to follow.

3 Operational outline of SPO2FRAG

The SPO2FRAG tool is essentially a software implementation of the methodology for the

SPO-based derivation of seismic fragility functions presented in detail in the preceding

section. This engineering application revolves around a graphical user interface (GUI),

which is divided in three parts (Fig. 5): the SPO to IDA and fragility toolboxes, panels for

the visualization of intermediate results (SPO processing and IDA curve generation) and an

output panel where the end result in the form of fragility curves is visualized.

In operational terms, SPO2FRAG comprises a series of individual modules that function

independently and complement one another:
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1. input interface;

2. automatic multi-linearization tool;

3. dynamic characteristics interface;

4. SPO2IDA module;

5. EDP conversion tool;

6. limit-state definition interface;

7. additional variability management tool;

8. fragility parameter-fitting module.

These modules are organized into two toolboxes on the main GUI and operate according

to the flowchart of Fig. 6.

3.1 Data input and definition of equivalent SDoF system

The SPO2FRAG tool does not include structural analysis code and operates on the premise

that the necessary static non-linear and any optional modal analysis are performed

externally. Therefore, any SPO2FRAG project starts at the data input interface, which

reads SPO force–displacement results from either a text or a spreadsheet file.

The user is advised to provide SPO displacements at all storeys (rather than just at roof

level) since this lateral deformation profile di can then be used by the program to compute

the COD according to Eq. (5), permitting a direct SPO-based conversion of RDR to IDR—

Eq. (4). During input, the SPO curve is subjected to some rudimentary checks for cor-

rectness and consistency. Subsequently, the roof displacement and base shear values are

forwarded to the automated piece-wise linear fitting module.

The multi-linear fit module is intended to aid the user in the definition of the equivalent

SDoF backbone curve and allows for the options listed below:

Fig. 5 Main SPO2FRAG GUI displaying a completed elaboration of fragility curve calculation
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• quadrilinear fit—the SDoF backbone curve receives a piece-wise linear fit based on the

work of De Luca et al. (2013), potentially comprising a maximum of four segments:

elastic, hardening, softening and residual strength. Corresponding parameter values are

determined via a Monte-Carlo-based optimization algorithm.

• bilinear fit—two-segment (elastic-hardening) fit in the spirit of the FEMA-356

displacement coefficient method (ASCE 2000), again according to criteria set forth by

De Luca et al. (2013).

• elastic-perfectly-plastic fit—simple bilinear elastoplastic fit based on area balancing,

compatible with code prescriptions (e.g., CEN 2004), ending when strength drops

below 80% of maximum (or at the last available SPO point).

• user-defined backbone parameters—manual input by the user.

The multitude of fitting-scheme choices is intended to accommodate various levels of

refinement in the numerical modelling, at the user’s discretion. The user is also given the

option to intervene and override any of the automatically assigned backbone parameters.

Once the backbone parameters have been established, data input continues with the

dynamic characteristics and geometric configuration of the structure (Fig. 7). Additional data

required at this stage consist of floor masses and storey heights, the first and second mode

vibration periods and the participating mass factor. In cases where the user has provided SPO

displacement values at all storeys, SPO2FRAG offers the option of internally approximating

the modal participation factor, participating mass and first-mode period. First of all, a seg-

ment of the SPO curve is sought that corresponds to linear-elastic response (within a certain

tolerance). The force (base shear) and ith floor displacement values at the end of said

bFig. 6 SPO2FRAG flowchart, schematically showing the grouping of the sub-modules into ‘‘SPO2IDA
tools’’ and ‘‘Fragility curve tools’’

Fig. 7 Multi-linear backbone definition for the equivalent SDoF system and input of dynamic and
geometric characteristics of the MDoF structure (spring-mass representation is purely indicative) within the
SPO2FRAG GUI
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segment are denoted as Fel and del;i, i ¼ 1; . . .; nf g with n corresponding to the top-most

storey, as per the convention of Fig. 3. By making the assumption that the lateral force

profile sufficiently approximates the first modal load vector, C, T1 and the participating

mass, ~m, can be automatically estimated by the program according to Eq. (11).

C � del;n �
Pn
i¼1

mi � del;i
� �
 Pn

i¼1

mi � d2el;i
� �

~m �
Pn

i¼1 mi � del;i
� 	2

Pn
i¼1 mi � d2el;i �

Pn
i¼1 mi

T1 � 2p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fel


 Pn
i¼1

mi � del;i
� �s

8>>>>>>>><
>>>>>>>>:

ð11Þ

This is also the point where the user is called upon to decide whether to opt for the

SDoF to MDoF EDP conversions using Ceff as per Eq. (6) or to simply set C ¼ Ceff . The

former choice can add accuracy to the approximation for structures with non-negligible

higher-mode contribution to the response, while the latter is a cautionary choice for cases

when the user desires to employ some particular backbone fit of his own devising.

3.2 The SPO2IDA module and SDoF to MDoF conversions

Once the data input and multi-linear fit of the SPO curve phases have been concluded, the

SPO2IDA module is activated, providing the approximated 16, 50 and 84% IDA fractile

curves in R; lf g terms. This SPO2IDA output is internally converted into Sa T�; 5%ð Þ
versus drift coordinates. In cases where the SPO displacements at all storeys have been

provided, the default is to convert the IDAs into IDR with the aid of Eq. (5); otherwise,

RDR is employed, as estimated via Eq. (4). In the latter case, the user is still given the

option to switch to IDR, using the approximate equations for the lateral post-yield

deformation profile suggested in FEMA P-58-1 (FEMA 2012).

3.3 Definition of performance limit states

By default, SPO2FRAG recognizes five seismic performance limit states, but the user is

given the choice to add or remove limit states for each project. The first four limit states are

labeled fully operational, immediate occupancy, life safety and collapse prevention (see

SEAOC 1995; FEMA 2000 for definitions). The fifth limit state, labeled side-sway col-

lapse, is added by SPO2FRAG when the SPO curve exhibits strength degradation in the

form of a negative-stiffness branch. This limit state corresponds to dynamic instability and

is matched to the IDA flat-lines, without requesting any further user-input. The user may

also opt to introduce any non-simulated collapse modes by appropriately truncating the

SPO curve, whereby this limit-state (and the corresponding flatlines) more reliably indicate

the occurrence of global collapse. For the remainder of the limit states, the user is expected

to define thresholds in terms of EDP that determine each one’s exceedance. Exceedance

thresholds may be inserted explicitly or defined on the SPO curve (e.g., at specified values

of global ductility or percentage of peak strength loss), via a dedicated tool contained in the

limit-state module (Fig. 8). An additional option available to the user is to treat some or all

of these exceedance thresholds as random variables by assuming that they follow a log-

normal distribution. In this case, the threshold EDP value is taken as the median value and

the user must define the log-standard deviation as well.
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3.4 Managing additional sources of variability

At this point, even though SPO2FRAG has accumulated sufficient information to be able to

proceed with the estimation of the fragility function parameters according to Eq. (8), two

issues pertaining to the introduction of additional response variability remain to be

addressed on an optional basis. The first of these issues is the fact that, prior to nominal

yield, the MDoF system exhibits record-to-record variability that has not yet been

accounted for in the SDoF to MDoF transformation, resulting in the 16 and 84% IDA

fractiles temporarily coinciding with the median for drift values corresponding to R� 1.

This shortcoming can be remedied at this juncture by injecting an estimate for this missing

variability at nominal yield, which is then propagated along the IDA 16 and 84% fractiles.

Users may employ the values automatically provided by SPO2FRAG, according to Eq. (7),

or override them with their own values from external analysis (e.g., as suggested by

Vamvatsikos and Cornell 2005). This addition can be important when the fragilities of

high-performance limit states are of interest (i.e., those corresponding to practically

unscathed post-earthquake functionality of the building).

The second optional issue concerns cases where one wishes to account for model

uncertainty in the fragility curves. This translates to additional response variability, which

can be incorporated into the approximated SPO2FRAG IDA curves by symmetrically (in

log-space) distancing the 16 and 84% fractiles away from the median. This only leaves the

parameter bU to be determined for each limit state and the corresponding SPO2FRAG

module offers two options for doing so (Fig. 9). The first option entails user-definition of a

bU value at one of the predetermined limit states. This value could be obtained from the

technical literature and should be appropriate for the structure and the level of modeling

sophistication at hand. This additional uncertainty is then propagated along the IDA curves

in a manner that ensures their monotonicity.

The second option is to estimate bU via a combination of SPO2IDA and Monte Carlo

simulation. In this second case, some of the parameters that define the equivalent SDoF

backbone are treated as lognormally distributed, independent random variables, whose

variance is determined by the user (the median is taken by default as the value defining the

current equivalent SDoF backbone). According to this methodology, a number ofM Monte

Carlo realizations of the backbone are created by sampling from these distributions and

Fig. 8 Limit-state threshold definition window and subsidiary tool for operating on the SPO curve while
defining the thresholds
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subsequently SPO2IDA is used to obtain the median intensity per limit state exceedance

for the jth backbone realization, SaLS
f ;50%

 �
j
, j ¼ 1; . . .;Mf g. Then, bU can be estimated

according to Eq. (12).

bU ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1
�
XM
j¼1

ln SaLS
f ;50%

 �
j
� 1

M
�
XM
i¼1

ln SaLS
f ;50%

 �
i

" #2vuut ð12Þ

This operation follows the spirit of the methodology of Fragiadakis and Vamvatsikos

(2010), the difference being that, in this case, the Monte Carlo simulations are performed

by sampling directly the piece-wise linear equivalent SDoF backbones, rather than by

executing new SPO analysis runs.

3.5 Fragility curve parameters

Upon the conclusion of the preceding operations (even without consideration of additional

uncertainty) the fragility function estimation module may be activated. At this point,

SPO2FRAG will query the user regarding the damping ratio f characterizing the structure

and the choice of estimator for the dispersion parameter (see also Fig. 10). The former

information is needed whenever a correction for f 6¼ 5% should be applied to the estimated

logarithmic mean according to Eq. (10), while the latter provides an alternative to the

estimation of b given in Eq. (8): instead of using the log-space distance between the 50th

Fig. 9 SPO2FRAG’s window for the additional variability management module
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and the 16th percentile failure intensities, one may opt to use instead the log-space half-

distance between the 84th and 16th percentiles, b ¼ 1=2 � ln SaLS
f ;84%

.
SaLS

f ;16%

 �
.

SPO2FRAG uses Eq. (8) by default for two reasons. If one selects, among alternative

SPO lateral force profiles, the one that leads to the earliest failure of the structure (as

recommended by Vamvatsikos and Cornell 2005) the SPO-based backbone will corre-

spond to that single collapse mechanism. On the other hand, IDA of the MDoF structure

will reveal a variety of collapse mechanisms for different records—see for example

Haselton et al. (2011). Recognizing that the IDA curves corresponding to the more

favorable collapse mechanisms should be more influential towards the shape of the 84%

failure intensity fractile, it is to be equally expected that the more unfavorable (e.g., soft-

storey mechanisms) similarly dominate the 16% fractile. Hence, one concludes that

choosing the most unfavorable SPO lateral load profile could result in the lower (50 and

16%) fractile curves being better approximated through SPO2IDA than the 84% one. The

second reason is that Eq. (8) may be regarded as compatible with a truncated IDA analysis

strategy (e.g., Baker 2015), where an analyst chooses to run IDA but only scale records up

to a certain IM level (e.g., until 50% of records induce collapse). This truncated IDA

scheme may be dictated by the desire to avoid any scaling bias that might lurk above the

considered IM limit (see for example Kwong et al. 2015).

For all limit states that have been assigned deterministic exceedance thresholds, esti-

mation of the lognormal fragility function parameters g; bf g proceeds as described in detail
in paragraph 2.5. In cases where some limit states have been assigned exceedance

thresholds with an associated lognormal probability density, the fragility function is esti-

mated by means of numerically evaluating, via Monte Carlo, the integral resulting from

application of the total probability theorem:

Fig. 10 SPO2FRAG’s dialogue window upon activation of the fragility-function estimation module
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P IMLS
f � im

h i
¼

Z

EDPf

U
ln imð Þ � gedpf

bedpf

" #
� fEDPf

edpf
� 	

� d edpf
� 	

ð13Þ

In Eq. (13), fEDPf
edpf
� 	

is the probability density function of EDPf and gedpf , bedpf are

the logarithmic mean and standard deviation of IMLS
f conditional on the limit state

threshold assuming each specific value EDP ¼ edpf . A noteworthy result of normal theory

applicable in this case is that, when fEDPf
edpf
� 	

is a lognormal density, then P IMLS
f � im

h i
,

as given by Eq. (13), also follows the lognormal model.

3.6 Consideration of estimation uncertainty

The SPO2FRAG tool estimates seismic fragility according to the IM-based procedure

described in paragraph 2.1, by simulating dynamic analysis results via the SPO2IDA

algorithm. Since the SPO2IDA equations were fit against IDA responses to a suite of thirty

recorded accelerograms (Vamvatsikos and Cornell 2006), the fragility parameter estimates

provided by SPO2FRAG can be implicitly regarded as (fixed-size) sample estimators of a

Gaussian model’s parameters. As such, the estimators for the mean and variance are

probabilistic results that are affected by uncertainty of estimation, i.e., the uncertainty

inherent in estimating the mean and variance of a population based on an extracted finite-

size sample (Mood et al. 1974).

Since quantification of estimation uncertainty associated with structural fragility may be

of interest for the seismic risk analyst, SPO2FRAG calculates the boundaries of the 90%

confidence interval for each limit state’s parameter estimates. Furthermore, SPO2FRAG

also provides the user with a visual representation of the estimation uncertainty associated

with the fragility curves obtained, shown in Fig. 11. The plot depicted is generated using

parametric bootstrap (Efron 1982). The parametric bootstrap belongs to a family of

resampling schemes for the approximate calculation of estimator statistics and is simula-

tion-based. In the case at hand, a fixed number of twenty-five hundred bootstrap samples of

size thirty are extracted from the Gaussian distribution defined by the SPO2FRAG-esti-

mated fragility parameters. Then, a new pair of lognormal fragility parameters is re-esti-

mated for each extraction. Finally, the fragility functions corresponding to each bootstrap

extraction are plotted against the originally fitted fragility curve, resulting in Fig. 11.

4 Illustrative SPO2FRAG applications

In order to be able to illustrate SPO2FRAG’s function and compare the resulting fragility

functions with their dynamic-analysis-derived counterparts, two applications on MRFs are

presented where seismic fragility functions are obtained both by means of SPO2FRAG and

via IDA.

4.1 Structures, numerical models and set of ground motions used
in the analyses

The two case-study structures used in these examples are a four-storey steel MRF and a

six-storey RC-MRF. The four-storey steel MRF (Fig. 12a) belongs to a set of archetype
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structures designed and employed for the purposes of the NIST GCR 10-917-8 report

(NIST 2010). On the other hand, the six-storey RC-MRF (Fig. 12c) was designed and used

by Baltzopoulos et al. (2015), where information on member detailing can be found.

Both frames were modelled numerically using 2D centerline finite element represen-

tations in the OpenSEES structural analysis platform (McKenna et al. 2000). Material non-

linearity was accounted for using a concentrated plasticity approach. The properties of the

monotonic backbone of the plastic hinges at member edges were estimated using the

regression equations suggested by Lignos and Krawinkler (2011) for the steel and those by

Haselton and Deierlein (2007) for the RC frame, while a moderately pinching hysteretic

law proposed by Ibarra et al. (2005) was assigned to both. Structural damping of f ¼ 2%
was assumed for the steel and f ¼ 5% for the RC frame, modelled according to the

recommendations of Zareian and Medina (2010). Geometric non-linearity in the form of

P� D effects was also taken into account. The SPO curves of both frames, obtained using

first-mode-proportional load patterns, are shown in Fig. 12, along with the equivalent

SDoF backbone of their SPO2FRAG elaboration.

For the purpose of running IDA with these numerical structural models, a set of eighty

recorded accelerograms was assembled. This set includes the twenty-two ground motions

of the far-field set in FEMA-P695 (FEMA 2009), which was enriched by another eighteen

records from the Engineering Strong Motion database (http://esm.mi.ingv.it). Both recor-

ded horizontal components at each station are applied to the plane structural models

Fig. 11 Visualization of estimation uncertainty underlying the fragility parameter estimates with the aid of
a parametric-bootstrap-generated set of alternative fragility curves
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separately. Overall, the ground motion suite includes records from events with magnitude

from 6.0 to 7.6, recorded at distances from 5 to 50 km on firm soil (EC 8 classification A, B

or C), not containing relevant directivity effects and exhibiting PGA in the range from 0.12

to 0.90 g.

4.2 Comparison of IDA- and SPO2FRAG-based fragility estimates

Both structures were subjected to IDA using the set of eighty accelerograms described

above, while their SPO curves were used to simultaneously run fragility estimates in

SPO2FRAG. In order to limit the number of required analyses to reasonable levels, IDA

was run using the hunt-and-fill algorithm proposed by Vamvatsikos and Cornell (2004).

For both structures, limit state exceedance thresholds were defined in terms of IDR.

Immediate occupancy, life safety and collapse prevention IDR thresholds were determined

using the SPO results, by imposing the maximum plastic rotation acceptance criteria of

FEMA-356 to the critical elements (first-storey columns). The fully operational threshold

was set to 0.5% IDR for the RC-MRF and near the nominal yield for the steel MRF. Global

collapse was left to be automatically determined by SPO2FRAG based on the predicted

flat-line heights of the IDA fractiles for the RC-MRF (thus mainly corresponding to side-

sway collapse) while for the steel MRF it was set to the IDR corresponding to 50% loss of

strength measured on the SPO curve, by using the relevant in-built tool (e.g., Fig. 8) to

capture additional modes of failure that may be expected to appear at such large drifts.
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Furthermore, for the steel four-storey MRF, Ceff according to Eq. (6) was employed due to

the more flexible frame’s higher-mode sensitivity and the correction due to f 6¼ 5% was

applied according to Eq. (10). Finally, the default choice of Eq. (8) was employed for the

estimation of dispersion in both cases (see also Fig. 10).

In Fig. 13 the IDA results, for both structures, can be seen with the SPO2FRAG pre-

dictions superimposed. Additionally, the fragility curves obtained for each limit state by

SPO2FRAG are presented for comparison with the same curves derived from the IDA

results using Eq. (14) for the estimate of b, where the index i ¼ f1; . . .Ng refers to the

response to the ith accelerogram.

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
�
XN
i¼1

ln SaLSf ;i

 �
� ln SaLS

f ;50%

 � �2� �vuut ð14Þ

The corresponding parameter estimates are provided in Tables 1 and 2. In order to get

an appreciation of the effect that the choice of employing Ceff (a choice made for the case

of the steel MRF alone) bears on these results, it is mentioned that the SPO2FRAG

prediction of median intensity at collapse for the four-storey steel MRF using C is 0.60 g

(compare with 0.59 g in Table 1 resulting from using Ceff instead). On the other hand, for

the six-storey RC-MRF, the choice of using Ceff or C leaves the median collapse intensity

practically unaffected.
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4.3 Comparing SPO2FRAG and IDA results in the context of seismic risk
assessment

In order to better appreciate the agreement between the SPO2FRAG and IDA results,

integration with seismic hazard was performed by plugging Eq. (3) into Eq. (1), thus

obtaining estimates of the annual exceedance rate for each limit state (without considering

estimation uncertainty for the sake of simplicity).

To be able to do so, it was assumed that the four-storey steel MRF is situated at a site

near the Italian city of L’Aquila and the six-storey RC-MRF at a site near the Italian port-

town of Ancona. For both of these sites, the seismic hazard was calculated with the aid of

the REASSESS software (Iervolino et al. 2016b), assuming firm soil conditions. The

hazard at these sites was calculated using the seismic source model from Meletti et al.

(2008), seismicity rates from Barani et al. (2009, 2010) and the ground motion prediction

equation proposed by Akkar and Bommer (2010). The annual exceedance rates of the 5%-

damped spectral acceleration at T� are shown in Fig. 14. The calculated annual rates of

Table 1 Lognormal fragility function parameter estimates from SPO2FRAG and IDA and corresponding
annual limit-state exceedance rates (events/year) for the four-storey steel MRF assumed to be situated at
L’Aquila

Limit state exp gð Þ
(IDA) (g)

b
(IDA)

exp gð Þ
(SPO2FRAG) (g)

b
ðSPO2FRAGÞ

kf
(IDA)

kf
(SPO2FRAG)

Fully operational 0.105 0.223 0.117 0.189 6:7� 10�3 5:7� 10�3

Immediate
occupancy

0.149 0.239 0.159 0.197 4:0� 10�3 3:6� 10�3

Life safety 0.410 0.340 0.379 0.334 7:1� 10�4 8:3� 10�4

Collapse
prevention

0.476 0.364 0.463 0.364 5:3� 10�4 5:7� 10�4

Collapse 0.569 0.383 0.589 0.409 3:7� 10�4 3:6� 10�4

Table 2 Lognormal fragility function parameter estimates from SPO2FRAG and IDA and corresponding
annual limit-state exceedance rates (events/year) for the six-storey RC-MRF assumed to be situated at
Ancona

Limit state exp gð Þ
(IDA) (g)

b
(IDA)

exp gð Þ
(SPO2FRAG) (g)

b
(SPO2FRAG)

kf
(IDA)

kf
(SPO2FRAG)

Fully operational 0.147 0.256 0.136 0.226 1:3� 10�3 1:5� 10�3

Immediate
occupancy

0.217 0.278 0.208 0.288 5:5� 10�4 6:1� 10�4

Life safety 0.473 0.403 0.448 0.407 9:4� 10�5 1:1� 10�4

Collapse
prevention

0.544 0.421 0.555 0.434 6:7� 10�5 6:6� 10�5

Collapse 0.627 0.446 0.662 0.458 4:9� 10�5 4:4� 10�5
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limit-state exceedance are included among the results reported in Tables 1 and 2. The good

agreement between the SPO2FRAG and analytically-derived estimate is evident.

5 Conclusions

The present article introduced SPO2FRAG, an interactive MATLAB�-coded PBEE tool

useful for approximate, computer-aided calculation of building fragility functions based on

static pushover analysis. SPO2FRAG (available under a Creative Commons license:

attribution—non commercial—non derived) comes as a standalone application, with var-

ious intercommunicating modules nested behind a user-friendly graphical user interface.

The software uses SPO results as a vehicle to obtain an equivalent SDoF representation

of the non-linear structure and subsequently goes on to employ the SPO2IDA algorithm to

avoid the need for time-consuming dynamic analysis for obtaining probabilistic estimates

of seismic response. A series of specifically-developed tools are then called upon to effect

and SDoF-to-MDoF response transformation, culminating in the calculation of fragility

parameters and going as far as providing information related to the underlying estimation

uncertainty. In the preceding sections, the workflow of a complete SPO2FRAG operation

was outlined from both the user-end and the software-end. A practical user guide (tuto-

rial) can be found online at http://wpage.unina.it/iuniervo/doc_en/SPO2FRAG.htm. Sum-

marizing, the software is characterized by versatility, accepting as input static pushover

results obtained from the structural analysis software package of the user’s choice and

allowing the user to control the IDA simulation and fragility estimation procedure at its

various steps and intervene where one deems necessary.

The viability of SPO2FRAG as a calculation tool was demonstrated by means of two

case-study examples, where fragility functions estimated using the software were com-

pared and found in agreement with the analytical solution involving IDA. It was therefore

shown that, for regular, symmetric frames (i.e., cases of fist-mode dominated structures for

which the fundamental assumptions behind static pushover analysis apply) SPO2FRAG is
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Fig. 14 Map of Italy showing the two sites of interest and the seismic sources considered for the seismic
hazard calculations (a) and calculated hazard curves to be integrated with structural fragility of the case-
study examples (b): annual exceedance rate of Sa 1:80s; 5%ð Þ at L’Aquila and the same for Sa 1:20s; 5%ð Þ at
Ancona. As the Akkar and Bommer (2010) ground motion prediction equation is employed, the closest
available periods to T� are used for each case to avoid interpolation
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able to provide expedient solutions to the issue of analytical, building-specific seismic

fragility estimation, under the assumptions behind IDA.
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