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Abstract

The seismic performance evaluation of existing buildings is characterized by the large amount of
uncertainty in the structural modeling parameters. These modeling uncertainties can be classified
into two groups; the uncertainty in the mechanical properties of the construction materials and
the uncertainty in the structural detailing (a.k.a. the defects). This work employs the Bayesian
probability framework in order to make robust interval estimation of the structural reliability (mean
and standard deviation) based on a limited number of structural analyses. The resulting probabilistic
assessments of the structural performance are compared to the corresponding assessments based on
simulation-based reliability methods and extensive structural analyses. In order to evaluate the
overall effect of modeling uncertainties on reliability assessment of existing buildings, the structural
modeling uncertainties are taken into account together with the uncertainties in the ground motion
representation.

1 INTRODUCTION

A significant portion of the total seismic risk
in Italy, evaluated in economic terms, comes
from the damages endured by the existing build-
ings. As a result, more recent Italian seis-
mic codes (e.g., OPCM 2006, Min.LL.PP. 2008a,
Min.LL.PP. 2008b) pay particular attention to
seismic assessment of existing structures, which
is distinguished from that of the new construc-
tion by lack of information about both the orig-
inal features and the current state of the struc-
ture. In a previous work (Jalayer et al., 2008), the
authors have implemented a Bayesian probabilis-
tic framework for a case-study existing structure
in order to both characterize the uncertainties in
the material properties and structural detailing
and also to update the structural reliability by
employing the results of in-situ tests and inspec-
tions. The objective of this work is to apply the
results of structural analysis for a small sample of
structural modeling realizations in the Bayesian
probabilistic framework in order to make robust
parameter estimations necessary for evaluation of
the structural reliability. The structural reliabil-

ity assessments based on the small-sample interval
estimates can be also be performed implementing
a set of ground motion records in order to take
into account the uncertainty in the ground mo-
tion representation.

2 METHODOLOGY

The Bayesian framework is used in order to ob-
tain robust estimates for the structural reliability
and its standard deviation based on small-sample
simulations of structural modeling parameters.

2.1 The vector of uncertain parameters

It is assumed that the vector θ represents all
the uncertain parameters considered in the prob-
lem. The vector θ can include the uncertain-
ties in the mechanical properties of the materials,
in the structural construction details (a.k.a., de-
fects) and in the representation of the ground mo-
tion uncertainty. One of the main characteristics
of the construction details is that possible devia-
tions from the original configurations are mostly
taken into account in those cases leading to un-



desirable effects. This explains why the uncer-
tainties related to construction details are also
referred to as the structural defects. If the proba-
bility of failure given the set of parameters beta is
denoted by P (F |β), the expected value (or the ro-
bust estimate) for the probability of failure given
a set of values Y for the structural performance
index can be expressed as:

E[P (F |D)] =

∫

Ω

(P (F |β)p(β|D)dβ (1)

where p(β|D) is the posterior probability distri-
bution for the set of parameters β given the data
D and Ω is the space of possible values for β. In
a similar way, the robust variance for the proba-
bility of failure can be calculated as:

σ2
P (F )|D = E[P (F |D)2]− E[P (F |D)]2 (2)

2.2 The characterization of the uncer-
tainties

Three types of uncertainties are considered
herein, namely, the uncertainty in the ground mo-
tion input, the uncertainty in the material me-
chanical properties, and the uncertainties in the
structural detailing parameters. Table 1 shows
the list of ground motion records used in order to
take into account the record-to-record variability.
A set of 30 ground motion records are chosen from
the European strong motion database for soil type
B (400 ≤ Vs ≤ 600 m/s), with moment mag-
nitude between 5.3 to 7.2 and the epicentral dis-
tance between 7 and 87km. The parameters iden-
tifying the prior probability distributions for the
material mechanical properties (concrete strength
and the steel yielding force) have been based on
the values typical of the post world-war II con-
struction in Italy ((Verderame et al., 2001a) and
(Verderame et al., 2001b)). The prior probability
distributions for the structural detailing parame-
ters are defined based on qualitative prior infor-
mation coming from expert judgement (Jalayer et
al., 2008).

2.3 The structural performance index

When only the structural modeling uncertainties
are considered, the definition of structural capac-
ity in this work is based on the limit state of severe

damage as proposed by the Italian Code. That
is, the onset of critical behavior in the first ele-
ment, characterized by member chord rotations
larger than 3/4th of the corresponding ultimate
chord rotation capacity. The structural demand
is characterized by the intersection of the code-
based inelastic design spectrum and the static
pushover curve transformed into that of the equiv-
alent SDOF system (Fajfar, 1999). As an index
for the global structural performance, the ratio
of structural demand to capacity is used. When
the ground motion uncertainty together with the
modeling uncertainties are taken into account,
the structural performance index is characterized
based on the concept of cut-sets in structural re-
liability. A structural cut-set is defined as a set of
structural components that, once all of them have
failed, they can transform the whole structure or
part of it into a mechanism. Among the set of
all possible cut-sets, the critical cut-set is the one
that first forms a global mechanism. Therefore,
the the performance index is taken as the demand
to capacity ratio of the strongest component of
the weakest cut-set. In the current work, three
types of global mechanism are considered: (a) ul-
timate rotation capacity in a group of columns∗

(b) formation of soft stories (c) shear failure in a
group of columns. The component yield rotation,
ultimate rotation and shear capacities are calcu-
lated according to the new Italian Unified Code
(Min.LL.PP., 2008a) and (Min.LL.PP., 2008b). It
should be noted that the structural performance
in both cases signals failure when it is greater than
unity and signals no failure when it is less than
or equal to unity.

2.4 Closed form solutions for the struc-
tural reliability

The structural reliability or the probability of fail-
ure in the case of a structure with modeling un-
certainties (no uncertainty in the ground motion)
can be expressed by a LogNormal CDF as follow-

∗It is assumed that in the cases where (a)both ends of
each of the side columns or (b)both ends of all of the mid
columns reach their ultimate rotation capacity, a global
mechanism will form.



ing:

P (Y (θ) > y) = 1− Φ(
y − log ηY

σlog Y

) (3)

Where Y is the structural performance index and
ηY and σlog Y are the median and the standard
deviation (of the logarithm) for the probability
distribution of the structural performance index.
Using Bayesian inference, the posterior probabil-
ity distribution for median and standard devia-
tion based on data Y can be written as:

p(η, σ|Y ) = kσ−(n+1)e−
νs2+n(log(η)−log Y )2

2σ2

k =
√

n
2π

[
Γ

(
ν
2

)]−1
(

νs2

2

)ν/2
(4)

where Y = {Y1, · · · , Yn} is the vector of n dif-
ferent realizations of the structural performance
index, ν = n − 1 and log Y =

∑
log Y/n. The

expected value and the standard deviation for
the probability of failure can be calculated from
Equations 1 and 2 based on the posterior proba-
bility distribution p(η, σ|Y ) in Equation 4. Other-
wise, the best-estimate values for the median and
standard deviation can be calculated either as the
maximum likelihood pair for the posterior prob-
ability distribution function or based on a given
(e.g., 84%) confidence contour.

The structural reliability in the presence of
modeling uncertainties and uncertainties in the
representation of the ground motion can be cal-
culated from the following LogNormal CDF:

P (Y (θ) > 1|Sa) = 1− Φ

(− log(ηY |Sa)

βUT |Sa

)
(5)

where βUT |Sa =
√

σ2
log Y |Sa

+ σ2
log U1

+ σ2
log U2

,

where ηY |Sa is the median for the probability dis-
tribution of the structural performance index and
βUT |Sa is the standard deviation for the proba-
bility distribution of the structural performance
index. The terms σlog Y |Sa , σlog U1 and σlog U2 , rep-
resent the effect of the uncertainty in the ground
motion representation, the uncertainty in the ma-
terial properties and the uncertainty in the struc-
tural details, respectively.

Suppose that a selection of n ground motion
records are used to represent the effect of ground

motion uncertainty on the structural performance
index. Let Sa,i and Yi represent the spectral accel-
eration and the performance index for the ground
motion record i, respectively. The posterior prob-
ability distribution for standard deviation can be
calculated as:

p(σ|Y, Sa) = Γ(
ν

2
)−1(

νs2

2
)

ν
2 σ−(ν+1)e−

νs2

2σ2 (6)

The data pairs (Y, Sa) is gathered by calculating
the structural performance measure for the set
of n ground motion records applied at the struc-
tural model generated by different realizations of
material mechanical properties and structural de-
tailing parameters. where νs2 =

∑n
i=1(log Yi −

a− b log Sa,i)
2, ν = n− 2 and coefficients a and b

are equal to:

a =
∑

log Yi
∑

log S2
a,i−

∑
log Sa,i

∑
log Yi log Sa,i

n
∑

log S2
a,i−(

∑
log Sa,i)2

b =
n

∑
log Yi log Sa,i−

∑
log Sa,i

∑
log Yi

n
∑

log S2
a,i−(

∑
log Sa,i)2

(7)

The joint posterior probability distribution for the
coefficients of the linear regression can be calcu-
lated as:

p(θ|Y, Sa) = k[1 + (θ−θ̂)T XT X(θ−θ̂)
νs2 ]

k =
Γ(n/2)

√
n

∑
log S2

a,i−(
∑

log Sa,i)2s−2

(n−2)Γ(1/2)2Γ(n/2−1)

(8)

where X is a n × 2 matrix whose first column
is a vector of ones and its second column is the
vector of log Sa,i and θ is the 2 × 1 vector of re-
gression coefficients a and b which is the bivariate
t-distribution. The median and the standard de-
viation for the probability distribution for Y |Sa

can be taken equal to the maximum likelihood
estimates ηY = a · Sb

a and σlog Y |Sa = s. The
robust estimates for the expected value and the
standard deviation of the failure probability can
be obtained from Equations 1 and 2 based on the
product of the posterior probability distributions
p(θ|Y, Sa) and p(σ|Y, Sa) in Equations 6 and 8,
assuming they are independent.

3 NUMERICAL EXAMPLE

The methodology presented in the previous sec-
tion is applied to an existing structure as a case
study. The methodology discussed herein offers a
simple alternative to large sample simulations.
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Figure 1: (a) The tri-dimensional view of the
scholastic building (b) The central frame of the
case-study building

3.1 Structural Model

As the case-study, an existing school structure lo-
cated in Avellino, Italy is considered herein. The
structure is situated in seismic zone II accord-
ing to the Italian seismic Code (OPCM, 2006).
The structure consists of three stories and a semi-
embedded story and its foundation lies on soil
type B according to Euro Code 8 (CEN, 2003).
For the structure in question, the original de-
sign notes and graphics have been gathered. The
building is constructed in the 1960’s and it is de-
signed for gravity loads only, as it is frequently
encountered in the post second world war con-
struction. In Figure 1a, the tri-dimensional view
of the structure is illustrated; it can be observed
that the building is highly irregular both in plane
and elevation. In order to reduce the computa-
tional effort, the main central frame in the struc-
ture is extracted and used as the structural model
(Figure 1b). The columns have rectangular sec-
tion with the following dimensions: first storey:
40 × 55 cm2, second storey: 40 × 45 cm2, third
storey: 40×40 cm2, and forth storey: 30×40 cm2.
The beams, also with rectangular section, have
the following dimensions: 40×70 cm2 at first and
second storey, and 30 × 50 cm2 for the ultimate
two floors. It can be inferred from the original
design notes that the steel re-bar is of the type
Aq40 and the concrete has a minimum resistance
equal to 180 kg/cm2 (RDL, 1939). The finite ele-
ment model of the frame is constructed assuming
that the non-linear behavior in the structure is
concentrated in plastic hinges.
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Figure 2: The structural fragility taking into ac-
count the uncertainties in the material properties,
N = 7

3.2 The structural reliability given the
design spectrum

The probability distribution for the structural
performance index Y (see Section 2.3), in the
presence of uncertainty in the material proper-
ties, is calculated in a previous work by the au-
thors (Jalayer et al., 2008) using the Monte Carlo
simulation with Nsim = 500 samples as the best
estimate. The structural fragility (probability of
exceeding a given value of the performance index)
is plotted in Figure 3 against the structural per-
formance index Y in thick solid line. The robust
structural fragility is calculated from Equation
1 employing the fragility calculated from Equa-
tion 3 and joint posterior probability distribution
from Equation 4. The data Y used for updat-
ing the probability distribution as in Equation 4
has been obtained using using Monte Carlo sim-
ulation with n = 7 samples. The result is plot-
ted in Figure 3 in tiny solid line. In a similar
manner, the robust standard deviation for the
fragility is calculated from Equation 2; the ex-
pected value plus one standard deviation for the
fragility curve is plotted in dashed lines in Figure
3. It can be observed that with only 7 samples
a confidence interval can be constructed for the
fragility curve which contains the fragility curve
obtained based on Monte Carlo simulation with
500 samples. Figure 3.2 illustrates the same set of
results based on a dataset of structural response
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Figure 3: The structural fragility taking into ac-
count the uncertainties in the material properties,
N = 20

for N = 20 model realizations. It can be observed
that the confidence interval based on a sample size
of N = 20 narrows down with respect to the one
based on N = 7. The probability distribution for
the structural performance index Y in the pres-
ence of both uncertainties in the material prop-
erties and in the structural detailing parameters
is calculated using the Subset Simulation and us-
ing N = 400 samples (Jalayer et al., 2008). The
fragility curve derived based on the results of Sub-
set Simulation (the best-estimate) is plotted in
Figure 3.2 in thick solid line. On the other hand,
the robust estimate for the fragility curve is again
calculated from Equations 1 and 3 employing the
posterior probability distribution calculated from
Equation 4 based on a data of Nsim = 20 samples.
It should be noted that the Nsim = 20 samples
are generated using Monte Carlo simulation tak-
ing into account both uncertainties in the material
properties and uncertainties in structural detail-
ing. The robust estimate for the fragility using
the simple method (based on small-sample simu-
lation) is plotted in Figure 3.2 in tiny solid line.
The expected value plus standard deviation for
the simple method is shown in Figure in dashed
lines. It can be observed that the confidence inter-
val constructed using the simple method contains
the Subset Simulation result.
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Figure 4: The structural fragility taking into ac-
count the uncertainties in material properties and
the structural detailing

3.3 The structural reliability taking into
account the Ground Motion Uncer-
tainty

The structure is subjected to a set of 30 ground
motions in order to consider the record-to-record
variability in the ground motion. The struc-
tural performance index Y is calculated based on
the concept of the critical cut-set(see (Jalayer et
al., 2007)) considering both the rotation and the
shear capacity in the sections. It turns out the
shear failure in columns dominates and the re-
gression coefficients are calculated from Equation
7 as a = 1.1366 and b = 0.24; the mean square
root of the sum of the squares is calculated as
s = 0.10. The joint posterior probability distri-
butions for a and b is obtained from Equation
8 and the posterior probability distribution for
the standard deviation is calculated from Equa-
tion 6. The coefficients of regression and their
posterior probability distributions are caluclated
in two cases: (a) based on the set of 30 ground
motion records not considering the modeling un-
certainties, and (b) based on the set of 30 ground
motion but generating realizations of structural
model using Monte Carlo simulation taking into
account both the uncertainties in the material
properties and the uncertainties in the structural
detailing. In both cases, the robust estimate and
the standard deviation of the structural fragility
are calculated from Equations 1 and 2 employing
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Figure 5: Robust estimates for the failure prob-
ability taking into account the record-to-record
variability

the probability of failure from Equation 5 and the
product of the posterior probability distributions
for the coefficient of regression and the standard
deviation from Equations 8 and 6, respectively.
The expected value for the probability of failure
in case (a) is plotted in Figure 3.3 in tiny solid
line. The expected value plus standard deviation
for the probability of failure in case (a) is plotted
in tiny dashed line. The robust failure probabil-
ity and the standard deviation are plotted in the
same figure with thick solid line and dashed line,
respectively. From the confidence intervals ob-
tained for the failure probability in case (a) and
case (b), it can be observed that the presence of
structural modeling uncertainties leads to a sig-
nificant increase in the probability of failure. This
confirms that the structural modeling uncertain-
ties can be quite significant in the existing build-
ings.

4 CONCLUSIONS

A method is presented for robust interval esti-
mation of the structural reliability taking into
account the modeling uncertainties in existing
buildings. This method employs small-sample
structural analysis results in a Bayesian infer-
ence framework leading to posterior probability
distributions for median and standard deviation
for the structural performance index. The pos-

terior probability distributions for the statistical
parameters can be used to obtain a robust confi-
dence interval for the probability of failure. The
robust confidence interval is obtained by calcu-
lating the posterior(robust) expected value and
the standard deviation of the probability of failure
based on the posterior probability distribution(s).

The results are presented in two cases, (a) for
a specific representation of the ground motion
uncertainty, (b) considering the record-to-record
variability in ground motion. In case (a) for which
the results of extensive simulations were already
available, the small-sample methods succeeded in
reproducing confidence intervals containing the
structural fragility curves based on large-sample
simulations. In case (b), the fragility confidence
intervals obtained using the small-sample infer-
ences, make it possible to compare the influence
of structural modeling uncertainties to that of the
ground motion representation. They reconfirm
the importance of taking into account the uncer-
tainty both in the material properties and struc-
tural detailing in the structural reliability evalu-
ations for an existing building.

In both cases, it is demonstrated that the
Bayesian framework for inference is able to pro-
vide confidence intervals for the structural relia-
bility, based on small-sample data.
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Table 1: The set of ground motion records; FM
is the fault mechanism; ED is the epicentral dis-
tance.
Record Mw FM V30 ED

(m/s) (km)
Valnerina 5.8 normal ? 23
Friuli, Italy-02 5.9 reverse 412 18
Preveza 5.4 thrust ? 28
Umbria 5.6 normal 546 19
Lazio Abruzzo 5.9 normal ? 36
Etolia 5.3 thrust 405 20
Kyllini 5.9 strike slip 490 14
Irpinia, Italy-01 6.9 normal 600 15
Potenza 5.8 strike slip 494 28
Ano Liosia 6.0 normal 411 20
Adana 6.3 strike slip ? 39
South Iceland 6.5 strike slip ? 15
Patras 5.6 strike slip 665 30
Friuli 6.5 thrust ? 42
Campano Lucano 6.9 normal 472 48
Campano Lucano 6.9 normal 529 16
Kalamata 5.9 normal 486 10
Kalamata 5.9 normal 399 11
Umbria Marche 6 normal 546 11
Umbria Marche 6 normal 450 38
South Iceland 6.5 strike slip ? 7
Duzce 1 7.2 oblique 662 26
Friuli 6.5 thrust ? 87
Campano Lucano 6.9 normal 472 48
Campano Lucano 6.9 normal 529 16
Kalamata 5.9 normal 486 10
Kalamata 5.9 normal 399 11
Umbria Marche 6 normal 546 11
South Iceland 6.5 strike slip ? 7
Duzce 1 7.2 oblique 662 26


