Electronic Supplement to
NESS1: A Worldwide Collection of Strong-Motion Data to Investigate Near-Source Effects

by Francesca Pacor, Chiara Felicetta, Giovanni Lanzano, Sara Sgobba, Rodolfo Puglia, Maria D’Amico, Emiliano Russo, Georgios Baltzopoulos, and Iunio Iervolino

This electronic supplemental provides additional information on the near-source strong-motion (NESS) dataset. Table S1 lists the main features of the selected events, including the references of fault geometry parameters. Figure S1 shows how the metrics (rupture distance RRUP, line distance RLINE, and nucleation distance RNP defined in Table 1 of the main article) differ in the proximity of the source (RJB < 1 km). In these plots, the Joyner–Boore (JB) distance is considered as the reference metric, because it is widely adopted in the calibration of ground-motion prediction equations (GMPEs). Figure S2a shows the focal mechanism (FM) of the NESS1 events. Normal, strike-slip, and thrust FMs are included, with a dominance of strike-slip events. Figure S2b shows the average shear-wave velocity in the uppermost 30 m (VS30) assigned on the direct measurement of the S-wave velocity profile or inferred from empirical correlation with the topographic slope.


Ground-Motion Parameters

Figure S3 shows that the D100 peak ground acceleration (PGA) and peak ground velocity (PGV) residual distributions are roughly normally distributed, with almost zero median and standard deviations equal to 0.65 and 0.59, respectively. Figure S4 shows the fault-normal (FN), fault-parallel (FP), and vertical (V) cumulative distributions of PGA and spectral acceleration (SA) at T = 0.1, 1.0, and 3.0 s relative to the waveforms recorded over the fault surface projection (RJB < 1 km).


Table

Table S1. List of the 74 worldwide earthquakes (sorted by time) collected in the NESS1 dataset. Event ID, data time (UTC), event name, nation, moment magnitude (Mw), FM, number of records (rec), and reference of fault geometry are reported.


Figures

Figure S1. (a) Rupture distance RRUP, (b) line distance RLINE, and (c) nucleation point distance RNP versus JB distance RJB.

Figure S2. Data distribution in function of style of faulting: normal (NF), strike-slip (SS), and thrust fault (TF); and VS30 values according to measured S-wave velocity (VS30) profile (black) and surface geological information (white).

Figure S3. Histograms of the Campbell and Bozorgnia (2014; hereafter, CB14) residuals for PGA and PGV of the NESS1 dataset. Residuals, Res, are the difference between natural logarithms of observations and predictions. D100 values are used.

Figure S4. Cumulative distributions of different intensity measures (IMs; PGA, SA at 0.1, 1.0, and 3.0 s) observed at distances RJB 1 km for FP (dotted line), FN (dashed line), and V (solid line) components. Number of data is also reported.


Data and Resources

Fault geometries were obtained from: the database of individual seismogenic sources (DISS, http://diss.rm.ingv.it/diss/), the Greek database of seismogenic sources (GreDaSS, http://gredass.unife.it/), the finite-source rupture model database (SRCMOD, http://equake-rc.info/SRCMOD/), and the Next Generation Attenuation (NGA) relationships for western U.S. database (NGA-West2 Project, https://peer.berkeley.edu/thrust-areas/data-sciences/databases). All websites were last accessed on September 2018.


References

Ambraseys, N. N., P. Smit, J. Douglas, B. Margaris, R. Sigbjornsson, S. Olafsson, P. Suhadolc, and G. Costa (2004). Internet-site for European strong-motion data, Bollettino di Geofisica Teorica ed Applicata 45, no. 3, 113–129, available at http://www.isesd.hi.is (last accessed September 2018).

Ameri, G., A. Emolo, F. Pacor, and F. Gallovic (2011). Ground-motion simulations for the 1980 M 6.9 earthquake (southern Italy) and scenario events, Bull. Seismol. Soc. Am. 101, no. 3, 1136–1151, doi: 10.1785/0120100231.

Ameri, G., F. Gallovic, and F. Pacor (2012). Complexity of the Mw 6.3 2009 L'Aquila (central Italy) earthquake: 2. Broadband strong motion modeling, J. Geophys. Res. 117, no. B04308, doi: 10.1029/2011JB008729.

Ancheta, T. D., R. B. Darragh, J. P. Stewart, E. Seyhan, W. J. Silva, B. S. J. Chiou, K. E. Wooddell, R. W. Graves, A. R. Kottke, D. M. Boore, et al. (2014). NGA-West2 database, Earthq Spectra 30, no. 3, 989–1005.

Anderson, J. G., H. Kawase, G. P. Biasi, J. N. Brune, and S. Aoi (2013). Ground motions in the Fukushima Homadoru, Japan, normal-faulting earthquake, Bull. Seismol. Soc. Am. 103, no. 3, 1935–1951.

Asano, K., and T. Iwata (2006). Source process and near-source ground motions of the 2005 West Off Fukuoka Prefecture earthquake, Earth Planets Space 58, 93–98.

Asano, K., and T. Iwata (2016). Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data, Earth Planets Space 68, 147, doi: 10.1186/s40623-016-0519-9.

Bernard, P., J. C. Gariel, and L. Dorbath (1997). Fault location and rupture kinematics of the magnitude 6.8, 1992 Erzincan earthquake, Turkey, from strong ground motion and regional records, Bull. Seismol. Soc. Am. 87, no. 5, 1230–1243.

Birgoren, G., H. Sekiguchi, and K. Irikura (2004). Rupture model of the 1999 Düzce, Turkey, earthquake deduced from high and low frequency strong motion data, Geophys. Res. Lett. 31, L05610, doi: 10.1029/2003GL019194.

Campbell, K. W., and Y. Bozorgnia (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra, Earthq. Spectra 30, no. 3, 1087–1115.

Chiaraluce, L., R. Di Stefano, E. Tinti, L. Scognamiglio, M. Michele, E. Casarotti, M. Cattaneo, P. De Gori, C. Chiarabba, G. Monachesi, et al. (2017). The 2016 central Italy seismic sequence: A first look at the mainshocks, aftershocks, and source models, Seismol. Res. Lett. 88, no. 3, doi: 10.1785/0220160221.

Cotton, F., and M. Campillo (1995). Frequency-domain inversion of strong motions - application to the 1992 Landers earthquake, J. Geophys. Res. 100, no. B3, 3961–3975.

Custodio, S., and R. J. Archuleta (2007). Parkfield earthquakes: Characteristic or complementary? J. Geophys. Res. 112, no. B05310, doi: 10.1029/2006JB004617.

Gallovic, F. (2016). Modeling velocity recordings of the Mw 6.0 South Napa, California, earthquake: Unilateral event with weak high-frequency directivity, Seismol. Res. Lett. 87, no. 1, 2–14, doi: 10.1785/0220150042.

Gallovič, F., G. Ameri, J. Zahradník, J. Janský, V. Plicka, E. Sokos, A. Askan, and M. Pakzad (2013). Fault process and broadband ground-motion simulations of the 23 October 2011 Van (eastern Turkey) earthquake, Bull. Seismol. Soc. Am. 103, 3164–3178.

Hartzell, S., and C. Mendoza (1991). Application of an iterative least-squares waveform inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran, earthquake, Bull. Seismol. Soc. Am. 81, no. 2, 305–331.

Hauksson, E., and S. Gross (1991). Source parameters of the 1933 Long Beach earthquake, Bull. Seismol. Soc. Am. 81, no. 1, 81–98.

Hernandez, B., M. Cocco, F. Cotton, S. Stramondo, O. Scotti, F. Courboulex, and M. Campillo (2004). Rupture history of the 1997 Umbria-Marche (central Italy) main shocks from the inversion of GPS, DInSAR and near field strong motion data, Ann. Geophys. 47, no. 4, 1355–1376.

Hough, S. E., and D. S. Dreger (1995). Source parameters of the 23 April 1992 M 6.1 Joshua Tree, California, earthquake and its aftershocks: Empirical Green's function analysis of GEOS and TERRAscope data, Bull. Seismol. Soc. Am. 85, no. 6, 1576–1590.

Oglesby, D. D., D. S. Dreger, R. A. Harris, N. Ratchkovski, and R. Hansen (2004). Inverse kinematic and forward dynamic models of the 2002 Denali fault earthquake, Alaska, Bull. Seismol. Soc. Am. 94, no. 6, S214–S233.

Oppenheimer, D., J. Eaton, A. Jayko, M. Lisowski, G. Marshall, M. Murray, R. Simpson, R. Stein, G. Beroza, M. Magee, et al. (1993). The Cape Mendocino, California, earthquakes of April 1992: Subduction at the triple junction, Science 261, 433–437.

Paolucci, R., I. Mazzieri, and C. Smerzini (2015). Anatomy of strong ground motion: near-source records and three-dimensional physics-based numerical simulations of the Mw 6.0 2012 May 29 Po Plain earthquake, Italy, Geophys. J. Int. 203, 2001–2020, doi: 10.1093/gji/ggv405.

Pezzo, G., J. P. Merryman Boncori, C. Tolomei, S. Salvi, S. Atzori, and A. Antonioli (2013). Coseismic deformation and source modeling of the May 2012 Emilia (northern Italy) earthquakes, Seismol. Res. Lett. 84, no. 4, 645–655, doi: 10.1785/0220120171

Saltogianni, V., M. Gianniou, T. Taymaz, S. Yolsal-Çevikbilen, and S. Stiros (2015). Fault slip source models for the 2014 Mw 6.9 Samothraki-Gökçeada earthquake (North Aegean trough) combining geodetic and seismological observations, J. Geophys. Res. 120, 8610–8622, doi: 10.1002/2015JB012052.

Talebian M., J. Biggs, M. Bolourchi, A. Copley, A. Ghassemi, M. Ghorashi, J. Hollingsworth, J. Jackson, E. Nissen, B. Oveisi, et al. (2006). The Dahuiyeh (Zarand) earthquake of 2005 February 22 in central Iran: Reactivation of an intra-mountain reverse fault, Geophys. J. Int. 164, 137–148.

Tatar, M., J. Jackson, D. Hatzfeld, and E. Bergman (2007). The 2004 May 28 Baladeh earthquake (Mw 6.2) in the Alborz, Iran: Overthrusting the South Caspian basin margin, partitioning of oblique convergence and the seismic hazard of Tehran, Geophys. J. Int. 170, 249–261.

Tinti, E., L. Scognamiglio, A. Michelini, and M. Cocco (2016). Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion, Geophys. Res. Lett. 43, 10,745–10,752, doi: 10.1002/2016GL071263.

Yagi, Y., and M. Kikuchi (2000). Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data, Geophys. Res. Lett. 27, no. 13, 1969–1972.

Yagi, Y., and R. Okuwaki (2015). Integrated seismic source model of the 2015 Gorkha, Nepal, earthquake, Geophys. Res. Lett. 42, doi: 10.1002/2015GL064995.

[ Back ]