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Abstract

Due to the dysamic asd hetorogencous nature of grid infrastructures,
scientific applications with frequent and tight synchronizations among
the nedes are unable to achieve high efficiencies, so the client-server
paradigm is & programming model very often used in these environments.
Agcording te this model, Data Grid applications are usually divided into
independent activities that are concurrently soived by the servers. On the
other hand, since many scientific applications are characterized by large
collections of input data and by dependencies between the tasks, the
development of efficient algorithms without unnecessary synchronizations
and data transfers is a difficnlt task. The present work addresses the
problem of implementing and assessing a strategy for efficient task
scheduling and data management in case of dependencics among tasks

in a numerical lnear algebra problem. To this end, we used the Block

Keywords and phrases: parallel and distributed computing, product matrix algorithms,

performance analysis.
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Matrix Multiplication Algorithm implemented in the NetSolve distributed
computing environment as case study, and we intreduced some efficiency
parameters to assess the algorithm.

1. Introduction and Motivation

A grid infrastructure aggregates scattered computing and data resources in
order to create a single computing system image [8]. The hardware of this single
compating system is often characterized by slow and non-dedicated Wide Area
Networks connecting very fast and powerful processing nodes (that can also
represent supercompuiers or large clusters} scattered on a huge geographical
territory, whereas its operating system (the grid middleware) is responsible to fingd
and aliocate resources for scientisis applications, taking into account the status of the
whole grid. Many papers focus on this aspect of grid computing, addressing issues
such as resources brokering, e.g., [6, 17], performance contract definition and
monitoring, e.g., [5, 12, 14], and migration of the applications in case of contract
violations, e.g., {11, 16]. In any case, if is important to underline that distributed
computing environments are composed by heterogeneous computational resources,
both from the static (processors, operating systems, arithmetic, ...} and from the
dynamic (workload of the systems, effective bandwidth of the networks, ...) point of
view, such that an efficient synchronization among the nodes is very difficult. For
this reason, one of the main approaches lo the development of distributed
applications is based on the client-server programming model where the application
is divided into a large number of essentially independent tasks that are dispatched to
several servers, and a “coordinator” task managed by the client module. In the
parallel computing community, problems that can be solved with this approach are
called “pleasingly” or “embarrassingly” parallel and one of the most significant
examples in this sense is the SETl@home project [15]. However, beyond such
example of mere networked computing, several common scientific applications are
characierized by a very large sot of inpul date and dependencies among
subproblems, so that the choice of the most powerful computational resources made
by the middleware is not sufficient lo achieve good performance, but the definition
of suitable methodologies is also essential to minimize synchronization among tasks
and to distribute application data onte the grid components in order to overlap
communication and computation, As a case study, we consider a Block Matrix
Multiplication (BMM) algorithm for a client-server distributed computing
environment, because it is a basic linear algebra computational kemel representative
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of similar other computational kernels like LU, LL and QR factorizations, and for
this reason often required by several applications. On the other hand, it encompasses
a large amount of data movements among CPUs and memories, and the task of
minimizing the synchronization overhead among the nodes by using effective data
caching strategies is challenging. Few papers are available in this research area, e.g.,
[3, 7]. In a previous work, we introduced a distributed client-server algorithm for
this problem [4], so that in this paper, we mainly introduce a performance evaluation

procedute aimed to assess the algorithms,

In this work, the algorithms are implemented in the computational environment
able to support a client-server programming model, and where the underlying
computing environment is in charge of the resources selection by means of ils own
dynamie aflocation strategies, and the computational information about the servers
{including their availability, load, processor speed) are hidden to the client. During
recent years, several computing environments have been developed with the scope
of addressing these topics, while allowing, at the same time, a friendly access to

temote resources. Among them, we mention NetSolve [1} and Condor [10].

Our work is structured as follows: In Section 2, we will shortly introduce
different distributed algorithms for the BMM problem; in Section 3, we introduce
our performance evaluation procedure based on some parameters aimed (0 asses
the algorithms on these enviromments; finally in Section 4, we describe the

computational experiments,
2, Distributed Algorithms for Block Matrix Multiplication

Consider the following matrix multiplications problem for two dense matrices 4

and B:
C=4-8 {1}
For the sake of simplicity, we will assume that each matrix X e {4, B, C} s a

square » x n magrix, and it is block partitioned as follows:
( % CR T €. \x

X = @)

LXNB,i oo X e )
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Blocks X 17 have dimension # x r, with » divisible by #, so that NB = n/ 718

an integer. From previous definitions, we have that each block of the € matrix is
given by:

NB
Cru= ZAI,KBK,J; vI,J=1,.., NB (3)
K-

From equation (3), we observe that blocks C; ; can be computed independently

each other, so that Figure 1 shows three parailel versions obtained by the
permutation of the Ioops indices in the standard BMM algorithm C = 4+ B,

| Algorithae §.a: (LEK) prdering Algarithm Lb: (LK.J} ordering Algorithm 1 fK.50) ordering |

g for [ = { to NB (in paralic!) for 1= | to NB {in paraticl) for K= 1 o NB
i for ) =1 0 NB {in parallel} for K= | to N3 for 1= | o N8B (in parafiel}

for K =iwhB for § = | to MH (in parabiel) for 1= 1 to NB {in paralled) I

E (_.U =(,” + ‘--'1,.&..[4&._., Ci.f =(,!,J +n=»’i,‘,{f3£_l, C‘?(J =(‘f-f f‘rxifrkﬁ,\‘l; {

endfor endfor endtior i

endlor endfor eadfor

endier cadfor eadfor

Figure 1. Three standard versions for the BMM algorithm,

Note that other versions, obtained by the permutation of indices 7 and ./, are
_ equivalent to these ones and that all the versions are based on the same
computational kernel:

Crg =Cru +4r B - 4

In a client-server implermentation, for given values of [, J and K, the client sends

to & server the three blocks 4; g Bg ; and C; ;, so that the server can update the
block C; ; and send back the result to the client. It is important to remark that the
only possible paralielism is always on indices 7 and J, so that only the blocks Cy ;

can be computed independently among them. This is not pessible using index X,
because of the risk of “race condition” on accessing to the blocks C; ; for different
values of K. As a consequence, m orcder to reduce the synchronization overhead
accessing these blocks in a client-server implementation, it is essential to define
which algorithr in Figure 1 must be used to compute the several matrix operations
involving blocks 4, By ; and C; ;. For a more deep analysis, we observe that

in the (I, /, K} ordering (Algorithm 1.a), the client generates NB* independent

threads of computation, each of them managing the sum on index X in eguation (3).
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With the (/, K, J) ordering (Algorithm 1b), the client generates only NB
independent threads of computation, each of them generating NP parallel tasks at

every step of index K. Finally, with the (K, 1, J} ordering {Algorithm 1.c} at each

step of index X, the client generates NB* parallel tasks that have to be completed
before the client can generate new tasks.

[ Adgerithm 1.t Clicat side Adgorithm La: Server side
5 Tor =1, NH {in paratiel) segerve {0 A0 K B from the client
i for B, NB (in pasllely (b U0 A KRG
chonse  server send €74 w the cliem
for K=1, NB
} send 740 ANLK), BOE.J7 o the server
i regeive O/ from the server
{ end for
end for
i endtfor

Figure 2. The client-server implementation of the BMM algorithm with {7, ./, K)

ordering,

In Figure 2, as an example, we report the distributed client-server
implementation of the (I, J, K) ordering of the BMM algorithm. Now it is
mmportant to remark that, in the clieni-server programming model, data are stored in
the client memory {or in a repository close to the client) and they are sent in chunks
to servers for the computations; once the computation has been completed, the
results are refurned to the client, However, the data movement between chent and
server in & computational grid is similar to the data transfer between memories and
processing unit in a single Non Uniform Memory Access (NUMA) machine. A
NUMA machine is characterized by a memories hierarchy where fast and small
memories {main memory and caches) are positioned at the higher level, whereas
slow and large memories (secondary and remote memories) are located at the lower
ones. Table | shows typical peak bandwidth, latency and size, for four different
memory levels when accessed from the server, The illustrated values refer to a
common workstation usually available in a distributed computing environment and
are not representative of leading edge technology.

Table 1. Typical values for bandwidth and latency for different metmory levels

Bandwidth Latency Size
Server main memory 10 GByte/sec 2-10 ns 4 GBytes
Server secondary storage | 100 MByte/sec 3ms 512 TBytes
Remote client (LANY | 12.5 MByte/sec 1Gms 10 TBytes
Remote client (WAN} | < 1 MByte/sec 100 ms > 100 TBytes
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It is commonly acknowledged that the key strategy fo achieve high
performances with a NUMA machine is an extensive use of caching methodologies
at each [evel of the memory hierarchy. In this model, the highest levels are usually
managed by the compilers or by some highly optimized mathematical software
library, but lowest levels must be managed by the application. Since scientific
applications rarely can be divided in totally independent tasks and some data
dependencies are always present among them, the definition of methodologies and
the development of software tools for an effective data distribution among the
components of a computational grid assume a key role in grid computing.

{ Algorithm 2. Client side Abgorithm 2. Server side 1

L for b ), NB {in prratied) vetrieve CfEJ) from the secontary storage

| for b=1, NB (in paraltel) regeive ACLKY, BIRKA from eliem f
choose a server Ly CH T AA KB I}

stove C(LF) incthe server secondary  stotige store CELA3 in the secoudary storage [

for K=, NB i

sendd ASEKI, BT o server !

endh for f

retrievir CfF4 from the server !

seoonddary  storage i

. endfor |

i endfor |

Figure 3. The distributed client-server implementation of the BMM algorithm with
(f, J, K} ordering and caching of intermediate results in the server secondary

" storage,

The use of a server secondary storage as a cache for the intermediate results,
therefore allows fo locate them to a higher level in the memory hierarchy and avoids
unnecessary data transfers toward the client memories. Furthermore, if the entire
sequence has to be repeated several times, then it is possible to overlap data
conmunication and stage computation by keeping intermediate data in higher level
memories. The following Algorithm 2 mn Figure 3 implements the described caching
strategy for the (, J, K} ordeting of the BMM algorithm. A similar approach to
data management in disiributed environments is described in [7], where the server
main memory replaces the server secondary storage as cache, The main advantage of
the approach described in the current paper is the larger amount of space available
for caching the intermediate data, with a data access time still negligible compared to
the time for accessing the remote client memory.

3. Algorithms Analysis

For a complete performance analysis, we have fo notice that in a distributed
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environment, classicat parameters like Speedup and Efficiency cannot be used since
the number of used nodes is not defined by the user through the applications, but
they are determined by the computational environment. Furthermore, the primary
goal for using these environments is the opportunity of aggregating scattered and
unused resources rather than simply reducing the execution time [9]. In any case, we
can study the behavior of the total execution time when the problem dimension »
changes, aiming at measuring the influence of the computational environment on the
BMM distributed aigorithm,

We begin our study by comparing the computational cost of the three algorithms
in Figure 1. Firstly, denote #; > 0 to be the execution time (computation and

communication) necessary to resolve the computational kernel (4) and T (NB),
T ANB). Ty;;(NB) to be, respectively, the total execution times to solve the problem
(1) with dimension NB = n/r using the three algorithms in Figure 1. With the
previous definition:

Lemma 1. Given the fotal execution fimes:
then

T (NB) < Ty (NB) < Ty (NB). (%)
Proof, By the DAGs in Figure 2, it is easy to prove that:

Ty (NB) = max Dty Ty(NB) = max Zm;ax ts Ty (WB) = Zr;;_le})( k-
’ k k ’ k ’

So, the inequalities hold.

Therefore, the {7, J, K) ordering described by Algorithm 1.a is more suitabie to

a distributed client-server implementation compared to the other two orderings. The
least suitable one is the (K, 7, J) ordering, Furthermore, it is reasonable to suppose

Ty} = Ty (1) = T (1), This is justified because with only one block {NB = 1),
the three algorithms are equivalent. Since the (I, J, K} ordering exhibits the smaller

total execution time, in the following, we concentrate our attention only on this one,
but similar results hold for the other orderings.
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To assess the performance of the client-server mmplementation described in
Figure 2 in a distributed computing environment, fet us examine before an ideal
case, where the environment is composed by homogenecus, dedicated and
unbounded resources {e.g., number of nodes and networks bandwidth), In this

environment, ket I};k(NB}, T3 (NB), T;;;,-{NB) be, respectively, the ideal total

execution times of the algorithms in Figure 1. From a theoretical point of view, we
can assume that when the nmumber of blocks NB increases, there are always available
nodes and network bandwidth to perform the tasks. In this case, the execution time
of'each task 7, = is equal for all the values of 1, J, K, and the ideal total execution

times in a distributed enviroament are
T (NB) = Ty (NB) = Tg;;(NB) = NB - . (&)
Now we consider the problem (1yof size a-n=a - NB-», where 0 21 i5a
scaling parameter, with the purpose of studying the influence of the computational
environment on the algorithm. Then we define ﬂfk {o.- NB) as the total execution

time to selve such larger problem in the ideal case, and we define the parameter

* N T*k (OL ) NB)
R (NB, @) s (7
Ty (NB)

This parameter assesses the ideal growth factor for the total execution time
when an a-times larger problem s solved. Of course, it is easy to prove that: |

Ry (NB, o) = a. (8)

Same results hold also for Ti;(a - NB) and Ty {a - NB), so that equation (8)

shows a linear growth with NB for the ideal total execution time for ail the
algorithms in Figure 1, when the matrix dimension grows and the block dimension
¥ = nfNB is constant.

However, the number of nodes and the sustained network bandwidth are limited
and it is not possible to have a perfect paralielism. For such a reason, it is fully
reasonable to introduce the assumptions:

Heuristic 1.

Ty (NB) 2 Ty (NB). 9
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Heuristic 2.

Ty (o - NB) 2 aTy(NB). (10)

These assumptions mean that the actual total execution time cannot be smaller
than the ideal one, and when we solve an a-times larger problem in 2 real
environmerd, we cannot achieve an actual growth factor smaller than the ideal one.

Therefore, we define the parameter

Ry ANB, o) = TR0 {an

as the measure of the actual growth factor for Ty (NB) when an o-times larger

problem is solved. It is easy to prove, by using Heuristic 2, that Ry, {NB, o) > o

By comparing patameters Ry (VB, o) and Rj{a, NB), we can now evaluate
the influence of the computational environment on the distributed algorithm, Now

we define the parameter:

R (NB, &
By (NB, o) = R (N, o)

= . {12}
R;3(VB, o)

This parameter evatuates how much Ry, (NB, o) is larger than R;k(NB, o).

Of course, by using (8) and Heuristic 2, we have

Eyela, NB) = =
v Rjilo, NB) o

Furthermore:
Lemma 2. Given the previous definitions, we have

Tyelon - NB) = a.Eyp (NB, ajliy (NB). 13)
Proof. This is because

Ry (NB, o) Ty (o NB) T (NB) _ Ty lo- NB)
Ry (VB o) Ly (VB) T (o NB) W (VB)

Ey{NB, a) =

then the thesis.
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From (13), we observe that oF;; (NB, o) is the actual growth factor for the
total execution time, s0 f (NB, o) can be taken as a measure of the influence of
the computational environment on the performance of the ealgorithm. Of course,

R;k {NB, o) is a not decreasing function of g, s¢, by the Heuristic 2, we can assume
that the same property holds also for Ry (VB, o). Therefore, if £, (NB, a} is

a constant or a moderately increasing function of o, then we can consider the
algorithm as suitable for a distributed execution and able to exploit the paralielism of
the computational environment. However, in general, a limitation in the resources
(number of nodes, networks bandwidth, ...} prevents the parallel execution of a large

number of tasks, so we found that E (NB, a) is a significantly increasing function

of o. Therefore, in order to understand the actual gain obtained when using a
distributed environment in place of a sequential one, it can be useful to compare
Ry (NB, .} not only with the scale factor ot as in the definition of £y {NB, o},

but also with other functions fike f(a) = a’ or f{a)=a’. Actually, let us note

that /(o) = o can be considered the worst growth factor for the total execution
time, because it is the growth factor of a BMM algorithm in 2 distributed

enviromment with only one server.

We define therefore:

Ryp(NB, a)

NB 5
M and ES(NB, o) = —Lom (14
X o

EG)(NB, o) =
CL

These parameters compare Ry (NB, o), respectively, with f(a)= o’ and

flay=o’. If El]k N, NB) is a constant or moderately increasing function, then
we can yet consider as convenient to execute the algorithm in a distributed
enviromment; but a significant increasing function Eé.%c)(a, NB} means that we are

not able t0 gain any benefits from the execution in a distributed environment with
respect to the execution in & sequenttal envitonment.

Finally, we conclude this section with a comparison between Algorithm 1 in
Figure 3 (IJK ordering without data caching} and Algorithm 2 in Figure 6 (UK
ordering with data caching). Let now tg and tp be, respectively, the access times
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to the server secondary storage and to the remote client memories, and C;.S) and

C;f} be the ideal total communication costs for Algorithm | and Algorithm 2,

respectively. We concentrate our attention only on the communication cost because
the computation cost is equal in both algorithms and because it is the dominant part
in the fotal execution time. We firstly observe that, since the computation of the

kemel {4 requires the communication of 4r? data among client and server, m (6),
we have T = 47 Rr2, so the ideal communication cost for the complete computation

Of eac‘h }}3(}(:}( C’{], .j) Wiii] Algorltbm } iSI
C )(!VB) = 4]\[195 F ;5

Since 1 =y1g with 10 <y <100, the ideal communication cost of the

Algorithm 2 is 1 = 2(15 + 15 )r2, so that:

CoP(NB) = 2NB(xg + 15)7 < CiPH(NB). (16)
We define:
*(2} B
§™(NB) = %zki)( ) an
;v

as the measure of the ideal reduction factor for the {/, J, K} ordering when a

caching strategy is used. It is easy to prove:

Lemma 3. Given the deﬁnz'tion of S"(NB), we have

" (NB) = rfk ( NB) _ 2NBlrp + g )t oy (18)
CUNB)  ANBry? 2y |

Eguation (18} shows the ideal value for the reduction factor when a caching
strategy is used. It should be compared with the actual reduction factor, that is with
the ratio:

¢t
S(NB) = —2E " {19)

where Ct.(j},j and Cﬁ) are the actual communication costs of the two algorithms,
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4. Computational Experiments

In this section, we describe the results of several tests aimed to evaluate our
atgorithms using the procedure described in Section 3. For our experiments, we used
NetSolve 2.0 distributed computing infrastructure [1}. This is a software
environment based on a client-agent-server paradigm that provides a transparent and

inexpensive access to remote hardware and software resources.

A first set of experiments is aimed to evaluate the effectiveness of Algorithm 1.a
when compared to Algorithm 1.b and Algorithm 1.c. Then on the basis of Equation
(5}, we implement the {1, J, K} ordering (Algorithm 1.a) and the (K, 7, J)
ordering {Algorithm 1.c), i.e., the best and the worst expected version. In this first
experiment, the servers are located at the University of Tennessee and the client is
located in our Departrent. This software infrastructure can be called Wide drea
System (WAS), because of the underlying geopraphical aetworks. In these
experiments, we evaluated the total execution times for calculations in problem (1),
considerimg square matrix of order n = 250, 500, 1000, 2000 and a fixed block size
¥ = 250. With these values, the number of blocks NB =1, 2,4, 8.

Table 2. Timing results in seconds for Algorithm 1.a and Algorithm f.c on a WAS

Algorithm |a Algorithm Le
Nf=l | NBe) | NH=4 | NB=8 | NB=] | Nig=2 | NB=d | NB=S
Average of the tota} exee. time 1881 13861 Li206 | %639 [ 2026 4506 | 2130 | 1657
Minimum of the total exee, time 13.4 3t 114 833 1538 42017 F AT 1613
Maximum of the lotal exec. time 25,25 4647 1137 873 20,33 | 300 | 2499 LHEY
Sandard deviation 926 1418 7.4 6,47 XY 3.03 6,59 14,28

In Table 2, there are the total execution times for Algorithm 1.a and Algorithm
l.c on the WAS, In order to report realisticaily, the impact of the fluctuation in the
network traffic, the values are, respectively, the averages of Tj; (NB) and 1y, (NB)

over 10 executions. Furthermore, the table lists the mimmum and meximum
achieved total execution times and the standard deviation over the 10 executions,
Best performance of Algorithm 1.a is evident with an average execution time lower
in each test. The high standard deviation values are motivaied by the variability of
the workload in the geographic networks. Table 3 reports further resuits of the
comparison between the two algorithms on the basis of other parameters (11), (12)
and (14) defined in Section 3 with o = 2, that is doubling the size of the matrix in

each experiment. In this table we note that, even if the Algorithm 1.a typicaily shows
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parameter values better than Algorithm l.c, in both cases, we achieve increasing
values for E (2){2, NB)and E (3)(2, NB). More precisely, we observe a behavior of

the total- execution times worse than the one of a sequential execution in a
environment with a single server, so the use of a WAS in this case is not feasible.

A second set of experiments is aimed to compare the execution times of
Algorithm 1.a on two different NetSolve systems: a WAS as previously described
and a Local Area Systern (LAS), where all resources are connected to the Local Area
Network of our Department at 100 Mbits, The results of the experiments on a LAS,
conducted with the same values of » and » used in previous experiments for a WAS,
are shown in Table 4.

Table 3. Performance analysis of Algorithm 1.a and Algorithm .c on a WAS

Algorithm 1.a Algorithm 1.¢
NBE=1{NB=2| NB=4 | NB=1 | NB=2 | NB=4
R(2, NB) 2,05 2,23 2,23 2,23 3,15 7,10
E(2, NB) 1,03 1,11 i1l 1,11 1,57 3,55
EXo NB) L 051 1 0356 | 056 0,56 6,79 1,78
rClo, By | 026 | 028 | 028 0,28 0,39 0,89

Table 4. Timing results in seconds for Algorithm 1.a on twe different systems

Algorithm Lo ona WAS Algonthm Laona LAS
NB=1 | MB=2 NH=4 | NB=§ | NB=t | NO@=2 | Nf=d4 | NB=
Avemageofthe § (NB) | 1881 {3861 1216 8639 1438 1723 | 88T .?73.9 '
Minimum of the ’;‘;ﬁ{NJj) 134 31 ] 333 7.1 6.7 1355 | 112
Maximumof the [, (NB) 2525 [4647 1137 1873 [232 (087 82 |3
Standard deviation ' 9.26 4.13 7.1 6,47 f 0.92 27 113 398

This table shows the average, the minimum, the maximum and the standard

deviation of Ty (NB) over 10 executions. Firstly, we observe for the Local Area

System an average execution time and a standard deviation much smaller than those
obfained in the Wide Area System, which is due to the smallest latency and the
higher bandwidth network. In order fo quantify the performance gain that we
achieve using a Local Area Network System, in Table 5, we show the values of

the parameters for the assessment of the performance introduced in Section 3, We
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observe that, unlike WAS, the values of E(‘?){Z, NB) and EB)(Z, NB) are

descending. More precisely, we measured decreasing vakues for E{z)(Q, NB), and
that means a growth factor included between R(2, NB) = 2 (the ideal case) and
R(2, NB} = 4 (a still convenient case}. Then, the use of Algorithm 1.2 on a Local
Area System produces a real gain on the total execution time, as compared to a

seguential execution m an envirenment with a single server.

Table 3. Performance analysis of Algorithm 1.a on two different infrastructures

Algorithm 1.a on a WAS Algorithm L.aona LAS
NB=1|NB=2|NB=4| NB=1 |NB=2| NB=4

R(2, NB) 2,05 3,15 7,10 9,47 515 4,21

E(2, NB) 1,03 1,57 3,35 4,73 2,57 2,11

E@ NByl 051 0,79 1,78 237 1129 | 1,05

EQ, NBY L 0,26 0,39 0,89 1,18 0,64 | 0,53

A third set of experiments is aimed to test the data caching strategy described in
Section 2. In order to manage data efficiently, NetSolve mcludes two fools: the
Request Sequencing and the Data Storage Infrastructure (DSI), but they are unable
to implement the caching strategy previcusly described. Therefore, in order to fully
implement a caching methodology, it has been necessary to modify the NetSokve
DSI implementation to some extent, as described in {4]. The experiments have been
carried out on the LAS in owr department, where the servers are workstations
mnning at 2.4 GHz, each of them provided with a Paraliel ATA disk adapter with a
peak transfer rate of 100 MByte/sec. The secondary storage is used as a cache for the
intermediate results in each server. Then, we implemented Algorithim 1.a without
data caching as shown in Figure |, and Algorithm !.a with data caching as shown in
Figure 3. Table 6 shows the average, the minimurm, the maximum ané the standard

deviation of 7 (NB) over 10 executions. The matrix dimension n = 250, 500,

1000 and 2000 and the bleck size » = 250 are the same in both tables, The results
show a significant reduction of the total execution time for the computation of the

entire matrix multiplication when a caching strategy is used.
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Table 6. Timing resulls in seconds for Algorithm l.a with different caching
strategies on a LAS

Adgorithm 1.a without data caching | Algorithm {.a with data caching ]
: Nf=l | NB=2 | NBed | NB=8 | NB=l | NB=2 | NBed | NB=R |
Average of the T#‘: (B 438 17.23 | §8.23 3739 1226 2.9 6012 XL N
Minimum of the T, (NB) 7.1 6.7 1355 172 1.5 83 12.2 15.8
Maxirmum of the TM{;\[H} 2.32 152 82 334 0.98 93 534 217
1 Standard deviation 6,92 27 113 398 4,32 14.8 66,7 279.5

Furthermore, in Table 7, we report the values for the performance analysis
introduced i Section 3. We observe that for Algorithm 1.a with a caching strategy,
we achieve growth factors R(2, NB) smaller than the ones from the same algorithm

without data caching. Algorithm 1.a on 2 LAS without data caching,

Table 7. Performance analysis of two versions of Algorithm 1.2 on a local arca
system

Algorithm 1.2 on a LAS without| Algorithm 1.a on a LAS with

data caching data caching
NB=1 | NB=2 | NB=4| NB=1|NB=2 NB -4
R(2, NB) 9,47 5,13 4,21 5,71 4,67 3,97

E(2, NB) 4,73 2,57 2,11 2,85 2,33 1,99

E@@ Ny 237 1,29 1,05 1,43 0 117 | 099

E®@, aBy| 1,18 064 | 053 | 071 | 058 | 050

Table 8. Actual and ideal ratios among the communications costs of the two version
of Algorithm 1.a

NB =1 NB =2 NB = 4 NB =8
S{NB) 1,24 0,75 0,68 0,64
S*(NB) 0,55 0,55 0,55 0,55

Fmally, the effectiveness of the changes in the IBP infrastructure described in
Section 4, is confirmed by Table 8, showing the achieved values for the actuat and

ideal ratios among the communication costs S(NB) and S*(NB) introduced in
Section 3. Actually, mainly for large problems, we observe that the achieved vaiues

for S(NB} are very close to the ideal values §*(NB).
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5, Conchisions

This work mainly pursuits a deuble purpose. Tirstly, it describes an effective
methodology for task scheduling and for data placement among resources related to
the implementation of a Block Matrix Multiplication in a client-server distributed
environment. Secondly, it introduces a procedure to assess the performance of
algorithms in a distributed client-server environment. The procedure is based on a
performance model that is validated with several experimental results in fwo
different distributed enviromments: a Local Area System based on computing nodes
connected by local networks and a Wide Area System based on geographical
networks, From the performance analysis, we achieve some interesting conclusions
reported in Section 4. In any case, the main result is the confirmation that the use of
suitable caching strategies for the implementation of a Block Matrix Multiplication
algorithm in a distributed system based on local area networks is competitive with
mare expensive parallel system based on dedicated computing nodes or networks.
Even if the experiments refer only to the BMM problem, the general structure of the
algorithm is general enough, so we believe that similar results could be achieved alse

on other linear algebra problems, like LU, LI' and QR factorizations.
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