
Synchronization and Caching Data for Numerical Linear
Algebra Algorithms in Distributed and Grid Computing

Environments

Giuliano Laccetti
Department of Mathematics and Applications

University of Naples Federico II
via Cintia – Monte S.Angelo, 80126 Naples (Italy)

+39 081 675619

giuliano.laccetti@dma.unina.it

Valeria Mele
Department of Mathematics and Applications

University of Naples Federico II
via Cintia – Monte S.Angelo, 80126 Naples (Italy)

+39 081 675742

valeria.mele@unina.it

Marco Lapegna
Department of Mathematics and Applications

University of Naples Federico II
via Cintia – Monte S.Angelo, 80126 Naples (Italy)

+39 081 675623

marco.lapegna@unina.it

Diego Romano
Department of Mathematics and Applications

University of Naples Federico II
via Cintia – Monte S.Angelo, 80126 Naples (Italy)

+39 081 675742

diego.romano@dma.unina.it

ABSTRACT
Because of the dynamic and heterogeneous nature of a grid
infrastructure, the client/server paradigm is a common
programming model for these environments, where the client
submits requests to several geographically remote servers for
executing already deployed applications on its own data.
According to this model, the applications are usually decomposed
into independent tasks that are solved concurrently by the servers
(the so called Data Grid applications). On the other hand, as many
scientific applications are characterized by very large set of input
data and dependencies among subproblems, avoiding unnecessary
synchronizations and data transfer is a difficult task. This work
addresses the problem of implementing a strategy for an efficient
task scheduling and data management in case of data
dependencies among subproblems in the same Linear Algebra
application. For the purpose of the experiments, the NetSolve
distributed computing environment has been used and some minor
changes have been introduced to the underlying Distributed
Storage Infrastructure in order to implement the proposed
strategies.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
distributed programming.

General Terms: Algorithms, Performance.

Keywords
Synchronization, Data Caching, Grid Computing, Numerical
Linear Algebra, Block Algorithms.

1. INTRODUCTION
A Grid infrastructure is built on the top of a collection of

disparate and distributed resources (computers, databases,
network, software, storage …) with functionalities greater than
the simple sum of those addends [8]. The “added value” is a
software architecture aimed to aggregate scattered computing and
data resources to create a single computing system image. The
“hardware” of this single computing system is often characterized
by slow and non-dedicated Wide Area Networks (WAN)
connecting very fast and powerful processing nodes (that can also
represent supercomputers or large clusters) scattered on a huge
geographical territory, whereas the “operating system” (the grid
middleware) is responsible to find and allocate resources to the
scientists’ applications, taking into account the status of the whole
grid. Many papers focus on this aspect of the grid computing,
addressing issues such as resources brokering [e.g. 4,15],
performance contract definition and monitoring [e.g. 11,13], and
migration of the applications in case of contract violations [e.g.
10,14]. On the other hand, as common scientific applications are
characterized by a very large set of input data and dependencies
among subproblems, choosing the most powerful computational
resources is not sufficient to achieve good performance, but it is
essential also to define suitable methodologies to minimize
synchronization among tasks, to distribute application data onto
the grid components in order to overlap communication and
computation and to provide tools that eliminate unnecessary data
transfers. There is a small number of papers available in this
research area [e.g. 3,7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DaGreS’09, May 18–20, 2009, Ischia, Italy.
Copyright 2009 ACM 978-1-60558-555-0/09/05...$5.00.

23

However, because a computational grid can be viewed as a
single computational resource, it is possible to borrow ideas and
methodologies utilized commonly for traditional systems and to
adapt them to new environments. As case study, a block matrix
multiplication algorithm has been considered, because it is a basic
linear algebra computational kernel representative of similar other
computational kernel, e.g. LU, LLT and QR factorization required
by several applications. On the other hand, it encompasses a lot of
data movements and the task of minimizing the synchronization
overhead among the nodes and using effective data caching
strategies is challenging. Preliminary results of such activities are
shown in [5].

2. DISTRIBUTED ALGORITHMS FOR
MATRIX MULTIPLICATION
For sake of simplicity, assume that A, B and C are square matrices
of order n, and divided in square blocks C(I, J) , A(I,K) and B(K,
J) of order r, with n divisible by r, so that letting NB be the
number of blocks in each dimension, it is NB = n/r.

Figure 1 then shows three versions obtained by the permutation of
the loops’ indices in a standard algorithm for the matrix
multiplication BAC ⋅=

Note that other versions, obtained permuting the I and J indices,
are equivalent to these ones and all the versions are based on the
same matrix operation:

),(),(),(),(JKBKIAJICJIC += (1)

for I = 1 to NB (in parallel)
 for J = 1 to NB (in parallel)
 for K = 1 to NB
 C(I,J)=C(I,J)+A(I,K)B(K,J)
 endfor
 endfor
endfor

a: (I,J,K) ordering

for I = 1 to NB (in parallel)
 for K = 1 to NB
 for J = 1 to NB (in parallel)
 C(I,J)=C(I,J)+A(I,K)B(K,J)
 endfor
 endfor
endfor

b: (I,K,J) ordering

for K = 1 to NB
 for I = 1 to NB (in parallel)
 for J = 1 to NB (in parallel)
 C(I,J)=C(I,J)+A(I,K)B(K,J)
 endfor
 endfor
endfor

c: (K,I,J) ordering

Figure 1: Three standard versions for the block multiplication
algorithm

In a client/server implementation, for given values of I, J and K,
this operation can be computed by the client sending to a server
the three blocks A(I,K), B(K,J) and C(I,J), so the server can
update the block C(I,J) and send back the result to the client.

It is important to note that the only possible parallelism is always
on the indices I and J, i.e. each block C(I,J) can be computed
independently from the other ones. This is not possible on the
index K, because of the risk of “race condition” on the access to
the blocks C(I,J) for different values of K. As a consequence, in
order to reduce the synchronization overhead accessing these
blocks, it’s essential to define in a client-server implementation
which of the orderings in Figure 1 has to be used to compute the
several matrix operations involving the blocks C(I,J), A(I,K), and
B(K,J).

With the (I,J,K) ordering (Figure 1.a) the client generates NB2
independent threads of computation, each of them managing the
sequence on the index K. With the (I,K,J) ordering (Figure 1.b)
the client generates only NB independent threads of
computation, each of them generating NB parallel tasks at every
step of the index K . Finally, with the (K,I,J) ordering (Figure 1.c)
at each step of the index K, the client generates NB2 parallel
tasks and these need to be completed in order to generate new
ones.

For a computational cost analysis, let tijk denote the execution
time (computation and communication) needed to perform the
operation (1) and T(a), T(b), and T(c) denote respectively the total
execution times for the three orderings in Figure 1. It is easy to
find that:

∑
∑∑

=

==

k
ijk

ji
c

k
ijk

ji
b

k
ijk

ji
a

tT

tTtT

,
)(

)(
,

)(

max

maxmaxmax

(2)

so that:

)()()(cba TTT ≤≤

The (I,J,K) ordering is then more suitable to a distributed
client/server implementation compared to the other two orderings.
The least suitable one is the (K, I, J) ordering. The client/server
implementation of the (I,J,K) ordering of the matrix
multiplication algorithm is then:

24

for I=1, NB (in parallel)
 for J=1, NB (in parallel)
 choose a server
 for K=1, NB
 send C(I,J), A(I,K), B(K,J) to server
 receive C(I,J) from server
 end for
 end for
endfor

Client algorithm

receive C(I,J), A(I,K), B(K,J) from client
C(I,J)=C(I,J)+A(I,K)B(K,J)
send C(I,J) to client

Server algorithm

Algorithm 1: The client-server implementation of the block
matrix multiplication algorithm (I,J,K) form

Let us assume the ideal case, where the environment is
homogeneous and dedicated to the computation. In this case the
execution time tijk = t , is equal for all the values of I, J, K, and

tNBTTT cba ⋅===)()()(

This result shows a linear growth with NB for the total execution
time, when the matrix dimension grows and the block dimension
r=n/NB is constant. When we multiply the matrix dimension n by
α, the ideal value for the ratio αS is then:

αααα ===)//()/(/)()(rntrntTTS a
n

a
n

(3)

αS measures the ideal growth factor for T(a) when an α times
larger problem is solved.

However, it is important to note that, in the client/server
programming model, the data are stored in the client and are sent
from there in chunks to the servers for computations; once the
computation is completed, the results are returned to the client.
The data movement from client and servers in a grid is similar to
the data transfer between memories and processing unit in a single
Non Uniform Memory Access (NUMA) machine.

Table 1: Typical values for bandwidth and latency

 Bandwidth Latency

Server main memory 10 GByte/sec 2-10 ns

Server secondary
storage

100 MByte/sec 5 ms

Remote client (LAN) 12.5 MByte/sec 10 ms

Remote client (WAN) < 1 MByte/sec 100 ms

Fast and small memories are positioned at the higher level,
whereas slower memories, that are usually accessed by means of
geographic networks, are located at the lower ones. In this model
the servers’ secondary storage level can be either the disks of each
server or an external (to the server) data repository, which is still

close enough to make the access time to this level negligible
compared to the access time from the client. Table 1 shows
typical peak bandwidth and latency of four different memory
levels when accessed from the server. The illustrated values refer
to a common workstation usually available in a distributed
computing environment and are not representative of leading edge
technology.

It is commonly acknowledged that the key strategy to achieve
high performances with a NUMA machine is an extensive use of
caching methodologies at each level of the memory hierarchy
[5,6]. This provides the processing elements with data taken from
fast memories at the high level and avoids unnecessary data
transfer toward the lowest levels (i.e. toward the client memory).
As scientific applications rarely can be divided in totally
independent tasks and some data dependencies are always present
among them, the definition of methodologies and the
development of software tools for an effective data distribution
among the components of a grid assumes a key role in grid
computing.

As an example, consider an application composed by three tasks
with dependencies in the form of three pipelined stages, as shown
in Figure 2. In this example, the output data from stage 1
represents the input data for stage 2, and the output data from
stage 2 represents, in turn, the input data for stage 3.

Figure 2: An application with three pipelined stages

A raw implementation of this application with the client/server
programming model is depicted in Figure 3a where three servers
compute the three stages of the application using the Algorithm 1.
In this implementation the output data from stages 1 and 2 are
sent back to the client and then sent again to a new server for the
computation of the next stage. In this case the input data for
stages 2 and 3 will be located at the lowest level of the memory
hierarchy when accessed by the servers.

Figure 3a: Raw implementation of the application in Figure 2

In Figure 3b, the use of the server secondary storage as a cache
for the intermediate results allows to locate them to a higher level
in the memory hierarchy and avoids unnecessary data transfers
toward the client memory. Furthermore, by keeping intermediate
data in higher level memories it's possible to overlap data
communication and stage computation if the entire sequence has
to be repeated several times.

stage 1 stage 2 stage 3

geographic
network

25

Figure 3b: Implementation with caching of the intermediate
results

The following Algorithm 2 implements this strategy for the
(I,J,K) ordering of the block matrix multiplication algorithm.

for I=1, NB (in parallel)
 for J=1, NB (in parallel)

 choose a server
 store C(I,J) in the server secondary storage
 for K=1, NB
 send A(I,K), B(K,J) to server
 end for
 retrieve C(I,J) from the server secondary storage

 end for
endfor

Client algorithm

retrieve C(I,J) from the secondary storage
receive A(I,K), B(K,J) from client
C(I,J)=C(I,J)+A(I,K)B(K,J)
store C(I,J) in the secondary storage

Server algorithm

Algorithm 2: The client server (I,J,K) form of the block
matrix multiplication algorithm with caching of intermediate

results in the server secondary storage

For a computational cost analysis, let now Ts and Tr be
respectively the access time to the server secondary storage and to
the remote client memories, and T(1) and T(2) be respectively the
total execution time for Algorithm 1 and Algorithm 2. The
communication cost for the complete computation of each block
C(I,J) with Algorithm 1 is then:

T(1) = 4NB Tr r2 .

Based on the values in Table 1 is Tr = γ Ts with 10<γ <100, the
communication cost for the computation of each block C(I,J) by
means of the Algorithm 2 is then :

T (2) = 2NB r2 (Ts + Tr) < T (1)

A similar approach to the data management in distributed
environments is described in [7], where the server main memory
replaces the server secondary storage as cache. The main
advantage of the approach described in the current section is the
larger amount of space available to cache the intermediate data,
with an access time to the cache still negligible compared to the
client memory.

3. SOFTWARE TOOLS FOR CACHING
DATA IN NETSOLVE
For our experiments the NetSolve 2.0 distributed computing
infrastructure [1] has been used. This is a software environment
based on a client-agent-server paradigm, that provides a
transparent and inexpensive access to remote hardware and
software resources. In this environment a key role is played by the
agent, that gathers hardware performance and available software
of the servers in the environment setup phase as well as dynamic
information about the workload of the resources. When the agent
is contacted by the client by means of the NetSolve client library
linked to the user application, it selects the most suitable server to
be used on the basis of the stored information and notifies the
client. Therefore, the client can send data directly to the selected
server that performs the computation by using a code generated
through a Problem Description File that acts as interface between
NetSolve and the deployed software. Finally the result is directly
sent back to the client. This data exchange protocol is executed
for every request to NetSolve, i.e. in case of dependency among
multiple tasks in the same application, the execution appears as
those depicted in Figure 3a, with an unnecessary network traffic.

In order to manage data efficiently, NetSolve includes two tools:
the Request Sequencing and the Data Storage Infrastructure
(DSI), but they are unable to implement the caching strategy
previously described.

In order to fully implement a caching methodology as described
in Figure 3b, it has been necessary to modify the NetSolve DSI
implementation to some extent. More precisely, the DSI
infrastructure defines the new data type DSI_OBJECT as a data
structure describing the location and several information about the
storage area that can be used as a cache. This remote storage area
is managed by the Internet Backplane Protocol (IBP)
infrastructure [2,12], a middleware for managing and using
remote resources. In a typical NetSolve session, a DSI_OBJECT
is generated by the client and sent to the servers by means of the
NetSolve API, so that they can access the IBP storage (Figure 4)..

Figure 4: Implementation of the Distributed Storage
Infrastructure in NetSolve

Among previous information in a DSI_OBJECT there are the
read/write/management capabilities of the IBP infrastructure, i.e.
unique character strings used as keys to correctly access the data
on the storage. The main changes are therefore related to the DSI
functions for reading and writing data on the IBP storage, so that

geographic
network

server
secondary

storage

client

IBP
storage

server

(1) sends data

(2) retrieves data

(3) gathers results

computational
space

geographic
network

26

they can be used also by the servers. Actually, as of this writing,
the servers cannot call directly these DSI functions because the
Problem Description Files used to generate the server codes are
unable to manage a DSI_OBJECT. For this reason, in the
modified implementation of the DSI infrastructure, the APIs of
the DSI functions for accessing the IBP storage include the
capabilities of the IBP storage and are used in place of those
related to the DSI_OBJECT.

4. COMPUTATIONAL EXPERIMENTS
A first set of experiments has been aimed to verify the
effectiveness of the (I,J,K) ordering compared to the other
orderings. For this purpose, the two orderings (I,J,K) and (K,I,J)
(namely the best expected version and the worst expected version)
have been implemented on a NetSolve infrastructures supplied by
the University. of Tennessee, with the client located at the
Department of Mathematics and Applications of the University of
Naples. This software infrastructure can be called Wide Area
system. The result C=AB with square matrix of order n=250,
500, 1000, 1500, 2000, and a fixed block size r = 250, thus NB
=1, 2, 4, 6, 8 has been computed. In Figure 5 the execution times
of the two orderings is reported. The better performance of the
(I,J,K) ordering of the algorithm is evident with a smaller
average execution time for each test. In order to minimize the
impact of the traffic fluctuation in the network, the reported
values are the average times over 10 runs

0,00

500,00

1000,00

1500,00

2000,00

250 500 1000 1500 2000
matrix dimension n

tim
e

in
 s

ec
on

ds

(I,J,K) version (K,I,J) version

Figure 5. Average execution time of two orderings of the
block matrix multiplication.

A second set of experiments is aimed to compare the execution
times of the (I,J,K) ordering of the block matrix multiplication
algorithm on two different NetSolve systems: a Wide Area
Network system with the servers operated by the University of
Tennessee and a Local Area Network system where all resources
are connected by means of the Local Area Network of the
Department of Mathematics and Applications of University of
Naples at 100 Mbits. For these experiments the average execution
time, across 10 runs, are reported in Figure 6. For the same values
of n and r used in the previous experiments, it has been
estimated that on the Local Area Network system the total
execution time is about 50% smaller compared to the Wide Area
Network system, because of the smaller latency and the higher
bandwidth of the network. In order to quantify the performance
gain, let us observe the value for S2 achieved from n=1000 up to
n= 2000: on the Local Area system S2 = 4.34 it has been
measured, whereas on the Wide Area system S2 = 7.14. These
values should be compared with the ideal value S2=2 in order to

give idea of the overhead introduced by the computational
environment (both hardware and software contribution). More
precisely, a factor grow for the execution time of about O(NB2)
has been measured for Algorithm 2, compared to about O(NB3)
for Algorithm 1 and to O(NB) for the ideal case. Finally, note that
efficiency or similar metrics are very few used parameters for
performance analysis in distributed or grid computing, because
the resource selection is in charge of the computational
environment itself so that the user is unable to define the number
of computing nodes, and, further, the primary goal for using these
environments is the possibility to aggregate scattered and unused
resources rather than a mere execution time reduction [9].

0,00

200,00

400,00

600,00

800,00

1000,00

250 500 1000 1500 2000
matrix dimension n

tim
e

in
 s

ec
on

ds

WAN LAN

Figure 6. Average execution time for two NetSolve systems

A third set of experiments is aimed to test the software
infrastructure needed to implement the data management policy
described in Section 2. Some experiments have been carried out
on a cluster of 2.4 GHz PCs, each of them provided with a
Parallel ATA disk adapter with a peak transfer rate of 100
MByte/sec, and connected using a 1 Gbits switch. Algorithm 1
and Algorithm 2 have been implemented by using NetSolve-2.0
computing environment with the DSI infrastructure modified as
described in Section 3.

0
10
20
30
40
50
60
70

500 1000 2000
matrix dimension n

tim
e

in
 s

ec
on

ds

Algorithm 1 Algorithm 2

Figure 7. Average execution time for Algorithm1 and
Algorithm 2

Figure 7 shows the average total execution times in seconds
(across 10 executions) for Algorithm 1 (without data caching)
and Algorithm 2 (with data caching) for matrices of order n =
500, 1000 and 2000 with square blocks of order r = 500 . The
results show a significant reduction of the total execution time for
the computation of the entire matrix multiplication.

27

5. CONCLUSIONS
This work addresses the problem of implementing a strategy for
task scheduling and data management in case of data
dependencies among subproblems in the same application. The
paper pursuits a double purpose. Firstly, it describes an effective
methodology for task scheduling and for the placement of data
among the resources of a distributed environment with the
client/server programming model. Secondly, it shows how to
modify to some extent the Distributed Software Infrastructure,
part of the NetSolve distributed computing system, in order to
implement the described methodology. The computational
experiments confirm the expectations, showing a significant
reduction of the execution times when the intermediate data are
kept in the secondary storage of the servers. This activity is part
of a larger project whose main purpose is to solve
multidisciplinary applications, derived from researches conducted
by scientists of Naples area, within a new powerful grid
infrastructure to be integrated in large national and European
grids.

6. ACKNOWLEDGMENTS
This work has been supported by Italian Ministry of

Education, University and Research (MIUR) within the activities
of the SCOPE project (PON Ricerca" 2000-2006 - Avviso 1575)

7. REFERENCES
[1] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller,

K. Seymour, K. Sagi, Z. Shi, S. Vadhiyar. User’s Guide to
NetSolve V. 2.0. Univ. of Tennessee, 2004. See also Net-
Solve home page – URL:
http://icl.cs.utk.edu/netsolve/index.html.

[2] A. Bassi , M. Beck, T. Moore, J. S. Plank, M. Swany , R.
Wolski, G. Fagg - The Internet Backplane Protocol: A Study
in Resource Sharing -Future Generation Computing Systems,
Volume 19, Number 4, May, 2003, pp. 551-561.

[3] O.. Beaumont, V.Boudet, F. Rastello and Y. Robert. Matrix
Multiplication on Heterogeneous Platforms. in IEEE Trans
on Parallel and Distributed Systems, vol. 12 (2001), pp 1033-
1051

[4] K. Czajkowsky, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, S. Tuecke – A Resource Selection
Management Architecture for Metacomputing Systems – in
Proc. of IPPS/SPDP ’98 Workshop on Job Scheduling
Strategies for parallel Processing, 1998.

[5] L. D’Amore, G.Laccetti M. Lapegna - Block Matrix
Multiplication in a Distributed Computing Environment:

Experiments with NetSolve – In: Wyrzykowski, R.,
Dongarra, J., Meyer, N., Wasniewski, J. (eds.). LNCS, vol.
3911, pp. 625–632. Springer, Heidelberg (2006)

[6] J. J. Dongarra, J. Du Croz, I. Duff, S. Hammarling - A
proposal for a set of level 3 basic linear algebra subprograms
- ACM SIGNUM Newsletter 22(3):2-14, 1

[7] J. Dongarra, J.F. Pineau, Y. Robert, Z. Shi, F. Vivien -
Revisiting Matrix Product on Master-Worker Platforms -
Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, March 2007 Page(s):1 -8

[8] I. Foster and C. Kesselman. Computational Grid. in The
Grid: Blueprint for a Future Generation Computing
Infrastructure. Foster and Kesselman eds., Morgan Kaufman,
1998

[9] G. Fox. Message Passing from Parallel Computing to the
Grid. in IEEE Computing in Science and Engineering.
Sept/Oct 2002

[10] A. Murli, V. Boccia, L. Carracciuolo, L. D’Amore, G.
Laccetti, and M.Lapegna - Monitoring and Migration of a
PETSc-based Parallel Application for Medical Imaging in
aGrid computing PSE - IFIP International Federation for
Information Processing , Vol. 239: Grid-Based Problem
Solving Environments: Implications for Development and
Deployment of Numerical Software, Gaffney P.W.; Pool
J.C.T., 2007

[11] F. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K.
Roche, S. Vadhiyar - Numerical Libraries and the Grid: The
GrADS Experiment with ScaLAPACK, - Technical report
UT-CS-01-460, 2001

[12] J. Planck, M. Beck, W. Elwasif, T. Moore, M. Swany, R.
Wolsky – IBP , The Internet Backplane Protocol: Storage in
the Network. – in NetStore99: Network Storage Sympo-
sium, Seattle, 1999.

[13] R. Ribler, J. Vetter, H. Simitci, D. Reed - Autopilot:
Adaptive Control of Distributed Applications - Proc. of High
Performance Distributed Computing Conference, 1998, pp.
172-179

[14] S. Vadhiar and J. Dongarra – A performance oriented
migration framework for the grid - Proceedings of the 3st
International Symposium on Cluster Computing and the
Grid, 2003

[15] S. Vadhiar and J. Dongarra – A Meta Scheduler for the Grid
– in Proc. 11th IEEE Symposium on High Performance
Distributed Computing, July 2002

28

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

