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Abstract

In this paper we present first experiences concerning the
integration of MPI-based numerical software into an ad-
vanced programming environment for building parallel and
distributed high-performance applications, which is un-
der development in the context of Italian national research
projects. Such programming environment, named ASSIST,
is based on a combination of the concepts of structured
parallel programming and component-based programming.
Some activities within the projects are devoted to the def-
inition, implementation and testing of a methodology for
the integration of a parallel numerical library into ASSIST.
The goal is providing a set of efficient, accurate and re-
liable tools that can be easily used as building blocks for
high-performance scientific applications. We focus on the
integration of existing and widely used MPI-based numeri-
cal library modules. To this aim, we propose a general ap-
proach to embed MPI computations into the ASSIST basic

�This work has been supported by the ASI-PQE2000 Programme De-
velopment of Applications for Earth Observation with High-Performance
Computing Systems and Tools, and by the CNR Agenzia 2000 Pro-
gramme An Environment for the Development of Multi-platform and Multi-
language High-Performance Applications based on the Object Model and
on Structured Parallel Programming.

programming unit. This approach has been tested using the
MPICH implementation of MPI for networks of worksta-
tions. Some modifications have been applied to the MPICH
process startup procedure, in order to make it compliant
with the ASSIST environment. Results of experiments con-
cerning the integration of routines from a well-known FFT
package are discussed.

1. Introduction

The development of scientific applications typically re-
quires both a deep knowledge of the application domain
and a proper use of sophisticated methods, techniques and
tools from Numerical Mathematics and Computer Science.
In such a context, numerical libraries play a fundamental
role, since they provide computational scientists with many
years of experience and know-how of numerical software
developers. The emergence of a wide variety of parallel and
distributed computer architectures increases the difficulties
arising in the development of efficient and reliable software,
and emphasizes the role of high-quality software modules in
building computational applications. This role is going to
be recognized also by the industrial world, where efforts to
exploit parallel numerical libraries into existing codes have
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been observed (see, for example, [1, 8]).

The complexity of current large-scale scientific applica-
tions often needs the combined use of multiple numerical
software packages to address problems concerning Matrix
Computations, Differential and Integral Equations, Func-
tion Transforms, Optimization, and so on. On the other
hand, while accurate, efficient, and reliable libraries are
available for the solution of single classes of problems, in-
tegrating and assembling them into large software systems
is very difficult, because of data management and inter-
operability problems. New generations of advanced envi-
ronments for parallel and distributed computing are evolv-
ing to take into account the requirements of today’s ap-
plications and the evolution of the hardware and software
technologies. One of the main design objectives of many
advanced environments is the exploitation of the compo-
nent technology to obtain software integration and interop-
erability, reuse of existing codes and seamless access to dis-
tributed and loosely coupled resources. Component stan-
dards and implementations, e.g. OMG CORBA [17], Mi-
crosoft DCOM [13], and Sun Enterprise JavaBeans [20],
have been developed by the business world, that first rec-
ognized their importance. However, they do not support
basic needs of high-performance computing, such as the ab-
stractions needed by parallel programming and the perfor-
mance. Therefore, a large effort is currently devoted to char-
acterizing the component technology for high-performance
computing [6]. In this scenario, work is carried out to
wrap legacy codes and parallel software libraries as high-
performance components [14, 16, 18].

In this context, a programming environment for building
and running parallel and distributed applications is under
development within Italian research projects, supported by
the Italian Space Agency (ASI) and the Italian National Re-
search Council (CNR). This environment, called ASSIST (A
Software development System based upon Integrated Skele-
ton Technology), is aimed at exploiting the component pro-
gramming model and the structured parallel programming
model [22]. Some activities in the projects are devoted to
the integration into ASSIST of parallel numerical library
modules, in the areas of Linear Algebra, Fast Fourier Trans-
forms and Quadrature. The final goal is not only providing
the programming environment with a set of accurate, effi-
cient and reliable numerical tools, but also defining an in-
tegration methodology that allows to reuse existing parallel
numerical software with small or no changes, preserving as
much as possible its performance, and exploiting static and
dynamic optimization mechanisms of the ASSIST environ-
ment.

The remainder of this paper is organized as follows. In
Section 2 we outline the main features of the ASSIST en-
vironment. In Section 3 we describe our approach for en-
capsulating MPI-based numerical kernels into an ASSIST

parallel component, giving also details on its implementa-
tion. First experiences concerning the integration of rou-
tines from FFTW [11], a well-known package for FFT com-
putations, are presented in Section 4. Concluding remarks
and future work are reported in Section 5.

2. Main features of the ASSIST environment

The ASSIST project represents the evolution of research
activities on structured parallel programming languages and
related supports, carried out in the ’90s by a group at the
University of Pisa [2, 3]. The ASSIST programming envi-
ronment merges the skeleton-based approach of early pro-
posals with the emerging component-based approach. The
target hardware layer includes different architectures, rang-
ing from SMPs to MPPs, from homogeneous to heteroge-
neous clusters, till to computational Grids.

A layered software architecture has been designed (see
Figure 1), exploiting object-oriented technology. The user
interface is a coordination language, named ASSIST-cl, that
allows “external” code to be used within the sequential por-
tions of code encapsulated in skeletons. The ASSIST-cl
code is compiled and then it is loaded and run onto the
target architecture by the Coordination Language Abstract
Machine (CLAM). The CLAM layer is decoupled from the
target hardware by a run-time support, named Hardware
Abstraction Layer Interface (HALI), which currently ex-
ports functionalities from the ACE multithreading and in-
terprocess communication library [19], from the DVSA
distributed virtual shared-memory library [4], and from a
standard CORBA implementation [21], to allow external
CORBA object usage within ASSIST applications. Further-
more, in the framework of the previously mentioned Italian
projects, some activities are aimed at substituting suitable
parts of the CLAM/HALI pair by Globus [10] components,
in such a way that ASSIST-cl programs, currently running
on workstation clusters, can run unmodified on a computa-
tional Grid.

The ASSIST-cl compiler parses ASSIST-cl source files
and produces an intermediate “task code”. In turn, the task
code is translated into C++/HALI processes and threads.
In addition, an XML configuration file is produced by the
ASSIST-cl compiler, that can be used by CLAM to load
and run the C++/HALI object code. The C++/HALI code is
derived from task code by using a proper builder that uses
pre-defined implementation templates to produce the actual
code. The XML configuration file stores all the informa-
tion needed to run the object code. In particular, the XML
file stores names of the dynamically linked libraries con-
taining the object code, dynamic code load paths, process-
to-processing element mapping info, parallelism degree of
the parallel components, type and number of processing
elements available in the target machine, etc. This infor-
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Figure 1. ASSIST architecture.

mation is used by CLAM to load proper object code, as
well as to schedule the execution of object code compo-
nents. Once the ASSIST-cl program has been compiled
and the XML configuration file produced, the user may
invoke the assistrun command, to make CLAM load-
ing all the necessary code and running it, according to the
XML configuration file. Furthemore, CLAM sets up all the
required communication/synchronization channels (mainly
via ACE TCP/IP socket wrappers) as well as distributed
shared-memory regions (via proper DVSA calls), and pre-
pares parameters needed by the different processes (pro-
cess id’s, handles for communication channels or shared-
memory regions, etc.). Finally, CLAM takes care of han-
dling program termination and cleanup. While executing
these tasks, CLAM uses all the facilities provided by HALI
and, in particular, by its ACE subsytem, making no assump-
tions on the existence of other software, running on the
same nodes and competing to use the same resources. In
other words, CLAM pretends to be the abstract machine us-
ing the target hardware.

The structure of an ASSIST program is a graph, where
the nodes are the components and the edges are the com-
ponent abstract interfaces, defined in terms of typed I/O
streams. Two types of components have been designed: se-
quential modules and parallel modules (parmods). The se-
quential module has an internal state and is activated by its
input stream values, according to a deterministic data-flow
behaviour. The parmod represents the basic ASSIST par-
allel component. A parmod is built out of different items:
an input/output section, handling the parmod stream inter-
face, a virtual processor set, possibly with a given topology,
defining the internal parallel behaviour in terms of the ac-
itivities that happen to be logically parallel in the parmod,
and a state, holding the state variables that can be accessed

by any virtual processor in the parmod. Furthermore, the
parmod allows users to call “external” libraries in the code
of the virtual processors; as an example, CORBA calls can
be issued to access CORBA objects, or DVSA calls can be
issued to handle intra-parmod shared data.

Data parallelism can be expressed by defining a topology
of virtual processors, which can operate concurrently on
partitioned or replicated datasets. Furthermore, the virtual
processors can also be partitioned into disjoint topologies,
assigned to distinct tasks/functions of a given task-parallel
(or mixed task- and data-parallel) programming model. For
each parmod, besides typed I/O interfaces, it is possible
to define different policies of activations, i.e. deterministic
data-flow or nondeterministic guarded.

In the syntax of ASSIST-cl, a parmod is completely spec-
ified by an interface, where the parmod name and the input
and output streams are defined, a declaration and setup sec-
tion, where the virtual processor topology is defined and the
state variables are declared, an input section and an out-
put section, used to manage the I/O streams and to dis-
tribute/collect them among/from virtual processors, and a
virtual processor section, which describes the computation
to be executed by the virtual processors and can include ex-
isting Fortran 77 or C code. Note that a composition of
modules, expressed by a graph, may be reused as a compo-
nent of a more complex ASSIST program, provided that the
types of I/O streams are compatible. For more details on the
ASSIST programming model we refer to [22].

3.WrappingMPI-based numerical software as
ASSIST parallel modules

We describe our methodology for embedding a paral-
lel numerical library routine into an ASSIST parmod, that,
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from now on, we refer to as numerical parmod. Main ob-
jectives are reusing library software with no or minimum
changes, preserving as much as possible its performance,
and, possibly, exploiting the static and dynamic optimiza-
tion mechanisms provided by ASSIST, such as process al-
location, scheduling and mapping, load balancing and so
on.

The library contents have been selected taking into ac-
count typical computational kernels of scientific and engi-
neering applications and needs of the applications proposed
as a test bed for the ASSIST environment. This led to the
choice of three areas: Linear Algebra, Fourier Transforms,
and Numerical Integration. General criteria for selecting
the software to be integrated were accuracy, reliability, per-
formance portability, self-adaptivity, and use of “standard”
programming tools. This led to the choice of routines from
ScaLAPACK [5], a package for dense Linear Algebra com-
putations, which has a modular structure and employs stan-
dardized and optimized (possibly self-optimized [23]) basic
software, from FFTW [11], a self-adaptive package for the
execution of FFTs, and from PAMIHR [7], a numerical in-
tegration software, developed by one of the authors and in-
cluded in the NAG Parallel Library. All the above software
is written in Fortran 77 and/or C, and uses, as communica-
tion environment, MPI or BLACS [9] (the latter, in turn, can
be implemented on the top of MPI). Here we focus on the
integration of routines that use directly MPI.

In our approach, a numerical parmod is conceived as a
component that provides specific functionalities by means
of a clear interface. The parallel routine code is embed-
ded into the virtual processor section, while the I/O sec-
tions are used to compose the numerical parmod with other
ASSIST modules. Input data coming on streams are dis-
tributed among the virtual processors according to the dis-
tribution policy required by the embedded routine; ouput
data are collected and sent onto output streams in the out-
put section. Sharing data with other ASSIST modules can
also be realized through the ASSIST virtual shared-memory
mechanism.

3.1. The process template of a numerical parmod
and its implementation

Current ASSIST compiling tools process ASSIST source
code to derive a process network that implements the source
code and runs on the CLAM/HALI abstract machine. Each
one of the parallel modules appearing into the source code
is implemented by instantiating a parmod template that ar-
ranges processes, threads, communication channels, etc., in
such a way that the virtual processors (i.e. the logical paral-
lel entities) defined by the parmod are actually scheduled for
parallel execution onto the available processing elements.
The template used looks like the one depicted in Figure 2.

It consists of k + 2 processes: the Input Stream Manager
(ISM), the Output Stream Manager (OSM) and k Virtual
Processor Managers (VPM). ISM and OSM essentially take
care of the input and output activity of the parmod, respec-
tively. The different VPMs take care of executing all the
activities of the virtual processors. A single VPM is run
onto each processing element participating to the execution
of the parmod.

The numerical parmod exploits the above logical tem-
plate, introducing all the changes necessary in order to al-
low virtual processors to execute MPI code. In particular,
each VPM is in charge of executing the activities of a single
virtual process, which performs MPI computations. How-
ever, current implementations of numerical parmods have
not been obtained by instantiating any predefined template,
but by writing directly the C++/HALI code needed to wrap
into a parmod a given MPI-based numerical routine, and
making this code available as a dinamically linked library.
In developing an ASSIST program which uses numerical
parmods, proper pragmas have to be used in the ASSIST-cl
source code, in order to force the compiler to generate par-
ticular entries in the XML configuration file, that allow the
numerical parmod code to be loaded and executed.

When CLAM is invoked to run the program including
the numerical parmod, a CLAM master process generates
slave processes on the processing elements used in the tar-
get architecture, according to the information stored in the
XML configuration file. Eventually, those slave processes
involved in the numerical parmod implementation load the
numerical parmod process code. This code is run and pa-
rameters are passed that allow to use the communication
channels set up by CLAM (i.e. those supporting the I/O
streams of the module), to identify the process within the set
of processes implementing the whole ASSIST-cl program,
etc. Such behaviour is achieved because the parmod pro-
cess code provides suitable init and run methods, that
are invoked by CLAM immediately after loading, and be-
cause CLAM calls are used in the process code that trans-
fer parameter values to the process space. CLAM is also
in charge of running the proper ISM and OSM processes
on the processing elements involved in the numerical par-
mod execution. ISM and OSM represent the interface that
numerical parmod VPMs access, to get input data as well
as to deliver results to the remaining part of the ASSIST-cl
program.

In a numerical parmod, the VPMs are also the MPI pro-
cesses that execute the computations of the encapsulated
numerical routine, hence they must setup all the parameters
related to the MPI implementation and execution environ-
ment (groups, contexts, communicators, various attributes,
etc.), that are needed by MPI routines to accomplish their
functionalities. In an MPI application, this setup phase is
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Figure 2. Process template of the parmod.

performed by the MPI Init function1; the complementary
one is MPI Finalize, that cleans up all the MPI state.

In our experiments devoted to building numerical par-
mods, we referred to MPICH [15], a well known and widely
used free implementation of MPI. More precisely, we con-
sidered the implementation for networks of Unix worksta-
tions. In this case, the MPI Init function cannot be di-
rectly used by the VPMs of the numerical parmod, since
its execution conflicts with the CLAM world, as explained
below.

The architecture of MPICH consists of multiple layers.
The higher layer, which provides the MPI APIs, is writ-
ten in terms of a lower layer, called Abstract Device Inter-
face, which essentially controls the data flow between the
APIs and the hardware. A portable implementation of the
ADI is built on the top of a further layer, named Channel
Interface, which manages basic data exchange mecha-
nisms. Multiple implementations of the Channel Interface,
depending on the specific communication subsystem, are
provided. The one for (possibly heterogeneous) networks
of Unix workstations, named ch p4, is based on the p4
message-passing system, which is in turn implemented us-
ing TCP/IP sockets. (For more details on the MPI archi-
tecture see, for example, [12].) On a workstation network,
usually, the processes running a parallel program cannot be
directly started on a requested number of nodes. There-
fore, the user, via the mpirun command, starts up a master
MPI process, which in turn starts the other MPI processes
(the slave ones) through the MPI Init function. To do
this, MPI Init relies on ch p4, which actually generates,
via rsh, MPI slaves executing their parallel code, and pass
them, as command line arguments, information such as the
machine where the master is running on, a flag to distin-
guish between master and slaves, the executable pathname,
the port to be used by TCP/IP sockets, and so on. Once
started, the slave processes call MPI Init, take the above
information, hence recognize their slave role, and perform
the setup phase of the MPI communication environment ex-

1From now on, we use the C language APIs of MPI.

ploiting that information. The MPI master makes the setup
too. The names of the hosts where the MPI processes must
be started, their role (master or slave) and the executable
names are in the so-called procgroup file, usually produced
by the mpirun command.

In our case, the MPI processes are the ASSIST VPMs,
that have already been started by CLAM. Therefore, they
cannot use the previously described MPI Init to initialize
the MPI environment. Hence we made some modifications
in the MPICH process startup procedure for network of
Unix workstations, to make it compliant with the ASSIST
environment. In our strategy, one of the VPMs is elected as
MPI master process, but, instead of spawning MPI slaves,
it sends to the other VPMs some information (MPI master
machine and TCP/IP port) which the MPI setup phase can
be started from. To this aim, some ch p4 functions, called
inside MPI Init, have been modified, to avoid Unix sys-
tem calls devoted to slave process creation. Furthermore,
MPI Init has been modified in such a way that the MPI
slaves use HALI communication channels to receive from
the MPI master the above setup information. In this way,
the ASSIST and the MPI world live on the same processes,
without any conflict.

We note that the modifications to MPICH do not involve
the APIs of MPI; therefore MPI-based code encapsulated
into an ASSIST parmod does not undergo any change. We
also note that the portability of the above ASSIST/MPI en-
vironment depends on the portability of ASSIST, currently
available for networks of Unix workstations, and on the
portability of the ch p4-based MPICH version, also run-
ning on networks of Unix workstations. On the other hand,
the main modifications to MPICH have been applied to the
software layer that directly works on top of the Unix op-
erating system, and concern the inhibition of process cre-
ation. Therefore, we think that similar modifications can be
carried out on MPICH Channel Interface devices for differ-
ent platforms. Finally, we observe that the approach used
to implement numerical parmods can be exploted to en-
capsulate general MPI-based codes into ASSIST parmods.
Future work could be devoted to develop templates for

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03) 
0-7695-1875-3/03 $17.00 © 2003 IEEE 



parmod assist_fftwnd_mpi(input_stream int N1; int N2; int details[2]; int startfft;
output_stream int endfft)

{
topology array [i:NP] VP;
use shared double precision Z[][];

}

Figure 3. ASSIST-cl interface of the 2D FFT parmod.

generic MPI-computations, that can be instantiated by AS-
SIST users.

4. First experiences

The methodology described in the previous section has
been used to build a numerical parmod that encapsu-
lates software from FFTW, a free package, written in C,
that performs one-dimensional and multi-dimensional Fast
Fourier Transforms (FFTs) on complex and real data, in
either sequential or parallel computing environments [11].
FFTW has the capability of automatically adapting itself
to the characteristics of the underlying computer architec-
ture (memory hierarchy, processor pipeline, number of reg-
isters, etc.), thus having a portable high performance. The
computation af an FFT is accomplished by an executor rou-
tine, which combines, according to the well known Cooley-
and-Tukey algorithm, different specialized pieces of code,
named codelets, that compute FFTs of fixed sizes. A plan-
ner routine, based on a dynamic programming algorithm,
is called before the executor, to determine a composition of
codelets that minimizes the execution time of the FFT. More
details are given in [11].

FFTW includes routines executing parallel FFTs, for ei-
ther SMPs or distributed-memory systems. The distributed-
memory version is based on MPI. We now focus our atten-
tion on the tranform of a bivariate sequence of complex data
values Z = (zj1j2 ):

ẑk1k2 =

m�1X

j1=0

n�1X

j2=0

zj1j2 � e
�2�i

�
j1k1
m

+
j2k2
n

�
;

where i =
p
�1, j1; k1 = 0; : : : ;m � 1 and j2; k2 =

0; : : : ; n�1. The parallel algorithm implemented in the cor-
responding FFTW executor routine, named fftwnd mpi2,
assumes that the matrix Z is distributed among a given set
of p MPI processes in a row-block fashion, i.e. blocks of
mloc ' m=p consecutive rows are distributed among these
processes. Each process computes mloc one-dimensional

2Actually, this routine performs also higher-dimensional transforms.

transforms of length n, on the rows assigned to it, con-
tributes to the transposition of the global resulting matrix,
computesnloc ' n=p one-dimensional transforms of length
m, and, finally, contributes to the transposition of the global
final matrix. All the communication is carried out in the
transposition of the distributed matrices. The computa-
tion of FFTs is performed as indicated by the parallel two-
dimensional FFT planner routine. To help users in dealing
with the above data distributions, FFTW provides also an
auxiliary routine, which returns parameters describing the
required data layout.

The fftwnd mpi, as well as the corresponding planner
and auxiliary routines, have been embedded into the virtual
processor section of a numerical parmod, using the method-
ology described in the previous section. The virtual proces-
sors are arranged into a linear array topology. The FFT sizes
and data specifying some details (direct or inverse transform
and information to planner) are taken in input via streams
and hence are managed by the ISM process. The matrix to
be transformed is assumed to be stored into a virtual shared-
memory area, which must be initialised with proper data by
some ASSIST module, before the numerical parmod is ac-
tivated. This area is accessed by each VPM, that copies a
block of rows into a local array, using the DVSA services
provided by HALI. To start its computation, the parmod
must receive, through an input stream, a flag indicating that
the shared-memory area has been initialised. Analogously,
a flag indicating that the FFT has been performed is sent by
the parmod onto an output stream. The parmod interface,
expressed in the ASSIST-cl syntax, is reported in Figure 3.

To evaluate the performance of the numerical parmod
wrapping the FFT routine and the overhead due to wrap-
ping, experiments have been carried out at ICAR-CNR
(Naples section), using a Beowulf-class Linux cluster. This
system has 19 nodes, each with a 1500 Mhz Pentium IV
processor, a 256 KB L2 cache and a 512 MB RAM mem-
ory. The nodes are connected by a Fast Ethernet switch
with a full-duplex bandwidth of 100 Mbit/sec. Each node
is equipped with Linux Red Hat 7.2, with kernel 2.4.7, the
GNU 2.96 version of the C++ compiler, and MPICH 1.2.3.
A prototype version of the ASSIST environment has been
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p = 1 ASSIST setup MPI setup data distr./coll. sh.-mem. get FFT sh.-mem. put parmod

mean 3:52 0:04 0:24 4:42 3:06 4:42 15:70

stdev 0:06 0:02 0:07 0:08 0:14 0:09 0:16

min 3:44 0:02 0:37 4:30 2:89 4:28 15:30

max 3:63 0:07 0:34 4:51 3:25 4:50 16:30

p = 2 ASSIST setup MPI setup data distr./coll. sh.-mem. get FFT sh.-mem. put parmod

mean 3:73 0:06 0:35 2:70 7:21 2:73 16:77

stdev 0:07 0:01 0:06 0:20 0:16 0:23 0:49

min 3:64 0:03 0:25 2:36 7:00 2:35 15:63

max 3:83 0:09 0:42 2:87 7:47 2:93 17:61

p = 4 ASSIST setup MPI setup data distr./coll. sh.-mem. get FFT sh.-mem. put parmod

mean 6:42 0:06 0:39 1:91 6:30 1:89 16:95

stdev 0:12 0:02 0:04 0:07 0:31 0:03 0:19

min 6:23 0:03 0:35 1:84 5:95 1:84 16:24

max 6:58 0:09 0:43 1:99 6:79 1:92 17:80

p = 6 ASSIST setup MPI setup data distr./coll. sh.-mem. get FFT sh.-mem. put parmod

mean 8:07 0:21 0:61 1:42 5:76 1:55 17:59

stdev 1:29 0:08 0:19 0:01 0:85 0:09 1:32

min 5:99 0:08 0:27 1:41 4:56 1:47 13:78

max 11:18 0:31 1:09 1:44 6:97 1:65 22:64

p = 8 ASSIST setup MPI setup data distr./coll. sh.-mem. get FFT sh.-mem. put parmod

mean 9:26 0:38 0:65 1:18 5:65 1:23 18:34

stdev 0:20 0:02 0:02 0:07 0:07 0:07 0:29

min 8:95 0:34 0:60 1:12 5:50 1:16 17:67

max 9:49 0:41 0:70 1:30 5:75 1:31 18:96

Table 1. Mean, standard deviation, minimum and maximum of the execution times (seconds) of the
FFT parmod, on p = 1, 2, 4, 6, 8 nodes hosting the VPMs, for m = n = 2000.

installed on the top of ACE 5.2.

The ISM, OSM and VPMs have been run on different
nodes. Two more nodes have been used at each execution.
One runs a parmod which generates the data to be sent, via
streams, to the FFT parmod, sends them, and creates and in-
izialises a shared-memory area with the matrix to be trans-
formed. The other runs a parmod which receives the termi-
nation flag from the FFT parmod and accesses the shared-
memory area to check the correctness of the transformed
data.

The experiments have been devoted to measuring the ex-
ecution times of the FFT parmod and of its single tasks,
i.e. the setup of the ASSIST communication system and the
creation of communication channels, the setup of the MPI
environment, the distribution and collection of data from
ISM to VPMs and from VPMs to OSM, respectively, the
copy of the input matrix from the virtual shared memory to
VPM local arrays, the execution of the FFTW routines, and
the copy of the transformed matrix from VPM local arrays
to the virtual shared-memory.

In Table 1 we report the execution times, in seconds, ob-
tained with p = 1; 2; 4; 6; 8 nodes hosting the VPMs, for
the FFT sizes m = n = 2000. Five executions have been
performed for each p, and mean, standard deviation, min-
imum and maximum of time values have been computed.
The times have been measured by using the return value of
the Unix system function times.

We see that the MPI setup requires a considerably
smaller time than the other tasks. The MPI setup time in-
creases as the number of nodes increases, but it generally
accounts for no more than 2.2% of the total execution time.
Instead, the time for copying data from/to the virtual shared
memory has about the same order of magnitude of the time
for performing the FFT, and it decreases as the number of
nodes increases. On one node it is almost 300% of the FFT
time and it is about 55% of the total execution time, ac-
cording to the fact that the shared-memory area does not
reside in the local memory of the node itself. On 8 nodes
it is about 40% of the FFT time and it is less than 15%
of the total time. A very large part of the execution time is
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p = 1 ASSIST setup MPI setup data distr./coll. sh.-mem. get FFT sh.-mem. put parmod

mean 2:61 0:03 0:03 0:74 0:52 0:76 4:70

stdev 0:13 0:02 0:01 0:03 0:04 0:01 0:17

min 2:43 0:01 0:37 0:71 0:48 0:74 4:74

max 2:78 0:05 0:05 0:78 0:59 0:77 5:02

p = 2 ASSIST setup MPI setup data distr./coll. sh.-mem. get FFT sh.-mem. put parmod

mean 3:58 0:08 0:02 0:86 1:79 0:83 7:14

stdev 0:01 0:04 0:02 0:03 0:02 0:03 0:05

min 3:54 0:01 0:00 0:83 1:76 0:80 6:94

max 3:63 0:21 0:05 0:89 1:81 0:87 7:95

p = 4 ASSIST setup MPI setup data distr./coll. sh.-mem. get FFT sh.-mem. put parmod

mean 6:16 0:22 0:32 1:03 3:78 1:02 12:57

stdev 0:13 0:02 0:04 0:09 0:14 0:09 0:14

min 5:99 0:18 0:19 1:06 3:58 0:94 12:42

max 6:36 0:29 0:40 1:20 3:98 1:18 12:81

p = 8 ASSIST setup MPI setup data distr./coll. sh.-mem. get FFT sh.-mem. put parmod

mean 9:26 0:38 0:65 1:18 5:65 1:23 18:34

stdev 0:20 0:02 0:02 0:07 0:07 0:07 0:29

min 8:95 0:34 0:60 1:12 5:50 1:16 17:67

max 9:49 0:41 0:70 1:30 5:75 1:31 18:96

Table 2. Mean, standard deviation, minimum and maximum of the execution times (in seconds) of the
parmod, on p = 1, 2, 4, 8 nodes hosting the VPMs, with a local size 1000 x 500.

spent in setting up the ASSIST communication environment
and channels. This time grows with the number of nodes,
varying from about 20%, on one node, to about 50%, on
8 nodes. This large time takes into account process syn-
chronizations required by the ASSIST setup. However, this
point deserves further investigation. Similar results have
been obtained from experiments with m = n = 1000.

Finally, in order to analyze the scalability of our ap-
proach, we show the execution times obtained increasing
the number of nodes hosting the VPMs, p, and keeping
constant the size of the problem per node, i.e. the amount
of matrix entries assigned to each node.3 In Table 2 we
report the results obtained on p = 1; 2; 4; 8 nodes with
1000 � 500; 1000 � 1000; 2000 � 1000; 2000 � 2000 in-
put matrices, respectively, in order to have 1000� 500 ma-
trix entries per node. From a comparison with Table 1, we
see that the ASSIST and MPI setup do not depend on the
problem size, but only on the number of nodes, as it was
expected. Furthermore, the shared-memory access time ob-
viously grows with the global size of the problem; however,
for all values of p except p = 1, this time is a fraction of the

3We note that this choice does not correspond to a fixed number of
floating-point operations per processor, because of the O(mn(logm +
log n) FFT operation count.

FFT time, and this fraction decreases as p increases.

5. Conclusions and future work

In this paper we described some research activities de-
voted to extend the ASSIST programming environment,
based on a combination of the parallel structured pro-
gramming and of the component programming models,
with a toolkit of parallel numerical components for high-
performance scientific computing.

MPI-based parallel numerical routines from the FFTW
package have been embedded into a parmod, the basic unit
proposed as the building block for developing parallel and
distributed applications in the ASSIST environment. Our
approach to perform such embedding required some modi-
fications of the MPICH implementation of MPI for network
of Unix workstations, in order to have ASSIST and MPI live
together without any conflict. Esperiments have shown that
the cost of setting up the MPI enviroment inside a parmod is
negligible with respect to the whole parmod execution time.
On the other hand, the time required by the entire wrap-
ping is large, and further investigation is needed to reduce
it. However, we believe that users can accept a reasonable
loss in permormance to ease the composition of numerical
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library modules with other ASSIST software units. Finally,
we note that the proposed approach appears to be a general
methodology enabling the reuse of MPI-based legacy code
into ASSIST applications.

Further work will be done to develop templates, and
related implementations, of ASSIST parmods embedding
MPI/BLACS-based numerical routines for dense Linear Al-
gebra.
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