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Abstract 

In  this paper we present a parallel iterative solver 
for  large and sparse nonsymmetric linear systems. 
The solver is based on a row-projection algorithm, de- 
rived from the symmetrized block version of the Kacz- 
marz method with Conjugate Gradient acceleration. A 
comparison with some h‘rylov subspace methods shows 
the remarkable robustness of  this algorithm when ap- 
plied to systems with eingevalues arbitrarily distributed 
in  the complex plane. Th.e parallel version of the al- 
gorithm was developed for  MIMD distributed memory 
m.achines and it is based on a row partitioning ap- 
proach which allows to compute each iteration as a si- 
multaneous set of independent least squares problems. 
Moreover, we propose a data distribution strategy lead- 
ing to  a scalable communication scheme. The algo- 
rithm has been tested both on a system Intel iPSC/SSO 
and on the Intel Touchstone DELTA System, running 
the Intel N X  message passing environment. 

1 Introduction 

The solution of large and sparse linear systems is 
often the computational kernel of many scientific and 
engineering applications. Therefore, the research in- 
terest in this area has recently focused on the devel- 
opment of efficient parallel solvers. This requires both 
the investigation of methods with parallel properties 
and the study of suitable matrix block partitioning 
and data distribution strategies in order to obtain scal- 
able parallel algorithms. 
In this paper we describe and test a parallel row- 
projection algorithm for solving linear systems 

Ax = b,  (1) 

where A is a real nonsingular N x N matrix, on dis- 
tributed memory multiprocessors. We assume that the 

rows of A are partitioned into L blocks 

A = [AT, AT, ..., , 

and that the vector b is partitioned conformally, b = 
[bK1. b;!, ..., b f “ .  As the name suggests, a row- 
projection (RP) method is any iterative method which 
involves the projections of a vector onto the range of 
AT, R(AT) ,  t = 1 ,  ..., L .  Contrary to other iterative 
solvers, R P  methods do not place any restriction on 
the eigenvalue distribution of A and can be also ap- 
plied to nonsymmetric linear systems with indefinite 
symmetric parts. However, slow convergence has pre- 
vented their widespread use. Further, there has not 
been a suitable theory or method on how to select 
row partitionings for practical problems. 
RP methods have been recently applied t,o non- 
selfadjoint elliptic PDE’s in two and three dimensions, 
demonstrating both their numerical robustness and 
potential parallelism [ I ,  2, 91. 
The RP algorithm examined in this paper is based 
on the general block version of the Kaczmarz method. 
Its iteration matrix is the product of orthogonal pro- 
jectors. In particular, we consider symmetrizing the 
iteration matrix by following a forward sweep through 
the rows with a backward sweep, so that the Conju- 
gate Gradient acceleration can be applied. 
The computationally demanding aspect of the Kacz- 
marz method is the computation, in each iteration, of 
an orthogonal projection and hence the solution of a 
linear least squares problem. However, if it possible to 
permute the rows of the matrix A so as to have sepa- 
rate subblocks in each larger block At , each projection 
can be computed as a set, of independent linear least 
squares problems of smaller size. These independent 
subproblems can be solved simultaneously. 
In Section 2 we outline the method and its convergence 
properties. Moreover, we show some results obtained 
by a comparison of the method with other existing 
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ones, such as CG-like methods. In Section 3 we de- 
scribe the parallel algorithm. In particular, we pro- 
pose a data distribution strategy that allows to min- 
imize the communication needed at the end of each 
iteration. Finally, in Section 4 we present a parallel 
evaluation of the algorithm by implemeting it on two 
distributed memory machines. All tests are performed 
on block tridiagonal systems. 

2 Description of the method 

Let the system (1) be partitioned as in (2). We sup- 
pose that all At have equal size, that is At E ? R D x N ,  
with D = N/L. The row projection algorithm exam- 
ined here derives from the block version of the Kacz- 
marz method [3, 51: 

where f l k  is a D x D relaxation matrix. For the L = 
N case the method (3) becomes the iterative scheme 
initially proposed by S. Kaczmarz in [8]. In [5] it is 
shown that a sufficient condition for the convergence 
of the sequence {dk)}  to the solution of (1) is: 

where ID is the D x D identity matrix, A t  denotes the 
Moore Penrose inverse of At and 1 )  . 1 1  stands for the 
euclidean norm. A strong way of satisfying the above 
sufficient condition and of obtaining a stationary it- 
erative procedure is by choosing S l k  =  AI(^@&^)-' , 
V k  2 0. With this choice, and by introducing an iter- 
ation parameter w ,  we have the following method 

BRPK (Block Row Projection Kaczmarz) method 

do) arbitrary 

#+I)  = + wA:(k)(b[t(k)] - At(#) 

k = 0 , 1 , .  . . ; t ( k )  = k(modL) + 1 

If we now consider a forward sweep through the blocks 
At starting from A t ,  we can write the BRPK method 
in the following classical form 

t ( k + * )  = B ( w ) z ( k )  + R(w)b ,  k 2 0 (4) 

where 

B ( ~ )  = n;=, Mt , ivt = I - w ~ r  , pt = A , + A ~  

R ( w )  = w[TiA;,  . . . , TLA;], T j  = M t ,  TL = I 
We explicity observe that Pt is the orthogonal projec- 
tor onto R(AT) .  
A fundamental result for the convergence of the iter- 
ation (4) is the following: 

Theorem 2.1 : 
The BRPK method converges t o  the solution of (1)  i f  
and only if 0 < w < 2. 

The proof of this theorem is based on the classic the- 
ory of linear stationary iterative processes [4, 61. 
The theoretical robustness of the BRPK method is 
remarkable and convergence is assured, under the hy- 
pothesis of the above theorem, even when A is singular 
or rectangular. However, the convergence speed is de- 
termined by the spectral radius of B ( w ) ,  which in turn 
depends on the angles between the subspaces JZ/(At), 
the nullspace of A t .  This angles can be small, with 
a correspondingly slow rate of convergence. For this 
reason we consider a symmetrization process for the 
matrix B(w) by following a forward sweep through the 
blocks with a backward one. In this way the BRPK 
method becomes: 

S B R P K  (Symmetric BRPK) method 

where 

&(w)  = ( I -wPl )  ~..(I-~PL)'((I-~PL-~)...(I-WP~) 

The i th  block column of T ( w ) ,  T ' ( w ) ,  is given by: 

t = 1  t = i  t = L  

where the first product is I when i = 1 and the third 
product should be interpreted as Z when i = L. 
For the SBRPK method the convergence theorem 2.1 
still holds. Moreover, when 0 < w < 2 the matrix 
( I - Q ( w ) )  is positive definite and so it is possible to use 
the Conjugate Gradient (CG) method as acceleration 
procedure for the system 

( I  - &(U)) .  = T ( w ) b  (5) 
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One of the main implementation issue is the choice of 
w in (5). In [9] it was shown that the “optimal” value 
for the relaxation parameter w is 1 when the matrix 
A is partitioned into two block rows, i.e., L = 2. Al- 
though this is no longer true for L > 2, the choice 
w = 1 is still a reasonable one for many reasons, as 
described in [l]. Therefore, for the remainder of the 
paper w =. 1 will be used. This choice and the fact 
that Pt is a projector lead to a simplification of the 
expressions of the matrix Q = Q( 1) and T = T( 1): 

Q = (I - Pi) . . . (I - PL )( I - PL - 1 )  . . . (I - Pi) 

In conclusion, the final scheme of the algorithm we 
consider is the following: 

SBRPK with CG acceleration 

B. Conjugate Gradient iterations 

C. if the convergence test is not satisfied, 
set k = k + 1 and go to B. 

which will be called simply SBRPK- in the sequel. 

2.1 Row partitioning strategies for paral- 
lelism 

On each iteration the SBRPK method requires the 
computation of the product 

and hence the solution of 2L - 1 linear least squares 
problems of the form 

w = min IIu - ATz(12. (6) 

Consequently, it is important to select a row parti- 
tioning of A in order to have least squares problems 
efficiently computable. The basic idea to achieve such 
a goal is to partition tha matrix A so that each block 
A: consists of subblocks C:,, that are orthogonal to 
each other: then, the corresponding projection Pt can 
be computed as a simultaneous set of smaller least 
squares subproblems. This subproblems are indepen- 
dent and can then be solved in parallel. 
In particular, we consider the case when the ma- 
trix A is a d x d block tridiagonal matrix, that is, 
when A = Iridiag[X, Di, Ei] with X I  Di, Ei E !Rdxd, 
i = 1, ..., d .  For such a matrix a suitable row permuta- 
tion allows a block partition with separate subblocks 
in each larger block At. To illustrate this idea, sup- 
pose d = 12 and multiply A by a suitable permutation 
matrix in order to obtain the following three-blocks 
partition: 

A =  

= [Cl,lT, ..., CT,,IC&, . . . , ~ ~ ~ l ~ ~ l , . . . , ~ ~ 4 1 T  = 

= [ATIArIA?JT (7) 
From (7) we observe that A: , i = 1,2,3, has 4 dis- 

joint subblocks. Then, the least squares problem cor- 
responding to A: can be decomposed into 4 smaller 
subproblems 

which are independent and can be solved in parallel. 
We make the following two remarks. First, the row 
partitioning should be chosen not only to allow par- 
allelism in the computations, but also to yield sub- 
problems which can be easily solved, require at most 
O ( N )  additional storage to be solved and are well con- 
ditioned. Moreover, another criterion for a row par- 
titioning is that the spectrum of Q is suitable for the 
CG method. Since it may proved that 1/L eigenval- 
ues of ( I  - Q )  are exactly 1 [l], the latter goal can be 
achieved by keeping the number of blocks L as small 
as possible. 
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Although these goals are conflicting, there are impor- 
tant classes of problems for which it is possible to flexi- 
bly satisfy all of the criteria previously described. Lin- 
ear systems drawn for two dimensional elliptic partial 
differential equations are one such class [I, 2, 91 
The second remark is that (7) is not the only partition 
that gives disjoint blocks in each larger block A t .  For 
instance, we can consider a two-blocks partition, 

A = [AT,  ATIT , 

by putting the row blocks [Ei ,  D,,X],  i = 
1 , 2 , 5 , 6 , 9 , 1 0  into A1 and the remaining row blocks 
into A S .  In this way, both blocks have 3 separate sub- 
blocks, each consisting of two row blocks: 

where the parentheses indicate the separation between 
subblocks. Other examples of possible partition and 
a their comparison are shown in [2]. We remark that 
there is a corresponding loss of possible concurrency 
when the size of subproblems is increased. By com- 
paring the partition (7) and (8), we observe that for 
the three-blocks partition the maximun concurrency 
in solving (6) is d/3, while for the partition (7) is d/4. 
In this paper, we shall assume that the SBRPK 
method is applied to matrices partitioned as in (7). 

2.2 A comparison with other methods 

In this subsection we present some results about 
a comparison of the SBRPK method with other it- 
erative solvers. In particular we consider three CG- 
like methods from the NSPCG package [lo]: the Gen- 
eralized Conjugate Residual (GCR(k)), the General- 
ized Minimum Residual (GMR(k)) and the Orthomin 
(OMN(k)) [ l l ,  121. These methods are implemented 
in a truncated and/or restarted version; It. represents 
the number of search directions to be stored. The 
package NSPCG also provide an option for precondi- 
tioning. We analyze the ILU(s, e), MILU(s, a), and 
SSOR((r) preconditioners. 
It well known that both OMN(k) and CGR(k) con- 
verge if the symmetric part of A is positive definite. 
GMR(k) is known to converge for any nonsingular ma- 
trix if a sufficiently large value of k is used; however, 
an increase in k leads an increase in the memory re- 
quirements and in the computational work load. Fi- 
nally, even with a reasonable value of k ,  the residual 
of GMR(k) can fail to decrease to zero. 
We restrict out tests to the case when the matrix A 

is obtained from the application of 5-point central dif- 
ferences operators to two-dimensional elliptic partial 
differential equations with Dirichlet boundary condi- 
tions on the unit square. An uniform grid of size 
h = l / ( d +  1) is used for both the x and y coordi- 
nates so that A is of order d 2 .  Moreover, the matrix 
A is block tridiagonal, with each diagonal block being 
a tridiagonal matrix of order d and each off-diagonal 
blocks being a diagonal matrix. The solution is as- 
sumed known in order to compute the right-hand side 
function f .  The test problem we consider are: 

1 - uxx - [(I + Z Y ) ~ , ] ,  - P[cos(x)uz + (e-x+ x)uy] 
+3u = f , p = 10000 

2 - uXX - ~ y y  - XU, + 2OOyuy - 30021 = f 

3 

with the solution u ( t ,  y) = 2 + y. 
These problems represent a variety of eigenvalue dis- 
tributions for the matrix A .  In particular, problems 
1 and 3 both have eigenvalues in the right half plane, 
while the matrix of problem 2 has eigenvalues on both 
sides of the imaginary axis. Moreover, the symmetric 
part of A is indefinite for all problems. These equa- 
tions are also used in [2, 91, where a version of SBRPK 
based on a two-blocks partition is tested and compared 
with other methods. 
We solve the least squares problems arising in the 
SBRPK method by using the Cholesky factorization 
on the normal equations. This choice follows from 
many considerations. First of all, since the least 
squares problems have to be solved many times, with 
different right-hand sides, one can perform the fac- 
torization once and use it for all successive itera- 
tions. Moreover, for the test problems used the ma- 
trix CCT, for all the subblocks Ct,j ,  is pentadiagonal. 
Its Cholesky factor consists of 3 diagonals; hence, the 
Cholesky factors for all the subblocks can be stored 
using only 3 additional vectors of lenght d2 .  The only 
drawbacks related to his approach are those usually 
associated with the normal equations. However, it can 
be show that the condition number of C can never be 
worse than that of A .  In particular, for all our test 
problems the subprolems are well-conditioned, as de- 
scribed in [2]. Therefore the choice of solving the nor- 
mal equations is a reasonable one. We use the DPB- 
TRF and DPBTRS routines from Lapack. 

In all experiments we stop the iterations whenever 

- uEI - uyy + 1000exY(u, - uY) = f 

[ / r q l  < ~ ~ r q ,  

where ( I r ( k ) ( )  = Jlb - A d k ) ( [  is the residual of the orig- 
inal system. Moreover, we use k = 3 for all three 
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CG-like methods to match the three vectors of storage 
needed by the SBRPK method. For the precondition- 
ers ILU(s, a), MILU(s, a), and SSOR(a) we consider 
s = 0. The parameter s represents the fill-in level in 
the incomplete factorization. The parameter Q gov- 
erns the quantity added to the main diagonal elements 
during the factorization, and the relaxation parame- 
ter for the SSOR preconditioner. We use a = 0 in the 
first case and 1 in the latter. 
Finally the NSPCG package also allows to monitor the 
ratio \ ~ d k ) \ ~ / ~ ~ r ( o ) ~ ~ ,  which will be denoted as RES in 
the following, and the runs are automatically stopped 
if the decrease of this value is less than after a 
prefixed number of iterations. This condition is la- 
beled as a RS (residual stall) failure. 
We carried out several numerical experiences on a HP 
900 series 700 workstation using Fortran 77. Here, 
just a summary of experiments for each test problem 
with d = 36 is shown in Tables 1-3. An upper limit 
of 1000 iterations is imposed on each run. The last 
column in each table is marked with an error code 
standing for a failure. If the preconditioner cannot be 
formed, an error code of UP (unstable preconditioner) 
is used. Experiments that exceed the maximum num- 
ber of iterations are marked with MI. Finally, if RES 
increases very quickly for many iterations the experi- 
ment is stopped and marked with the label DIV. 
The results obtained show that SBRPK succeedes in 
all cases, while for the test problem 2 every combina- 
tion of method and preconditioner fails to converge. 
This confirms the fact that the SBRPK method has a 
robustness unmatched by the other solvers. 
The unpreconditioned NSPCG methods converge only 
for the problem 3, but are slower than SBRPK and 
need more iterations. The preconditioned method, 
however, can outperform the SBRPK method when 
they work. This arises for test problem 1 where the 
three CG-like methods with the MILU preconditioner 
require only one iteration to  converge. This shows 
that for such a problem MILU provides a highly ac- 
curate approximation of the matrix A-l so that only 
one iteration is needed to refine the solution. ILU and 
SSOR preconditioned methods never succeed, either 
due to a stalling residual or to unstability in forming 
the preconditioner. 
We remark that, although a default value of Q is used 
in our experiments, the NSPCG package allows the 
user to find suitable values that prevent the factor- 
ization failures. Moreover, if some knowledge of the 
system being solved is available, it can be more effi- 
cient to use adaptive procedures for finding an optimal 
acceleration parameter for the SSOR preconditioner. 

ITER 
22 1 

1000 

3 

914 

1 

1000 

1 

Furthemore, the value of k that we used may be too 
small, mainly for GMR(k). However, in [2, 91 it has 
been proved experimentally that increasing k up to 20 
does not greatly improve the performance of GMR(k) 
on these test problems. 
In summary, the tests presented point out the follow- 
ing three considerations. The SBRPK method is more 
reliable than the other solvers, is generally faster than 
the unpreconditioned methods, and is slower than the 
preconditioned methods when they succeed. 

TIME(s) RES FAIL 
1.55 .97E-6 
1.07 . 9 0 E 3  MI 

DIV 
.01 . 4 2 6 6  

UP 
1.10 . 9 9 6 3  RS 

DIV 
.01 . 4 2 6 6  

UP 
1.60 .12E-4 MI 

DIV 
.02 . 4 2 E 6  

UP 

I Test problem 1 

GCR(3) 

GMR(3) 

OMN(3) 

SSOR 

ILU 1000 1.99 263-5 
MILU 661 1.45 .76E-1 
SSOR 1000 2.19 .72E-1 

200 .25 .29E+O 

ILU 1000 2.06 .753-5 
MILU 50 .14 .43E-1 
SSOR . 86 .26 .75E1  

44 .16 .31E+O 
ILU 77 .23 .12E+O 

MILU 220 .60 .14E+O 
SSOR 47 .12 ,953-1 

SSOR 

Table 1 

Test problem 2 

MI 
RS 
MI 
RS 
MI 
RS 
RS 
RS 
RS 
RS 
RS 

Table 2 
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Test problem 3 

96 

607 
1000 
1000 

596 
47 

1000 

558 
47 

1000 

GCR(3) MILU 
SSOR 

.74 .95E6  

.70 .953-6 
2.01 .31E2  MI 
2.22 .23E-2 RS 

UP 
.72 . 99E6  
.12 .52E-2 RS 

2.32 . 2 2 E 3  M I  
UP 

.99 . 9 9 E 6  

.17 .11E-l RS 
2.54 .673-2 MI 

UP SSOR 

ITER I TIMEfs) I RES I FAIL 1 

Table 3 

3 The parallel algorithm 

3.1 Parallel developing environment 

In designing the parallel version of the SBRPK 
method, we assume a distributed memory message 
passing computing environment consisting of P nodes 
logically organized as a ring and numbered from 0 to 
P - 1. Each node is formed by a CPU and a local 
memory. Moreover, a communication network among 
the nodes allows each of them to perform both broad- 
cast and one-to-one send/receive operations. We de- 
velop our algorithm making use of a common concept 
for this computing environment [7]; that is, the con- 
current algorithm is a set of asyncronous processes, 
performing the same task on different data and syn- 
cronizing their activities by communicating messages. 
In particular, we assume that there is a one-to-one 
correspondence between processes and nodes. 

3.2 Data distribution strategy 

As we have already pointed out in Section 2, the 
basic idea to obtain a parallel implementation of the 
SBRPK method is to distribute the subblocks Ct,, 
over the P processes so that each of them solves one 
or more subproblems of the form 

corresponding to every one of the 2L - 1 projections 
related to a single iteration: 

y1 = ( I  - P,)yi-' i = 1, ..., L 

yi = ( I  - PJ)$+' j = L - 1, ..., 1 

Hence, for a fixed projection Pt, each node computes 
a part of the vector y'. Once this concurrent compu- 
tation of the generic projection is terminated, there 
must be a communication phase in which the parts of 
the vector y' computed by all nodes are suitably ex- 
changed in order to  begin the computation of the next 
projection. 
Starting from this idea, our aim is to select a data 
distribution strategy in order to 

0 have a good load balancing 

0 reduce as much as possible the amount of infor- 
mation that each process needs to exchange with 
any other processes. 

With this two objectives in mind, we consider the fol- 
lowing strategy. Suppose d = 1 2  and P = 4. Then, 
distribute the row blocks of the matrix A as follows: 

Cl,i, C2,iI Ca,, - proc. i - 1 , i = 1, ..., 4. 

This is one of the most natural way to distribute data 
among processes. In our case, the row blocks of A 
are logically grouped in 4 groups of 3 contiguous row 
blocks and then each group is allocated to a particu- 
lar process. Moreover, the use of this data distribution 
implicitly leads to the three-blocks partition. The col- 
lection of all subblocks assigned to a process forms a 
local matrix partitioned in 3 blocks. Obviously, each 
local block consists of only one subblock. The de- 
scribed subblock distribution can be represented as a 
map from a global index set to a local one in each 
process: 

A ( l , j )  = ( p  := j - 1,i := l , s  := 1) 

The function X maps the global subblock index pair 
( t ,  j )  into three indices ( p ,  i, s), where p is the process 
holding the block Ct,, ,  and ( t ,  s) is the local index pair 
of the subblock into the process p .  
We now focus our attention on the computation of 
y = ( I  - &)z at the generic iteration. The Figure 
1 shows the parts of vectors yi computed by each 
process and the related communication scheme. The 
first computational step consists of computing the d2- 
dimensional vector y' = ( I  - Pl)yo. According to 
the described data distribution, the process 0 com- 
putes the first 2 * d components of y', the process 1 
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the next 3 t d and so on for the other processes. Af- 
ter this concurrent computation, the process i sends 
the first d components of its local vector to process 
i - 1, i=2,3,4. This communication phase can be re- 
alized efficiently in two steps, in each of them pairs 
of processes communicate in parallel. For the exam- 
ple under consideration, at  the first step we have the 
communicating pairs (0 + l ) ,  (2 + 3),  while in the 
second step we have the communicating pair ( 1  + 2). 
For the other projections, we have an analogous com- 
putational and communication scheme. The only vari- 
ation arises when the projections go back through the 
blocks. In this case, the process i sends a suitable 
group of d components of its vector to  process i + 1,  
i = 1,2 ,3 .  The advantages of this data distribution 
strategy are: 

0 each process has to communicate only with two 
processes, which are the same for each projection; 

0 the vector to be sent/received has lenght d .  

Moreover, this strategy can be easily generalized. Let 
N S  the number of subblocks in each block At and 
suppose that L N S  = N S / P  is an integer. Then, for 
each block At,  the first L N S  subblocks are assigned 
to process 0, the second L N S  subblocks to  process 1 
and so on. The related distribution function is: 

j - 1 .  
L N S '  A ( t ,  j )  = ( p  := - t := i ,  s := j - ( p  . L N S ) )  . 

The use of this strategy leads to a communication 
scheme having the same features as that for d = 12 
and P = 4. Therefore, since the communication is 
independent of the size of problem and the number 
of processes used, the main goal to obtain a scalable 
parallel algorithm is achieved. 

I --t3 
Fig. 1 

Communication scheme for d = 12 and P = 4.  

3.3 Algorithm framework 

Starting from the above discussion, we now illus- 
trate in detail the concurrent algorithm framework for 
the generic process p .  In particular we focus our at- 
tention on a single step B of the SBRPK method. As 
in previuos section, we assume that L N S  = N S / P  is 
an integer; that is, each process has the same number 
of subblocks in each local block At.  Moreover, we as- 
sume that the least squares problems are solved by the 
Cholesky algorithm on the normal equation and we de- 
note with Pt,, the product CEb(Rt,sR;s)-lCi,a where 
Rt,, is the Cholesky factor of the product Ci,,C?*. We 
also assume that each process has already computed 
the Cholesky factors of its local subblocks. To de- 
scribe the communication in the concurrent algorithm 
we make use of the following common notations: 

e send(buf,proc) 
the message stored in buf is sent to the process 
proc 

e receive(buf,proc) 
a message is received from process proc and stored 
in buf 

globalsum(buf, nproc) 
data stored in buffer are individually added across 
nproc processes. The final sum will overwrite bu f 
in each process. 

The concurrent algorithm is displayed in Figure 2. 
The index set St keeps track of the subblocks in the 
local block A l .  The arrays yold and yneW are the 
vector y to be computed and the vector computed 
to  the previous iteration, respectively. The array 
z stores the vector solution. Finally the array r e s  
represents the pseudo-residual at  the current itera- 
tion. The algorithm starts with the computation of 
y = ( I  - &)ti. This is done by two iterative cycles, 
the first one driving the forward sweep through the 
blocks, the other one the back sweep. Communica- 
tion occurring between two projections is realized by 
a pair of send/receive operations according to the de- 
scribed communication scheme. The second phase of 
the algorithm consists of updating the vectors y, z 
and the residual. We observe the presence of two oth- 
ers communication operations. More precisely, since 
each process holds a part of this vectors, it can com- 
putes a partial sum of the scalar products cr and ron. 
However, these products are to  be held entirely by all 
processes in order to updat,e the mentioned vectors. 
Then it is necessary to perform a global sum of these 
quantities over all processes. Moreover, we point out 
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that each process independently computes a different 
part of the vector solution z. 

St := (3 : 1 5 3 5 L N S ) ,  1 5 t 5 L ; 

for t = 1, L do begin 
init := (i - 1)d ; start := init 

for al l  s E S do b e g i n  

start := start  + 3 ( s  - l )d  ; end := start + 3d 
ynew[start + 1 : end] := ( I  - Pt,s)ynem[start + 1 : end] 

endfor 

i f  t c L then 
send(y"""[init + 1 : init + d ] ,  p - 1) 
receive(ynew[end + 1 : end + d],p + 1) 

else 

receive(ynew[init - d + 1 : init],p - 1) 
send(yneur[end - d + 1 : end],p + 1) 

endif 
endfor  

for t = L - 1 , 1 ,  -1 do b e g i n  

init := (i - 1)d ; start  := init 

for all s E S do b e g i n  

start  := start + 3(s - l ) d  ; end := start + 3d 
ynew[start + 1 : end] := (I - Pt,s)ynew[start  + 1 : end] 

endfor 

i f  t > 1 then 
receive(ynew[init - d + 1 : init] ,  p - 1) 
send(y"'"[end - d + 1 : end],p + 1) 

e n d i f  

endfor 

i l  = 1 ; i 2 =  L N S * 3 d  

ynew[il : i2] := ydd[il : i2] - ynew[il : i2] 

(I := (ynew[il : i21, y0ld[il : i2]) 

globalsum(cu, P) 
Q := ro/(I  

z[il : i2] := z[il : i2] + a y 0 l d [ i l  : ia] 

res[il : i2] := res[iI : i2] - CY * ynew[il : i2] 

Ton := (res[il : i2], res[il : i21) 

g lobalsum(ron,  P )  

yneW[il : i2] := res[il : i2] + p * yotd[il : i2] 

y0ld[il : i2] := ynew[il : i21 

T O  := ron 

:= ron/ro 

Fig. 2 
Concurrent SBRPK algorithm framework 

4 Parallel efficiency evaluation 

4.1 Testing environment 

To verify the parallel efficiency of our concurrent al- 
gorithm we tested it on two MIMD distributed mem- 
ory machines: an Intel iPSC/860 at the Department 
of Mathematics and Applications of the University of 
Naples and the Intel Touchstone DELTA Sys tem a t  
the California Institute of Technology ( Caltech). 
The Intel iPSC/860 [13] is an hypercube multiproces- 
sors with 16 nodes based on the i860 microprocessor . 
Each node has 16 Mbytes of local memory and is rated 
to a peak performance of 60 Mflops in double precision 
arithmetic. A direct-connect communication system 
provides the data pathway between all the nodes of 
the machine. 
The Intel Touchstone DELTA System is a distributed 
memory machine with 512 computing nodes based on 
the i860 microprocessor and connected by a 2D-mesh. 
Each node has the same features as the Intel iPSC/860 
nodes. 
The parallel SBRPK algorithm is implemented in For- 
tran 77 using the Intel NX communication system 
which provides all the basic facilities to run parallel 
applications [13]. We use the SPMD parallel program- 
ming model in which a single instance of the same 
program runs on each node. To get timing we use the 
second() routine of the Fortran library. 

4.2 Experimental Results 

The results we show refer to  tests performed on the 
block tridiagonal matrix arising from the test prob- 
lem 1, with d ranging from 48 to 288. To evaluate 
the parallel performance of the algorithm we use the 
following classical parameter 

where x ( d )  is the elapsed execution time on i nodes 
for a d size problem. 
The efficiency values realized on the Intel iPSC/860, 
with P = 4,8 and on the DELTA System, with 
P = 8,16,32, for d = 48,96,144,192,240,288, are 
plotted in Figure 3 and 4 respectively. We observe 
that this values never drop below 0.5. Moreover, high 
efficiency values (greater than 0.8) are obtained for 
d 2 192 whatever number of nodes used. The only 
exception is represented by the P = 32 case. We ob- 
serve an efficiency drop for d = 244. This is due to  
the fact that for d = 244 the number of subblocks 
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in each At is not a multiple of the number of nodes; 
consequently, the data distribution in our algorithm 
doesn't allow to obtain a good load balancing while 
performing all the projections. However, the efficiency 
value obtained can be still considered a good one and 
we can state that our data distribution strategy allows 
a good parallel efficiency even if the number of nodes 
increases for medium size problem. 
For a better comprehension of how the algorithm can 
reach a good efficiency, we also report in Table 4 the 
values of the total execution time and of the commu- 
nication time, in seconds, on the Delta System for the 
selected problem size d .  Looking a t  the T,,, columns 
in the table, we note that the communication time 
increases very slowly when the problem size grows. 
An analogous behavior may be observed for the com- 
munication time for a fixed problem size variyng the 
number of nodes; that is, this values are almost the 
same. We again remark that in the P = 32 case this 
is no longer true only for d = 144,240 for the rea- 
sons previously described. In summary, the results 
obtained shows that the communication overhead is 
independent of both the problem size and the number 
of nodes used, confirming our theoretically considera- 
tion about the scalability of the algorithm. 

aO5- 

0 4 -  

0 3 -  

0 2 -  

0 1 -  

4.3 Conclusions and perspectives .- P-8 

P-16 

. P-32 
In this paper we presented a parallel iterative al- 

gorithm for the solution of large sparse nonsymmetric 
systems of linear equations. The algorithm is based 
on a row-projection method deriving from the block 
Kaczmarz procedure. This method transforms a non- 
symmetric linear system with arbitrary eingenvalues 
distribution into a symmetric one with eigenvalues re- 
stricted to [0, 1). 
Numerical experiments on block tridiagonal systems 
showed that the SBRPK method has a robustness 
unmatched by other iterative nonsymmetric solvers, 
according with the results presented in other papers 
related to  this method. Moreover, a simple permu- 
tation of the rows of the matrix made the SBRPK 
method suitable for implementation on multiproces- 
sors. In particular, we proposed a parallel version of 
the method for MIMD distributed memory machines. 
The results obtained by implementing the parallel al- 
gorithm on two of these machines showed that a suit- 
able data distribution strategy leads to  a communi- 
cation overhead that doesn't depend on the number 
of nodes used. This, in turn, allows to  obtain good 
performances. 

8 0 . 5  ":, 
-- P-4 ::I P-8 

0.1 

o.2 t 
Fig. 3 

Efficiency values of the concurrent SBRPK algorithm 
on the Intel iPSC/860 

Efficiency values of the concurrent SBRPK algorithm 
on the Intel Touchstone Delta System 

I number of nodes I 

Table 4 
Efficiency, total execution time and communication time 
values of the concurrent SBRPK algorithm on the Intel 

Touchstone Delta System for P = 1,8,16 
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number of nodes 

144 
192 

178 9.7 5.5 0.57 
323 12 1.7 0.81 11 

288 747 

Table 5 
Efficiency, total execution time and communication time 
values of the concurrent SBRPK algorithm on the Intel 

Touchstone Delta System for P = 1 , 3 2  

The main issue related to  the data distribution 
used is a poor load balancing when the number of 
subblocks in each larger blocks is not a multiple of 
the number of nodes. Since our goal is to realize 
an efficient black-box parallel row-projection software, 
future work needs to develop suitable strategies for 
a better load balancing in the case previously men- 
tioned. 
Finally, the SBRPK method can be efficiently applied 
to any system that can be reordered into a banded sys- 
tem. Hence, it may be interesting to study row parti- 
tionings for general sparse systems leading to matrix 
suitable for the row projection method. 
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