
A Parallel Row Projection Solver
for Large Sparse Linear Systems

M. D’Apuzzo and M. Lapegna

Dipartimento di Matematica e Applicazioni
Universiti di Napoli “Federico II”

Na.poli, Italy, 80126

Abstract

In this paper we present a parallel iterative solver
for large and sparse nonsymmetric linear systems.
The solver is based on a row-projection algorithm, de-
rived from the symmetrized block version of the Kacz-
marz method with Conjugate Gradient acceleration. A
comparison with some h‘rylov subspace methods shows
the remarkable robustness of this algorithm when ap-
plied to systems with eingevalues arbitrarily distributed
in the complex plane. Th.e parallel version of the al-
gorithm was developed for MIMD distributed memory
m.achines and it is based on a row partitioning ap-
proach which allows to compute each iteration as a si-
multaneous set of independent least squares problems.
Moreover, we propose a data distribution strategy lead-
ing to a scalable communication scheme. The algo-
rithm has been tested both on a system Intel iPSC/SSO
and on the Intel Touchstone DELTA System, running
the Intel N X message passing environment.

1 Introduction

The solution of large and sparse linear systems is
often the computational kernel of many scientific and
engineering applications. Therefore, the research in-
terest in this area has recently focused on the devel-
opment of efficient parallel solvers. This requires both
the investigation of methods with parallel properties
and the study of suitable matrix block partitioning
and data distribution strategies in order to obtain scal-
able parallel algorithms.
In this paper we describe and test a parallel row-
projection algorithm for solving linear systems

Ax = b, (1)

where A is a real nonsingular N x N matrix, on dis-
tributed memory multiprocessors. We assume that the

rows of A are partitioned into L blocks

A = [AT, AT, ..., ,

and that the vector b is partitioned conformally, b =
[bK1. b;!, ..., b f “ . As the name suggests, a row-
projection (RP) method is any iterative method which
involves the projections of a vector onto the range of
AT, R(AT) , t = 1 , ..., L . Contrary to other iterative
solvers, R P methods do not place any restriction on
the eigenvalue distribution of A and can be also ap-
plied to nonsymmetric linear systems with indefinite
symmetric parts. However, slow convergence has pre-
vented their widespread use. Further, there has not
been a suitable theory or method on how to select
row partitionings for practical problems.
RP methods have been recently applied t,o non-
selfadjoint elliptic PDE’s in two and three dimensions,
demonstrating both their numerical robustness and
potential parallelism [I , 2, 91.
The RP algorithm examined in this paper is based
on the general block version of the Kaczmarz method.
Its iteration matrix is the product of orthogonal pro-
jectors. In particular, we consider symmetrizing the
iteration matrix by following a forward sweep through
the rows with a backward sweep, so that the Conju-
gate Gradient acceleration can be applied.
The computationally demanding aspect of the Kacz-
marz method is the computation, in each iteration, of
an orthogonal projection and hence the solution of a
linear least squares problem. However, if it possible to
permute the rows of the matrix A so as to have sepa-
rate subblocks in each larger block At , each projection
can be computed as a set, of independent linear least
squares problems of smaller size. These independent
subproblems can be solved simultaneously.
In Section 2 we outline the method and its convergence
properties. Moreover, we show some results obtained
by a comparison of the method with other existing

1066-6192/95 $4.00 0 1995 IEEE
432

ones, such as CG-like methods. In Section 3 we de-
scribe the parallel algorithm. In particular, we pro-
pose a data distribution strategy that allows to min-
imize the communication needed at the end of each
iteration. Finally, in Section 4 we present a parallel
evaluation of the algorithm by implemeting it on two
distributed memory machines. All tests are performed
on block tridiagonal systems.

2 Description of the method

Let the system (1) be partitioned as in (2). We sup-
pose that all At have equal size, that is At E ? R D x N ,
with D = N/L. The row projection algorithm exam-
ined here derives from the block version of the Kacz-
marz method [3, 51:

where f l k is a D x D relaxation matrix. For the L =
N case the method (3) becomes the iterative scheme
initially proposed by S. Kaczmarz in [8]. In [5] it is
shown that a sufficient condition for the convergence
of the sequence {dk)} to the solution of (1) is:

where ID is the D x D identity matrix, A t denotes the
Moore Penrose inverse of At and 1) . 1 1 stands for the
euclidean norm. A strong way of satisfying the above
sufficient condition and of obtaining a stationary it-
erative procedure is by choosing S l k = AI(^@&^)-' ,
V k 2 0. With this choice, and by introducing an iter-
ation parameter w , we have the following method

BRPK (Block Row Projection Kaczmarz) method

do) arbitrary

#+I) = + wA:(k)(b[t(k)] - At(#)

k = 0 , 1 , . . . ; t (k) = k(modL) + 1

If we now consider a forward sweep through the blocks
At starting from A t , we can write the BRPK method
in the following classical form

t (k + *) = B (w) z (k) + R(w)b , k 2 0 (4)

where

B (~) = n;=, Mt , ivt = I - w ~ r , pt = A , + A ~

R (w) = w[TiA;, . . . , TLA;], T j = M t , TL = I
We explicity observe that Pt is the orthogonal projec-
tor onto R(AT) .
A fundamental result for the convergence of the iter-
ation (4) is the following:

Theorem 2.1 :
The BRPK method converges t o the solution of (1) i f
and only if 0 < w < 2.

The proof of this theorem is based on the classic the-
ory of linear stationary iterative processes [4, 61.
The theoretical robustness of the BRPK method is
remarkable and convergence is assured, under the hy-
pothesis of the above theorem, even when A is singular
or rectangular. However, the convergence speed is de-
termined by the spectral radius of B (w) , which in turn
depends on the angles between the subspaces JZ/(At),
the nullspace of A t . This angles can be small, with
a correspondingly slow rate of convergence. For this
reason we consider a symmetrization process for the
matrix B(w) by following a forward sweep through the
blocks with a backward one. In this way the BRPK
method becomes:

S B R P K (Symmetric BRPK) method

where

&(w) = (I -wPl) ~..(I-~PL)'((I-~PL-~)...(I-WP~)

The i th block column of T (w) , T ' (w) , is given by:

t = 1 t = i t = L

where the first product is I when i = 1 and the third
product should be interpreted as Z when i = L.
For the SBRPK method the convergence theorem 2.1
still holds. Moreover, when 0 < w < 2 the matrix
(I - Q (w)) is positive definite and so it is possible to use
the Conjugate Gradient (CG) method as acceleration
procedure for the system

(I - &(U)) . = T (w) b (5)

433

One of the main implementation issue is the choice of
w in (5). In [9] it was shown that the “optimal” value
for the relaxation parameter w is 1 when the matrix
A is partitioned into two block rows, i.e., L = 2. Al-
though this is no longer true for L > 2, the choice
w = 1 is still a reasonable one for many reasons, as
described in [l]. Therefore, for the remainder of the
paper w =. 1 will be used. This choice and the fact
that Pt is a projector lead to a simplification of the
expressions of the matrix Q = Q(1) and T = T(1):

Q = (I - Pi) . . . (I - PL)(I - PL - 1) . . . (I - Pi)

In conclusion, the final scheme of the algorithm we
consider is the following:

SBRPK with CG acceleration

B. Conjugate Gradient iterations

C. if the convergence test is not satisfied,
set k = k + 1 and go to B.

which will be called simply SBRPK- in the sequel.

2.1 Row partitioning strategies for paral-
lelism

On each iteration the SBRPK method requires the
computation of the product

and hence the solution of 2L - 1 linear least squares
problems of the form

w = min IIu - ATz(12. (6)

Consequently, it is important to select a row parti-
tioning of A in order to have least squares problems
efficiently computable. The basic idea to achieve such
a goal is to partition tha matrix A so that each block
A: consists of subblocks C:,, that are orthogonal to
each other: then, the corresponding projection Pt can
be computed as a simultaneous set of smaller least
squares subproblems. This subproblems are indepen-
dent and can then be solved in parallel.
In particular, we consider the case when the ma-
trix A is a d x d block tridiagonal matrix, that is,
when A = Iridiag[X, Di, Ei] with X I Di, Ei E !Rdxd,
i = 1, ..., d . For such a matrix a suitable row permuta-
tion allows a block partition with separate subblocks
in each larger block At. To illustrate this idea, sup-
pose d = 12 and multiply A by a suitable permutation
matrix in order to obtain the following three-blocks
partition:

A =

= [Cl,lT, ..., CT,,IC&, . . . , ~ ~ ~ l ~ ~ l , . . . , ~ ~ 4 1 T =

= [ATIArIA?JT (7)
From (7) we observe that A: , i = 1,2,3, has 4 dis-

joint subblocks. Then, the least squares problem cor-
responding to A: can be decomposed into 4 smaller
subproblems

which are independent and can be solved in parallel.
We make the following two remarks. First, the row
partitioning should be chosen not only to allow par-
allelism in the computations, but also to yield sub-
problems which can be easily solved, require at most
O (N) additional storage to be solved and are well con-
ditioned. Moreover, another criterion for a row par-
titioning is that the spectrum of Q is suitable for the
CG method. Since it may proved that 1/L eigenval-
ues of (I - Q) are exactly 1 [l], the latter goal can be
achieved by keeping the number of blocks L as small
as possible.

434

Although these goals are conflicting, there are impor-
tant classes of problems for which it is possible to flexi-
bly satisfy all of the criteria previously described. Lin-
ear systems drawn for two dimensional elliptic partial
differential equations are one such class [I, 2, 91
The second remark is that (7) is not the only partition
that gives disjoint blocks in each larger block A t . For
instance, we can consider a two-blocks partition,

A = [AT, ATIT ,

by putting the row blocks [Ei , D,,X], i =
1 , 2 , 5 , 6 , 9 , 1 0 into A1 and the remaining row blocks
into A S . In this way, both blocks have 3 separate sub-
blocks, each consisting of two row blocks:

where the parentheses indicate the separation between
subblocks. Other examples of possible partition and
a their comparison are shown in [2]. We remark that
there is a corresponding loss of possible concurrency
when the size of subproblems is increased. By com-
paring the partition (7) and (8), we observe that for
the three-blocks partition the maximun concurrency
in solving (6) is d/3, while for the partition (7) is d/4.
In this paper, we shall assume that the SBRPK
method is applied to matrices partitioned as in (7).

2.2 A comparison with other methods

In this subsection we present some results about
a comparison of the SBRPK method with other it-
erative solvers. In particular we consider three CG-
like methods from the NSPCG package [lo]: the Gen-
eralized Conjugate Residual (GCR(k)), the General-
ized Minimum Residual (GMR(k)) and the Orthomin
(OMN(k)) [l l , 121. These methods are implemented
in a truncated and/or restarted version; It. represents
the number of search directions to be stored. The
package NSPCG also provide an option for precondi-
tioning. We analyze the ILU(s, e), MILU(s, a), and
SSOR((r) preconditioners.
It well known that both OMN(k) and CGR(k) con-
verge if the symmetric part of A is positive definite.
GMR(k) is known to converge for any nonsingular ma-
trix if a sufficiently large value of k is used; however,
an increase in k leads an increase in the memory re-
quirements and in the computational work load. Fi-
nally, even with a reasonable value of k , the residual
of GMR(k) can fail to decrease to zero.
We restrict out tests to the case when the matrix A

is obtained from the application of 5-point central dif-
ferences operators to two-dimensional elliptic partial
differential equations with Dirichlet boundary condi-
tions on the unit square. An uniform grid of size
h = l / (d + 1) is used for both the x and y coordi-
nates so that A is of order d 2 . Moreover, the matrix
A is block tridiagonal, with each diagonal block being
a tridiagonal matrix of order d and each off-diagonal
blocks being a diagonal matrix. The solution is as-
sumed known in order to compute the right-hand side
function f . The test problem we consider are:

1 - uxx - [(I + Z Y) ~ ,] , - P[cos(x)uz + (e-x+ x)uy]
+3u = f , p = 10000

2 - uXX - ~ y y - XU, + 2OOyuy - 30021 = f

3

with the solution u (t , y) = 2 + y.
These problems represent a variety of eigenvalue dis-
tributions for the matrix A . In particular, problems
1 and 3 both have eigenvalues in the right half plane,
while the matrix of problem 2 has eigenvalues on both
sides of the imaginary axis. Moreover, the symmetric
part of A is indefinite for all problems. These equa-
tions are also used in [2, 91, where a version of SBRPK
based on a two-blocks partition is tested and compared
with other methods.
We solve the least squares problems arising in the
SBRPK method by using the Cholesky factorization
on the normal equations. This choice follows from
many considerations. First of all, since the least
squares problems have to be solved many times, with
different right-hand sides, one can perform the fac-
torization once and use it for all successive itera-
tions. Moreover, for the test problems used the ma-
trix CCT, for all the subblocks Ct,j , is pentadiagonal.
Its Cholesky factor consists of 3 diagonals; hence, the
Cholesky factors for all the subblocks can be stored
using only 3 additional vectors of lenght d2 . The only
drawbacks related to his approach are those usually
associated with the normal equations. However, it can
be show that the condition number of C can never be
worse than that of A . In particular, for all our test
problems the subprolems are well-conditioned, as de-
scribed in [2]. Therefore the choice of solving the nor-
mal equations is a reasonable one. We use the DPB-
TRF and DPBTRS routines from Lapack.

In all experiments we stop the iterations whenever

- uEI - uyy + 1000exY(u, - uY) = f

[/ r q l < ~ ~ r q ,

where (I r (k) () = Jlb - A d k) ([is the residual of the orig-
inal system. Moreover, we use k = 3 for all three

435

CG-like methods to match the three vectors of storage
needed by the SBRPK method. For the precondition-
ers ILU(s, a), MILU(s, a), and SSOR(a) we consider
s = 0. The parameter s represents the fill-in level in
the incomplete factorization. The parameter Q gov-
erns the quantity added to the main diagonal elements
during the factorization, and the relaxation parame-
ter for the SSOR preconditioner. We use a = 0 in the
first case and 1 in the latter.
Finally the NSPCG package also allows to monitor the
ratio \ ~ d k) \ ~ / ~ ~ r (o) ~ ~ , which will be denoted as RES in
the following, and the runs are automatically stopped
if the decrease of this value is less than after a
prefixed number of iterations. This condition is la-
beled as a RS (residual stall) failure.
We carried out several numerical experiences on a HP
900 series 700 workstation using Fortran 77. Here,
just a summary of experiments for each test problem
with d = 36 is shown in Tables 1-3. An upper limit
of 1000 iterations is imposed on each run. The last
column in each table is marked with an error code
standing for a failure. If the preconditioner cannot be
formed, an error code of UP (unstable preconditioner)
is used. Experiments that exceed the maximum num-
ber of iterations are marked with MI. Finally, if RES
increases very quickly for many iterations the experi-
ment is stopped and marked with the label DIV.
The results obtained show that SBRPK succeedes in
all cases, while for the test problem 2 every combina-
tion of method and preconditioner fails to converge.
This confirms the fact that the SBRPK method has a
robustness unmatched by the other solvers.
The unpreconditioned NSPCG methods converge only
for the problem 3, but are slower than SBRPK and
need more iterations. The preconditioned method,
however, can outperform the SBRPK method when
they work. This arises for test problem 1 where the
three CG-like methods with the MILU preconditioner
require only one iteration to converge. This shows
that for such a problem MILU provides a highly ac-
curate approximation of the matrix A-l so that only
one iteration is needed to refine the solution. ILU and
SSOR preconditioned methods never succeed, either
due to a stalling residual or to unstability in forming
the preconditioner.
We remark that, although a default value of Q is used
in our experiments, the NSPCG package allows the
user to find suitable values that prevent the factor-
ization failures. Moreover, if some knowledge of the
system being solved is available, it can be more effi-
cient to use adaptive procedures for finding an optimal
acceleration parameter for the SSOR preconditioner.

ITER
22 1

1000

3

914

1

1000

1

Furthemore, the value of k that we used may be too
small, mainly for GMR(k). However, in [2, 91 it has
been proved experimentally that increasing k up to 20
does not greatly improve the performance of GMR(k)
on these test problems.
In summary, the tests presented point out the follow-
ing three considerations. The SBRPK method is more
reliable than the other solvers, is generally faster than
the unpreconditioned methods, and is slower than the
preconditioned methods when they succeed.

TIME(s) RES FAIL
1.55 .97E-6
1.07 . 9 0 E 3 MI

DIV
.01 . 4 2 6 6

UP
1.10 . 9 9 6 3 RS

DIV
.01 . 4 2 6 6

UP
1.60 .12E-4 MI

DIV
.02 . 4 2 E 6

UP

I Test problem 1

GCR(3)

GMR(3)

OMN(3)

SSOR

ILU 1000 1.99 263-5
MILU 661 1.45 .76E-1
SSOR 1000 2.19 .72E-1

200 .25 .29E+O

ILU 1000 2.06 .753-5
MILU 50 .14 .43E-1
SSOR . 86 .26 .75E1

44 .16 .31E+O
ILU 77 .23 .12E+O

MILU 220 .60 .14E+O
SSOR 47 .12 ,953-1

SSOR

Table 1

Test problem 2

MI
RS
MI
RS
MI
RS
RS
RS
RS
RS
RS

Table 2

436

Test problem 3

96

607
1000
1000

596
47

1000

558
47

1000

GCR(3) MILU
SSOR

.74 .95E6

.70 .953-6
2.01 .31E2 MI
2.22 .23E-2 RS

UP
.72 . 99E6
.12 .52E-2 RS

2.32 . 2 2 E 3 M I
UP

.99 . 9 9 E 6

.17 .11E-l RS
2.54 .673-2 MI

UP SSOR

ITER I TIMEfs) I RES I FAIL 1

Table 3

3 The parallel algorithm

3.1 Parallel developing environment

In designing the parallel version of the SBRPK
method, we assume a distributed memory message
passing computing environment consisting of P nodes
logically organized as a ring and numbered from 0 to
P - 1. Each node is formed by a CPU and a local
memory. Moreover, a communication network among
the nodes allows each of them to perform both broad-
cast and one-to-one send/receive operations. We de-
velop our algorithm making use of a common concept
for this computing environment [7]; that is, the con-
current algorithm is a set of asyncronous processes,
performing the same task on different data and syn-
cronizing their activities by communicating messages.
In particular, we assume that there is a one-to-one
correspondence between processes and nodes.

3.2 Data distribution strategy

As we have already pointed out in Section 2, the
basic idea to obtain a parallel implementation of the
SBRPK method is to distribute the subblocks Ct,,
over the P processes so that each of them solves one
or more subproblems of the form

corresponding to every one of the 2L - 1 projections
related to a single iteration:

y1 = (I - P,)yi-' i = 1, ..., L

yi = (I - PJ)$+' j = L - 1, ..., 1

Hence, for a fixed projection Pt, each node computes
a part of the vector y'. Once this concurrent compu-
tation of the generic projection is terminated, there
must be a communication phase in which the parts of
the vector y' computed by all nodes are suitably ex-
changed in order to begin the computation of the next
projection.
Starting from this idea, our aim is to select a data
distribution strategy in order to

0 have a good load balancing

0 reduce as much as possible the amount of infor-
mation that each process needs to exchange with
any other processes.

With this two objectives in mind, we consider the fol-
lowing strategy. Suppose d = 1 2 and P = 4. Then,
distribute the row blocks of the matrix A as follows:

Cl,i, C2,iI Ca,, - proc. i - 1 , i = 1, ..., 4.

This is one of the most natural way to distribute data
among processes. In our case, the row blocks of A
are logically grouped in 4 groups of 3 contiguous row
blocks and then each group is allocated to a particu-
lar process. Moreover, the use of this data distribution
implicitly leads to the three-blocks partition. The col-
lection of all subblocks assigned to a process forms a
local matrix partitioned in 3 blocks. Obviously, each
local block consists of only one subblock. The de-
scribed subblock distribution can be represented as a
map from a global index set to a local one in each
process:

A (l , j) = (p := j - 1,i := l , s := 1)

The function X maps the global subblock index pair
(t , j) into three indices (p , i, s), where p is the process
holding the block Ct,, , and (t , s) is the local index pair
of the subblock into the process p .
We now focus our attention on the computation of
y = (I - &)z at the generic iteration. The Figure
1 shows the parts of vectors yi computed by each
process and the related communication scheme. The
first computational step consists of computing the d2-
dimensional vector y' = (I - Pl)yo. According to
the described data distribution, the process 0 com-
putes the first 2 * d components of y', the process 1

43 7

the next 3 t d and so on for the other processes. Af-
ter this concurrent computation, the process i sends
the first d components of its local vector to process
i - 1, i=2,3,4. This communication phase can be re-
alized efficiently in two steps, in each of them pairs
of processes communicate in parallel. For the exam-
ple under consideration, at the first step we have the
communicating pairs (0 + l) , (2 + 3), while in the
second step we have the communicating pair (1 + 2).
For the other projections, we have an analogous com-
putational and communication scheme. The only vari-
ation arises when the projections go back through the
blocks. In this case, the process i sends a suitable
group of d components of its vector to process i + 1,
i = 1,2 ,3 . The advantages of this data distribution
strategy are:

0 each process has to communicate only with two
processes, which are the same for each projection;

0 the vector to be sent/received has lenght d .

Moreover, this strategy can be easily generalized. Let
N S the number of subblocks in each block At and
suppose that L N S = N S / P is an integer. Then, for
each block At, the first L N S subblocks are assigned
to process 0, the second L N S subblocks to process 1
and so on. The related distribution function is:

j - 1 .
L N S ' A (t , j) = (p := - t := i , s := j - (p . L N S)) .

The use of this strategy leads to a communication
scheme having the same features as that for d = 12
and P = 4. Therefore, since the communication is
independent of the size of problem and the number
of processes used, the main goal to obtain a scalable
parallel algorithm is achieved.

I --t3
Fig. 1

Communication scheme for d = 12 and P = 4.

3.3 Algorithm framework

Starting from the above discussion, we now illus-
trate in detail the concurrent algorithm framework for
the generic process p . In particular we focus our at-
tention on a single step B of the SBRPK method. As
in previuos section, we assume that L N S = N S / P is
an integer; that is, each process has the same number
of subblocks in each local block At. Moreover, we as-
sume that the least squares problems are solved by the
Cholesky algorithm on the normal equation and we de-
note with Pt,, the product CEb(Rt,sR;s)-lCi,a where
Rt,, is the Cholesky factor of the product Ci,,C?*. We
also assume that each process has already computed
the Cholesky factors of its local subblocks. To de-
scribe the communication in the concurrent algorithm
we make use of the following common notations:

e send(buf,proc)
the message stored in buf is sent to the process
proc

e receive(buf,proc)
a message is received from process proc and stored
in buf

globalsum(buf, nproc)
data stored in buffer are individually added across
nproc processes. The final sum will overwrite bu f
in each process.

The concurrent algorithm is displayed in Figure 2.
The index set St keeps track of the subblocks in the
local block A l . The arrays yold and yneW are the
vector y to be computed and the vector computed
to the previous iteration, respectively. The array
z stores the vector solution. Finally the array r e s
represents the pseudo-residual at the current itera-
tion. The algorithm starts with the computation of
y = (I - &)ti. This is done by two iterative cycles,
the first one driving the forward sweep through the
blocks, the other one the back sweep. Communica-
tion occurring between two projections is realized by
a pair of send/receive operations according to the de-
scribed communication scheme. The second phase of
the algorithm consists of updating the vectors y, z
and the residual. We observe the presence of two oth-
ers communication operations. More precisely, since
each process holds a part of this vectors, it can com-
putes a partial sum of the scalar products cr and ron.
However, these products are to be held entirely by all
processes in order to updat,e the mentioned vectors.
Then it is necessary to perform a global sum of these
quantities over all processes. Moreover, we point out

438

that each process independently computes a different
part of the vector solution z.

St := (3 : 1 5 3 5 L N S) , 1 5 t 5 L ;

for t = 1, L do begin
init := (i - 1)d ; start := init

for al l s E S do b e g i n

start := start + 3 (s - l)d ; end := start + 3d
ynew[start + 1 : end] := (I - Pt,s)ynem[start + 1 : end]

endfor

i f t c L then
send(y"""[init + 1 : init + d] , p - 1)
receive(ynew[end + 1 : end + d],p + 1)

else

receive(ynew[init - d + 1 : init],p - 1)
send(yneur[end - d + 1 : end],p + 1)

endif
endfor

for t = L - 1 , 1 , -1 do b e g i n

init := (i - 1)d ; start := init

for all s E S do b e g i n

start := start + 3(s - l) d ; end := start + 3d
ynew[start + 1 : end] := (I - Pt,s)ynew[start + 1 : end]

endfor

i f t > 1 then
receive(ynew[init - d + 1 : init] , p - 1)
send(y"'"[end - d + 1 : end],p + 1)

e n d i f

endfor

i l = 1 ; i 2 = L N S * 3 d

ynew[il : i2] := ydd[il : i2] - ynew[il : i2]

(I := (ynew[il : i21, y0ld[il : i2])

globalsum(cu, P)
Q := ro/(I

z[il : i2] := z[il : i2] + a y 0 l d [i l : ia]

res[il : i2] := res[iI : i2] - CY * ynew[il : i2]

Ton := (res[il : i2], res[il : i21)

g lobalsum(ron, P)

yneW[il : i2] := res[il : i2] + p * yotd[il : i2]

y0ld[il : i2] := ynew[il : i21

T O := ron

:= ron/ro

Fig. 2
Concurrent SBRPK algorithm framework

4 Parallel efficiency evaluation

4.1 Testing environment

To verify the parallel efficiency of our concurrent al-
gorithm we tested it on two MIMD distributed mem-
ory machines: an Intel iPSC/860 at the Department
of Mathematics and Applications of the University of
Naples and the Intel Touchstone DELTA Sys tem a t
the California Institute of Technology (Caltech).
The Intel iPSC/860 [13] is an hypercube multiproces-
sors with 16 nodes based on the i860 microprocessor .
Each node has 16 Mbytes of local memory and is rated
to a peak performance of 60 Mflops in double precision
arithmetic. A direct-connect communication system
provides the data pathway between all the nodes of
the machine.
The Intel Touchstone DELTA System is a distributed
memory machine with 512 computing nodes based on
the i860 microprocessor and connected by a 2D-mesh.
Each node has the same features as the Intel iPSC/860
nodes.
The parallel SBRPK algorithm is implemented in For-
tran 77 using the Intel NX communication system
which provides all the basic facilities to run parallel
applications [13]. We use the SPMD parallel program-
ming model in which a single instance of the same
program runs on each node. To get timing we use the
second() routine of the Fortran library.

4.2 Experimental Results

The results we show refer to tests performed on the
block tridiagonal matrix arising from the test prob-
lem 1, with d ranging from 48 to 288. To evaluate
the parallel performance of the algorithm we use the
following classical parameter

where x (d) is the elapsed execution time on i nodes
for a d size problem.
The efficiency values realized on the Intel iPSC/860,
with P = 4,8 and on the DELTA System, with
P = 8,16,32, for d = 48,96,144,192,240,288, are
plotted in Figure 3 and 4 respectively. We observe
that this values never drop below 0.5. Moreover, high
efficiency values (greater than 0.8) are obtained for
d 2 192 whatever number of nodes used. The only
exception is represented by the P = 32 case. We ob-
serve an efficiency drop for d = 244. This is due to
the fact that for d = 244 the number of subblocks

439

in each At is not a multiple of the number of nodes;
consequently, the data distribution in our algorithm
doesn't allow to obtain a good load balancing while
performing all the projections. However, the efficiency
value obtained can be still considered a good one and
we can state that our data distribution strategy allows
a good parallel efficiency even if the number of nodes
increases for medium size problem.
For a better comprehension of how the algorithm can
reach a good efficiency, we also report in Table 4 the
values of the total execution time and of the commu-
nication time, in seconds, on the Delta System for the
selected problem size d . Looking a t the T,,, columns
in the table, we note that the communication time
increases very slowly when the problem size grows.
An analogous behavior may be observed for the com-
munication time for a fixed problem size variyng the
number of nodes; that is, this values are almost the
same. We again remark that in the P = 32 case this
is no longer true only for d = 144,240 for the rea-
sons previously described. In summary, the results
obtained shows that the communication overhead is
independent of both the problem size and the number
of nodes used, confirming our theoretically considera-
tion about the scalability of the algorithm.

aO5-

0 4 -

0 3 -

0 2 -

0 1 -

4.3 Conclusions and perspectives .- P-8

P-16

. P-32
In this paper we presented a parallel iterative al-

gorithm for the solution of large sparse nonsymmetric
systems of linear equations. The algorithm is based
on a row-projection method deriving from the block
Kaczmarz procedure. This method transforms a non-
symmetric linear system with arbitrary eingenvalues
distribution into a symmetric one with eigenvalues re-
stricted to [0, 1).
Numerical experiments on block tridiagonal systems
showed that the SBRPK method has a robustness
unmatched by other iterative nonsymmetric solvers,
according with the results presented in other papers
related to this method. Moreover, a simple permu-
tation of the rows of the matrix made the SBRPK
method suitable for implementation on multiproces-
sors. In particular, we proposed a parallel version of
the method for MIMD distributed memory machines.
The results obtained by implementing the parallel al-
gorithm on two of these machines showed that a suit-
able data distribution strategy leads to a communi-
cation overhead that doesn't depend on the number
of nodes used. This, in turn, allows to obtain good
performances.

8 0 . 5 ":,
-- P-4 ::I P-8

0.1

o.2 t
Fig. 3

Efficiency values of the concurrent SBRPK algorithm
on the Intel iPSC/860

Efficiency values of the concurrent SBRPK algorithm
on the Intel Touchstone Delta System

I number of nodes I

Table 4
Efficiency, total execution time and communication time
values of the concurrent SBRPK algorithm on the Intel

Touchstone Delta System for P = 1,8,16

440

number of nodes

144
192

178 9.7 5.5 0.57
323 12 1.7 0.81 11

288 747

Table 5
Efficiency, total execution time and communication time
values of the concurrent SBRPK algorithm on the Intel

Touchstone Delta System for P = 1 , 3 2

The main issue related to the data distribution
used is a poor load balancing when the number of
subblocks in each larger blocks is not a multiple of
the number of nodes. Since our goal is to realize
an efficient black-box parallel row-projection software,
future work needs to develop suitable strategies for
a better load balancing in the case previously men-
tioned.
Finally, the SBRPK method can be efficiently applied
to any system that can be reordered into a banded sys-
tem. Hence, it may be interesting to study row parti-
tionings for general sparse systems leading to matrix
suitable for the row projection method.

Acknowledgements

This work was supported by the CNR (Special
Project “Informatic Systems and Parallel Comput-
ing”) under grant n. 93.01615.PF69 and it was per-
formed in part using the Intel Touchstone DELTA Sys-
tem operated by Caltech on behalf of Concurrent Su-
percomputing Consortium. Access to this facility has
provided by Caltech.

References

R. Bramley, A. Sameh, ‘(Row Projection Meth-
ods for Large Nonsymmetric Linear Systems”,
SIAM J . Sci. Stat. Comput. , Vol. 13 (l) , pp. 168-
193, 1992.

R. Bramley, A. Sameh, “A Robust Parallel Solver

for Block Tridiagonal Systems” ,, CSRD, Univ.
Illinois - Urbana, Tech. Rep. 806, 1988.

Y. Censor, “Parallel Application of Block-
Iterative Methods in Medical Imaging and Ra-
diation Therapy” , Math. Programming, Vol. 42,
pp.307-325, 1988.

M. D’APUZZO, Calcolo Parallelo: Metodi Row-
Action per la Risoluzione di Sistemi di Equationi
Lineari, Ph.D. thesis, University of Naples, 1991.

P.P.B Eggermont, G.T. Herman, A. Lent, “It-
erative Algorithms for Large Partitioned Linear
System, with Applications to Image Reconstruc-
tion”, Linear Algebra and its Applications, Vol.
40, pp.37-67, 1981.

T. Elfving, “Block-Iterative Methods for Consis-
tent and Inconsistent Linear Equations”, Numer.
Math., Vol. 35, pp.1-12, 1980.

G.C. Fox et al., Solving Problems on Concurrent
Processors, Pren t ice- Hall , 1988.

S. Kaczmarz, “Angenaherte Auflosing von Syste-
men Linearer Gleichungen” , Bull. Internat. Acad.
Polon. Sci. C1. A , pp.335-357, 1937.

C. Kamath, A. Sameh, “A projection Method for
Solving Nonsymmetric Linear Systems on Multi-
processors”, Parallel Computing, Vol. 9, pp. 291-
312, 1988189.

[lo] T.C. Oppe, W.D. Joubert, and D.R. Kincaid,
“NSPCG User’s Guide, version 1.0: A package
for Solving Large Linear Systems by Various Iter-
ative Methods” , Center for Numerical Analysis,
University of Texas at Austin, Austin, T X , Tech.
Rep. CNA 216, 1988.

[ll] Y. Saad, M. Schultz, ‘(Conjugate Gradient-Like
Algorithms for Solving Nonsymmetric Linear
Systems” Mathematics of Computations, Vol. 44,
pp. 417-424, 1985.

[12] Y. Saad, M. Schultz, “GMRES: A Generalized
Minimal Residual Algorithm for Solving Nonsym-
metric Linear Systems”, SIAM J. Sci. Statist .
Comput. , Vol. 7, pp. 856-869, 1986.

[13] Intel Corporation, iPSC/SSU Manuals, Intel,
1991.

441

