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Abstract

In this paper we are concerned with improvements and
enhancements of a medical imaging grid-enabled infras-
tructure, named MedIGrid, oriented to the transparent use
of resource-intensive applications for managing, processing
and visualizing biomedical images. We describe an imple-
mentation of the MedIGrid PSE in an LCG/gLite environ-
ment. We’ll mainly focus on how to exploit the features of
the new middleware environment to improve the efficiency
and the services reliability of the PSE; further, some com-
ments will be devoted to how to modify, extend and/or im-
prove the underlying numerical components.

1. Introduction

Since 2007, the Italian Ministry of University and Re-
search has promoted the creation of four distributed e-
infrastructures, in the South of Italy in the context of
CRESCO [1], CyberSar [2], PI2S2 [8] and S.Co.P.E. [9] na-
tional projects to support the scientific comunity involved in
the main strategic fields of e-Science. The result is a new
unified technical/scientific grid environment, ready to join
European Grid Infrastructure (EGI [4]) and to include other
partners like SPACI Consortium [10].

The activity, described in this paper, is partially sup-
ported by PON S.Co.P.E. project (Italian acronym for high
Performance, Cooperative and distributed System for sci-
entific Elaboration). This is a research project with two
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aims: the developement of applications in fundamental re-
search fields and the implementation of an open and mul-
tidisciplinary Grid infrastructure, involving several depart-
ments of the University of Naples Federico II distributed in
metropolitan scale in the city of Naples.

The S.Co.P.E. architecture provides the integration of
all computational and storage resources available in the
metropolitan sites involved into the project, using:

• LCG/gLite ([19]) as “low level” middleware and

• the SCOPE-toolkit [14] as ”high level” middleware.

In this context we were involved in improving and
enhancing a medical imaging grid-enabled PSE, named
MedIGrid, oriented to the transparent use of resource-
intensive applications for managing, processing and visu-
alizing biomedical images (see [20, 15]). Then, the reason
of the choice of the LCG/gLite middleware as reference en-
vironment is twofold: it provides some general purpose and
high level services (Data and Metadata Catalogue, Resource
Broker, ...) and it is the de-facto choice for the most of the
Italian (S.Co.P.E., PI2S2, CYBERSAR, CRESCO, SPACI,
IGI [5], ...) and European (EGEE [3], EGI, ...) grid projects.
Moreover, all the work we spent to implement grid-aware
applications in different environments helps us to propose
new solutions for interoperativity/interoperabilty.

This paper is organized as follows: in Sec. 2 we report
the GRID middleware infrastructure, in Sec. 3 we describe
the MedIGrid implementation in this environment, focusing
on some planning strategies aimed to obtain more efficiency
in data management and job submission; in the same section
two MedIGrid case study numerical kernels are described,
and some details are reported about recent modifications we
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have done to introduce a checkpointing system at applica-
tion level. Finally in Sec. 4 we report conclusions and some
suggestions on possible new middleware enrichment and/or
integration.

2. The GRID infrastructure

As cited before, the testbed we used is mainly the SCoPE
infrastructure, essentially based on the integration of the
LCG/gLite and SCOPE-toolkit middlewares.

From the hardware point of view the S.Co.P.E. infras-
tructure will be constituted, in few months, by up to two
thousands computational cores and about 100 TB of disk
space. Actually our work has been developed on a proto-
typal version of SCoPE infrastructure, involving about two
hundred of computational cores and one TB of disk space.
These resources are distributed among some Departments
of the University of Naples Federico II and are connected
by a Metropolitan Area Network implemented by a 1 Gbps
fibre channel tecnology.

The S.Co.P.E. GRID is already connected to the GRIDs
owned by the projects cited in the previuos paragraph
(CRESCO, PI2S2, CYBERSAR).

The middleware LCG/gLite, developed in the context
of EGEE (Enabling Grid for E-SciencE) European project,
provides the user with high level services for scheduling and
running computational jobs, accessing and moving data,
and obtaining information on the Grid infrastructure, all
embedded into a consistent security framework [16]:

VOMS (Virtual Organization Management System)
Service is a system to classify users that are part of
a Virtual Organization (VO) on the basis of a set of
attributes granted upon request and to include that in-
formation inside Globus-compatible proxy certificates.

WMS (Workload Management System) Service that
comprises a set of Grid middleware components re-
sponsible for the distribution and management of jobs
across Grid resources, in such a way that applications
are efficiently executed. The core component of the
Workload Management System is the Workload Man-
ager (WM), whose purpose is to accept and satisfy re-
quests for job management coming from its clients.

LFC (Logical File Catalogue) Service that stores the lo-
cation(s) of files and replicas. LFC will map LFN
(Logical File Name) or GUID (Global Unique Iden-
tifier) to SURL (Site URL) which specifies a physical
instance of the file. It is a high performance file cata-
logue that builds on the experiences gathered from the
EGEE user communities.

The SCOPE-toolkit collects some consolidated libraries
(i.e. BLAS, LAPACK e ScaLAPACK for linear algebra

and PETSc and FFT for scientific computation) and appli-
cations (i.e. GROMACS molecular dynamics) in a self con-
tained package that automizes (by means of standard instal-
lation/validation procedures) the dissemination of nedeed
software on the computing resources and it makes applica-
tions easily integrated into the S.Co.P.E. GRID infrastruc-
ture.

In the last years, much attention has been spent on
providing different kinds of “low level” middleware (like
Globus, UNICORE, LCG/gLite,...) and on developing re-
lated applications. However at each middleware change,
applications developers have to modify their work due to
the existing gap between middleware and applications. We
think that even if, at present, the SCOPE-toolkit doesn’t
cointain any grid service or tool, in the future, it could be
extended and/or improved to fill that gap.

3. The new PSE design

MedIGrid is oriented to the transparent use of resource-
intensive applications for managing, processing and visual-
izing biomedical images. The applications used by MedI-
Grid are denoising of 3D echocardiographic images se-
quence and segmentation of 2D echocardiographic images.
Details can be found in [17, 18]. Both applications are
based on the Portable, Extensible Toolkit for Scientific Com-
putation (PETSc) library [11, 12, 13], actually included in
our reference grid environment by means of the S.Co.P.E
Toolkit.

In Fig. 1 is shown the web page to access the PSE: after
a simple authentication phase, the user has the chance to:

• select the operation (denoising, segmentation, etc.) to
be performed on input images and configure some re-
lated parameters;

• use some tools, based on standard library as ImageJ
[6], to visualize and process input and output image
data.

Due to a change in the underlying GRID environment
(see Fig. 2), our work on MedIGrid PSE involved:

• A server side modification of the GRID Portal by
means of calls to functions of LCG/gLite Java library
to interface the PSE with some new collective services:

– LFC, for a more efficient data management,

– WMS, for a more complete and general purpose
resources discovery and selection,

– VOMS, for the management of VO access poli-
cies to the resources and

– MyProxy to automatic credential renew,
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Figure 1. MedIGrid Portal

• The integration of some middleware features and addi-
tional code to implement a such kind of job monitor-
ing,

• The introduction of an embryonal checkpointing sys-
tem implemented at application level.

While we had to modify the “hidden” part of the PSE, we
left unmodified the GUI, already complete of a satisfating
number of consolidated tools for image processing parame-
ter configuration, image visualization and post-processing.

Figure 2. New PSE architecture

Here our attention is focused on some planning strategies
aimed to obtain more efficiency in data management and job
submission.

In particular our choices allowed us to avoid bottlenecks,
due to multiple and unuseful Resource Broker (WMS) tran-
sits, and limitation imposed from WMS to data sizes.

To give an idea of problem size we can observe that an
input sequence of only 14 ecographic small images is large
more than 20MB and the output of the process is 20MB ×
nscales (where nscales is an input parameter related to the
output quality). As the images dimension and the number of
problems to be solved encrease, we have to avoid unuseful
paths in data transferring and redundance storage on WMS,
to provide an efficient data management.

In MedIGrid job execution schema, application binaries
and data are stored on Storage Resources and registered on
a Logical File Catalogue with symbolic names. On the UI
are present only text files containing image processing pa-
rameters.

At execution time, parameter files reach computational
resources passing through the Resource Broker (WMS),
while binaries and input data are transferred directly from
Storage to Computational Resource, reducing the execution
bottleneck. To reach this aim, we had to modify our nu-
merical kernels, by the means of calls to LFC/GFAL library
functions: if LFC functions let us to access data transpar-
ently, by means of their logical names, GFAL tools allow
efficient data transfer by multistream gridFTP low level pro-
tocol.

At the end of the execution output log file reaches the UI
through the WMS, while the output image is directly moved
on the Storage and registered on the File Catalogue.

Figure 3. Job Sumbission: MedIGrid schema

Summarizing, looking at the schema in Fig. 3 some main
steps are performed:

• Job definition (steps 1-2): The user, by using the Grid
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Portal, defines the job parameters (by chooising image
processing algorithm, by browsing the File Catalogue
to select input data, by fixing the output data logical
name, ... ) through the Grafical Interface;

• Job sumbission (steps 3-4): The submission service on
Grid Portal, submits the defined job to the Resource
Broker that choices a Computing Element;

• Job execution (steps 5-6): The first step of the job
script asks to LFC for application binary and input data
and then gets them directly from the Storage Element;

• Data archiviation (step 7): At the end of the process the
job script copies the output data directly on the SE and,
at the same time, register files on the File Catalogue
with the symbolic name chosen at step 1 from the user.

• Output retrieval and visualization (steps 8-12): The ex-
ecution log file moves from the Working Node to the
User Interface through the Resource Broker to be visu-
alized by the user; the user can require output files that,
by means of their symbolic names, are moved from the
SE directly on the Grid Portal and then visualized.

As reported above, at step 1 (see Fig. 3), the User de-
fines, through the GUI, some requirements and parameters;
on server side these one will be used from the job service
to construct the job in a Job Description Language format
(JDL file). The job service is implemented by using objects
and methods from native gLite standard library and from
extra WMS-Proxy library [7].

Type="Job";
JobType=”MPICH”;
NodeNumber=6;

Executable=”ECOCG.sh”;
Arguments="6 scope scopelfc01.dsf.unina.it

scoperb01.dsf.unina.it:2170
scopese01.dsf.unina.it 2008/February/
sc 1e-1 1e-4 1 1e-4 150 150 100 14";

StdOutput="ECOCG.out";
StdError="ECOCG.err";
InputSandbox=”ECOCG.sh”;
OutputSandbox=”ECOCG.out”,”ECOCG.err”,”Denoise3d.out”;

Figure 4. The JDL File generated by using
WMS-PROXY Java API

In Fig. 4 we show an example of JDL file generated. We
highlight (see text in bold face) some rilevant attributes:

• JobType and NodeNumber used to identify a paral-
lel job (based on MPI)

• InputSandbox that contains only the script file with
parameters setting

• OutputSandbox that contains only the job execu-
tion log files.

#!/bin/sh
# ECOCG.sh
CPU_NEEDED=$1
VO=$2
LFC_HOST=$3
LCG_GFAL_INFOSYS=$4
VO_DEFAULT_SE=$5
NAME_PATH=$6
NAME=$7
FILEN=$NAME_PATH/$NAME
# algorithm parameter setting:
# N1, N2, N3, SIGMA, SCALESTEP,
# NSCALES, RCONVERGENCE, NOF.
OUTFILE=$NAME_PATH/$16
PROGARGS=-filename $NAME -scalestep $SCALESTEP

-sigma $SIGMA -nscales $NSCALES
-iz 1 -rconvergence $RCONVERGENCE
-n1 $N1 -n2 $N2 -n3 $N3
-ksp_type gmres -pc_type bjacobi
-sub_pc_type ilu -ksp_max_it 300
-nof $NOF

echo "Downloading binaries and input data"
echo " ============================================="
lcg-cp --vo $VO

lfn:/grid/$VO/MEDIGRID/SOFTWARE/Denoise3d
file:‘pwd‘/Denoise3d

lcg-cp --vo $VO
lfn:/grid/$VO/MEDIGRID/ECOCG/Input/$FILEN.tgz
file:‘pwd‘/$NAME.tgz

tar xzvf $NAME.tgz
echo " ============================================="

echo "Executing mpirun"
echo " ============================================="
mpirun -np $CPU˙NEEDED -machinefile $HOST˙NODEFILE

‘pwd‘/Denoise3d $PROGARGS ¿ Denoise3d.out 2¿&1
echo " ============================================="

echo "Uploading Output files"
echo " ============================================="
tar czvf $NAME.OUT.tgz Stato.txt $NAME*_*
lcg-cr --vo $VO -d $VO˙DEFAULT˙SE

-l lfn:/grid/$VO/MEDIGRID/ECOCG/Output/$OUTFILE.tgz
file:‘pwd‘/$NAME.OUT.tgz

echo " ============================================="

Figure 5. An example of execution script

In Fig. 5, we report the script file code. We highlight
(see text in boldface) some rilevant lines:

• PROGARGS variable that contains all user defined pa-
rameters

• the download of input data and binaries, from the stor-
age to the computing resource, using lcg-cp com-
mand

• the execution of parallel application, using mpirun
command

• the output data transferring on the storage and its reg-
istration on file catalogue, using lcg-cr command

Job monitoring system is implemented by combining
two mechanisms:

832832832832

Authorized licensed use limited to: Universita degli Studi di Napoli. Downloaded on January 27, 2009 at 03:07 from IEEE Xplore.  Restrictions apply.



• the perusal feature provided by WMS broker, and ac-
cessed by means of Java API, to retrive the job execu-
tion log files at runtime

• a custom service that retrives partial output saved by
the application during its execution (see checkpointing
mechanism described later on).

With the aim of modify, extend and/or improve the nu-
merical components based on PETSc, we are working on
the introduction, at application level, of a some kind of
checkpointing methods, that will be combined with fault-
tolerance mechanisms.

With an application level approach, the mechanisms en-
abling the fault-tolerance features in the grid appplications,
are implemented in the algorithms of computational kernels
and they are not demanded to the middleware, delegating
the application developer to deal with the matter of choos-
ing and saving data appropriately. On the other hand, with
this strategy, the application is able to gain an higher level
of efficiency in storing and retrieving the data from which
performing restarting tasks.

Both the denoising and segmentation algorithms are
based on iterative schemes and, in order to recover from
a fault, they can restart from those ”points” corresponding
to the last ”correct” computed data. So we can use a kind of
“disk based checkpointing” method, registering those data
to the LFC service, at each iteration, so that we could be
able to restart with the last computed data; at fault occur-
rence, application is automatically re-submitted on alterna-
tive resource accessing LFC service to obtain last computed
data from which perform restarting task.

In Fig. 6 we show the outline of a disk-based check-
ponting strategy in an iterative scheme. We highlight some
key steps:

• the last ”correct” computed data is retrieved from re-
mote storage resource by LFC service (see step 1 in
loop block) ;

• the current data is computed (see step 2 in loop block)

• the computed data is stored on remote storage resource
and registered on the LFC (see step 4 in loop block)

We can observe that, such kind of disk-based check-
pointing, give us the chance to replicate data on more re-
mote storages (as allowed by LFC/GFAL system): data are
always available, even if storage and computing resources
can become unavailable. This implement a storage service
reliability, also paying for overhead in data transfer.

To find and handle faults in Message Passing system, we
have to modify appropriately both the application and the
“high level” middleware. Thus, to use WMS authomatic
re-scheduling, the application has to execute the following
tasks:

% loop over i
for i = last computed i + 1, ... do

1. Retrieve by LFC service ulast computed i

2. compute ui from ui−1

3. check communication-fault: if present exit(1)
4. Register to LFC service ui

endfor

Figure 6. outline of disk-based checkponting
in an iterative algorithm.

1. checking the presence of fault after each communica-
tion phase, and,

2. if fault is found, terminating execution with an exit
non-zero code.

4. Conclusions and Future Works

This paper describes some work done to implement the
MedIGrid PSE in an LCG/gLite environment. Things are
much evolved, starting from our preliminary results, and,
although this experience has been realized in economy of
thought, features and tools now available in the LCG/gLite
middleware open new scenarios for the medical community
to collaborate and share resources, information and knowl-
edge.

As mentioned in previous section, to modify, extend
and/or improve the underlying numerical components, we
have to introduce some checkpointing techniques, to be
combined with fault-tolerance mechanisms. To introduce
fault-tolerance mechanisms, we have to modify appropri-
ately both the application and the “high level” middleware
components (i.e. PETSc).

Then our future work will involve the implementation of
mechanisms that handle all communication faults, at each
level of “high level” middleware hierarchy, without termi-
nating application execution.
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