
 
 
 

A REAL-TIME METHOD FOR MANIPULATING A REALISTIC HUMAN 
UPPER LIMB 

 
Danilo Ascione1, Giuliano Laccetti2, Marco Lapegna3, Diego Romano4 

Department of Mathematics and Applications 
University of Naples Federico II 

Via Cintia – Monte S.Angelo, 80126 Naples 
Italy 

1danilo.ascione@gmail.com, 2giuliano.laccetti@dma.unina.it, 3marco.lapegna@unina.it, 4diego.romano@dma.unina.it  
 
 

ABSTRACT 
Manipulation of the human upper limb in Computer 
Graphics is usually done using a kinematic chain 
representing the innermost elements, that is its main 
skeleton bones. When manipulated using the principles of 
direct or inverse kinematics, the chain can be used as a 
deformation tool for its external visible envelope, namely 
the skin. In this paper we present an innovative method to 
resolve the chain that will use both kinematics principles: 
inverse, to position the wrist; direct, to position the elbow 
and the shoulder. In order to propose a new approach for 
removing general stiffness and unrealistic movements of 
traditional solutions, some results from biomechanics 
were included in the model. This helped in recreating the 
scapulohumeral rhythm, as well as in limiting the 
movements of the human upper limb into its realistic 
workspace. In this way we were able to reproduce natural 
movements without additional efforts from the animator. 
Finally, we present advantages of the proposed method in 
terms of computational complexity when compared to 
traditional approaches. This will guarantee on desktop 
calculators a real-time interaction with the user for both 
single manipulation and crowd simulations. 
  
KEY WORDS 
Human Figure Animation, Kinematics, Algorithms, 
Performance 
 
 
1.  Introduction 
 
Film and Video Game industry use Computer Graphics to 
animate artificial human figures realistically: their 
production is expensive in terms of both human resources 
(expert animators), long making time (realistic 
movements are subject to trial and error procedures) and 
specialized hardware (motion capture, motion tracking, 
graphic workstations). Computational models must 
guarantee realistic movements such that the animator can 
feel free to concentrate on evolving movements instead of 
functional anatomy. 
Traditional resolution methods based on inverse 
kinematics are unfeasible when treating a chain with 
many Degrees Of Freedom (DOF)  [1], and in actual facts 

this happens with every adequately realistic model of the 
human body. To solve this excessive computational 
complexity, some studies present in literature use fuzzy 
qualitative [2] or motion sensoring [3] approaches to 
estimate the behaviour of the limb. Alternatively others 
reduce the number of DOF of the chain using several 
tricks [4]. This often produces model simplifications 
which compromise the realistic appearence of movements 
and postures. 
The idea underlying this work is the study of human 
anatomic relations as the starting point for constructing a 
new kinematic chain model, which should not have many 
DOF when reproducing realistic movements. 
Biomechanical studies in literature propose a dense 
survey of interpretations for such anatomic relations, both 
analizing some small groups of elements and considering 
the behaviour of wider sections of the human 
musculoskeletal system [5] [6]: when selecting some 
compatible relational models among the proposed ones, it 
is possible to assemble a new kinematic model with a 
smaller computational complexity if compared to 
traditional models, while saving our scope of realistic 
movements. 
In particular, considering the anthropomorphic upper 
limb, subject of this work, there is a strong relation 
between movements of the free limb (arm and forearm) 
and movements of the shoulder joint (clavicle and 
shoulder blade): this relation is called scapulohumeral 
rhythm in medicine [7]. A realistic model of the upper 
limb should be an articulated chain whose elements 
reflect the functional nature of the human skeleton 
elements, including the shoulder joint. Describing the 
biomechanical relations among the involved elements, we 
will show how to construct such a model with a number 
of DOF consistent with the real movements of the limb 
joints, meanwhile disregarding unnatural or impossible 
positions for the sound limb. 
The model that we will propose has a reduced number of 
DOF compared with a generic kinematic chain with the 
same number of elements. This is due to the inclusion of 
natural biomechanical limits, which should not be 
confused with generic approximations of movement 
abilities or simplifications of the skeletal system. In  [8] 
Tolani D. et al. describe a solving procedure which 
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combines an analytic method with a numerical one. This 
solving approach is similar to ours but does not utilize the 
scapulohumeral rhythm and for this reason it produce less 
realism and more unnecessary complexity. 
 
2.  Elements of the Human Upper Limb and  
     their Biomechanical Interrelations 
 
Let us consider the classical concept of chain of human 
modeled articulated elements, where every bone is 
represented by a rigid piece [9].  
For every element and joint we will assign a set of 
properties defining its freedom of movement based on 
positional and qualitative information of the other 
elements. 
As we will point out later, the whole set of properties will 
not constitute a system of linear equations, but a 
collection of relations among the elements of the two 
principal structures of the human skeletal upper limb 
system. These structures are the shoulder joint and the 
free limb, and therefore the upper limb skeletal will be 
subdivided into two subset called sub-chains. 
During our definitions, we will solely use rigid body 
models, omitting every soft body element. This is a 
significant approximation of the real thing, but it is 
justified by the adoption of statistical data - from real 
biomechanical configurations - into our realistic model. 
This solution has been chosen to include soft tissues 
dynamic properties without falling into additional 
computational costs for a more complex physical model. 
Moreover, during the definition of skeleton elements, we 
will try to focus on some of the properties that usually 
animators are kept away from. For example: to move the 
hand and take an object causing an involuntary shoulder 
movement; to lift up laterally the elbow or to lift up the 
shoulders without moving the hand. 
 In order to use at the best the biomechanical relations 
present in literature, we will adopt a local Cartesian 
coordinate system for every joint in both the subsets, and 
a global Cartesian coordinate system (i.e. for the whole 
upper limb) with the origin in the connecting point 
between clavicle and thorax, where the sternoclavicular 
(SC) joint is. It is advantageous to choose such point as 
the center of the coordinate system because the upper 
limb connects here with the breastbone and the entire 
body. 
About choosing the axes for the global coordinate system, 
we referred to the human anatomy planes as defined in 
medicine [10]: sagittal, frontal and transverse planes.   
The two sub-chains representing the skeleton consist in 
(Fig. 1): 
• Shoulder joint – three joints (sternoclavicular SC; 

acromioclavicular AC; glenohumeral GH) and two 
rigid elements (clavicle SC-AC; scapula AC-GH) 

• Free limb – three joints (glenohumeral GH; elbow G; 
wrist E) and three rigid elements (humerus GH-G; 
ulna G-E; radius G-E). The hand does not contribute 
significantly to the upper limb posture as it is free to 

move without interfering with others elements, and for 
this reason it is not considered in this work. The wrist 
E will then be properly considered as the effector of 
the kinematic chain rather than a joint. 

 
  Fig. 1 

Having studied the naturalness of the upper limb 
movements, let us define four movement categories which 
enable the user to recreate all the possible configurations 
of the limb chain when composed: 

•  Shoulder movement: point GH (which ideally 
represent the shoulder position) is displaced in 
space keeping the wrist E fixed. 

• Free limb movement: point E (wrist and effector 
of the chain) is displaced in space. 

•  Elbow rotation: point G (elbow) rotates around 
GH-E axis. 

• Pronosupination movement: forearm rotates 
around G-E axis. 

Each of these category consists in moves of single rigid 
elements in their respective joints, and they follow the 
human anatomy limits. 

Tab. 1 is a digest of limits which apply to the upper limb 
as defined in this section. 
All the movements examined should not be considered as 
independent - within their limits - as human tissues are 
not disconnected and limb movements involve always all 
the components. Therefore, with the idea of constructing a 
realistic model, we will utilize the biomechanical property 
known as scapulohumeral rhythm. We found several 
definitions in literature, as well as several connections 
between free limb and shoulder joint, in terms of relations 
among movements [11] [12]. 
In this work we used the relations by de Groot e Brand  
[13]: we chose such results, among the numerous 
available, for their completeness and how they were 
produced, which looked the best for our scope.  

Element Joint Movement Min Max
Clavicle SC Elevation/depression 0° 20°

SC Ante/retro-position -60° 0°
Scapula AC Elevation/depression 0° 50°

AC Medial/lateral rotation 0° 40°
AC foreword/back tilt 0° 30°

Humerus GH Elevation/depression 0° 150°
GH Ante/retro-position 0° 150°

Forearm G Bending 0° 140°
GH Elbow rotation 0° 90°
G Pronosupination 0° 175°

Tab. 1 
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The relations are expressed in form of linear regression 
equations. 

About applying the relations to the clavicle: both its 
elevation (θCL) and extension (φCL) angles are dependent 
parameters (Fig. 2); humerus elevation (θO) and extension 
(φO) are independent parameters, as well as direction of 
force F (positive in elevation and negative in depression), 
and initial position of angles related to dependent output 
parameters, which we will indicate as  Xθ

 o Xϕ
.   

Therefore for the clavicle there are two linear regression 
expressions: 

0.123 0.046 0· · ·.350 0.493 3.9· 17L OC O F Xθθ θ ϕ= − − + +  
0.242 0.1· · · 0.85120 0.008 · 4.983CL O O F Xϕϕ θ ϕ= − + + −+  

Eq. 1 
Similarly, three linear regression expressions exist for the 
scapula: 

· · · · · 6.0.220 0.010 0.899 0.260 0.982 970SC O O CL CL Fθ θ ϕ θ ϕ= −− + − +  
0.088 0.066 0.3· · ·92 0.778 0.3· · 27. 324 9 9SC O O CL CL Fϕ θ ϕ θ ϕ += + + + +

· · · · · 4.0.145 0.003 0.218 0.274 0.706 884SC O O CL CL Fψ θ ϕ θ ϕ= −− − − +
 Eq. 2 

where φSC is the scapula rotation angle on transverse plane 
(ante/retro-position), θSC is the scapula rotation angle on 
frontal plane (elevation), while ψSC is the scapula rotation 
angle on sagittal plane (medial/lateral rotation) (Fig. 3). 

 
3. Resolution Method 
 
Our purpose is to determine a correct posture of the  limb 
when one of the elements of the articulated chain changes 
position. 
From this moment on we will not consider the 
prosupination anymore, as it does not affect the 
positioning of other elements. Similarly we will consider 
ulna and radius as a unique segment G-E.  

Considering all possible movements, we describe an 
iterative resolution method for the chain (upper limb) 
based on the analytic resolution of the two sub-chains 
(shoulder joint and upper limb). 
Firstly, let us consider the sub-chain of the free-limb. It is 
possible to resolve the free-limb as an independent chain  
if considering the hinge point GH fixed in space (a 
detailed description of the method will follow). When the 
local posture of the free-limb will be found, then we will 
consider the sub-chain of the shoulder joint, which 
resolution consists in determining the elevation and 
protraction angles of the humerus GH-G by using the 
scapulohumeral rhythm. 
Let us suppose that we want to move the upper limb by a 
movement of wrist E or a rotation of elbow G around GH-
E axis. Since GH is temporally fixed in space, we can 
calculate the position of the free-limb, in other words of 
the elbow G, and the humerus angles. Starting from the 
latter, we can calculate the position of the shoulder, i.e. of 
points AC and GH, supposing the inclination angles of the 
humerus as fixed. The method consists in the reiteration 
of those operations until the series of GH positions will 
converge within some tolerance (Fig. 4). 

Fig. 4 
Similarly we can initally move the shoulder and then 
reiterate the procedure starting from the new position of 
GH. 
 
3.1 Resolution of the ree imb 
 
If we isolate the free-limb from the shoulder system, we 
can make some assumptions that greatly reduce the DOF 
of this kinematic sub-chain: 
- hinge in GH can be considered fixed in space. GH is a 
joint with 3 DOF (movement of elevation/depression and 
ante/retro-position of the arm; swivel movement of the 
elbow around GH-E axis); 

Fig. 2 

Fig. 3 

repeat 

     Take new E position or G rotation 

     repeat 

         Calculate new G position 

         Calculate new arm and forearm 

         Calculate new scapula and clavicula 

         Obtain new GH from calculated elements 

     until GH is “near” the previous one 

until the chain limits have been respected 

         (i.e. the input leads to a correct chain 

       configuration) 

F L-
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- humerus can be represented by segment GH-G; 
- the elbow can be considered coincident with point G. 
This is a joint with 1 DOF (flexion of the forearm); 
- Ulna and radio can be represented by the G-E segment; 
- effector is positioned in E. 

Let
4 3f : q ∈ℜ → ℜ be the direct kinematics mapping 

of this chain, where q is a vector having 4 components, 
namely the  joint variables q1,q2,q3 for GH e q4 for G; we 
can express the position of the effector 3E∈ℜ  as 

( )E E G G GHf q T M T M GH= = ⋅ ⋅ ⋅ ⋅  
Eq. 3 

where 
• MGH and MG are the homogeneous transformation 

matrices related to joint GH and G 

( )1 2 3

0
0
0

0 0 0 1

GH
GH

R q ,q ,q
M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦ , 

( )4

0
0
0

0 0 0 1

G
G

R q
M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦ ; 

• RGH and RG  are the rotation matrices related to joint 
GH and G defined as: 

zGH y x( )R ( )RR ( )R ϕ θ ψ=  and G yR )R (θ= , with 
1 0 0
0
0

xR cos sen
sen cos

( )ψ ψ ψ
ψ ψ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢⎣ ⎦

=
⎥  

0
0 1 0

0
y

cos sen
R

sen cos
( )

θ θ
θ

θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢

=
⎥−⎣ ⎦   

0
0

0 0 1
z

cos sen
R se( ) n cos

ϕ ϕ
ϕ ϕ ϕ

−⎡ ⎤
⎢ ⎥
⎢
⎢⎣ ⎦

= ⎥
⎥  

as rotation matrices around axis X, Y and Z; 
•  TG and TE are the constant homogeneous 

transformation matrices related to arm and forearm 

0 0 0 1G
GI v

T
⎡ ⎤

= ⎢ ⎥
⎣ ⎦ , 0 0 0 1E

EI v
T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦  

with I the 3x3 identity matrix, νG a vector which 
components represent the coordinates of G relatively to 
GH, and νE a vector which components represent the 
coordinates of E relatively to G. 
The effector is chosen interactively by the user, and hinge 
GH is a fixed element of the chain. Once these two 
positions are known, our problem of inverse kinematics is 
to find the values of the 4 variables representing the joint 
elements of q. In this sense, let us note how the first 3 
elements of the vector q (q1,q2,q3) are exactly the angles 
of rotation RGH, or ψ,φ,θ; whilst q4 is the angle of rotation 
RG(θ). Finding the elements of vector q is thus like 
finding the angles of these rotations.  
If we can determine point G, then we have a solution to 
our problem, since it is the middle joint of a kinematic 
chain with only two elements: its position solves the 
problem of inverse kinematics associated with the chain. 

In fact, once the position of all points in the chain is 
known, it is possible to derive the variables associated 
with joint GH and G, i.e. vector q. 
Since function f is not injective, it is not invertible. A 
simple physical interpretation of this is the following: if 
the wrist is kept fixed, the elbow is still free to rotate on a 
circular arc having the normal axis running from the 
shoulder to the wrist itself, namely the axis hinge-effector. 
So all the points on this circular arc are allowable 
solutions of our problem, when E is fixed. In other words, 
the circular arc identifies the set of solutions for the 
inverse problem f -1. As we will see later, this set of 
solutions can be parameterized with an angle of swivel. 
Now our goal is to characterize the position of point G 
according to the constraints imposed by the coordinates of 
the effector and to the swivel angle of rotation around the 
hinge-effector axis.  
By hypothesis we know the coordinates of points GH and 
E. Given the positions of hinge and effector into space, let 
us find G such that:  
• the distance h between hinge and effector is be less 

than the sum of m and n, lengths of the two segments 
GH-G and G-E (arm and forearm), i.e. h m n≤ + .  

• the distance h between hinge and effector is greater 
than the absolute value of the difference between m 

and n, i.e. h m n≥ − . 
The first condition is obvious if we notice that a fully 
extended free limb takes maximum length equal to the 
sum of arm and forearm lengths, while the second 
condition derives from observing that hinge and effector 
may overlap only if m = n. 
Let a swivel plane be a plane containing points GH and E. 
Then segment GH-E identifies a sheaf of swivel planes. 
Each plane of the sheaf is characterized by the angle 
formed with the one plane perpendicular to the body 
transversal plane: we call this angle as the swivel angle σ, 
and it is the only parameter determining a particular plane 
of the sheaf. 
Let us consider a generic position of the kinematic chain, 
it is immediate to verify that it is always possible to 
identify a swivel plane containing G by means of its 
swivel angle. Let σO be the identifier of the swivel plane 
containing G originally, and let GH-G-E be the triangle 
formed by points GH, G and E: it is possible to calculate 
the coordinates of G on the swivel plane σO by studying 
GH-G-E (a simple method will be described later). After 
determining G on the swivel plane, it is possible to 
determine its unique position in space by rotating the 
point accordingly to the swivel angle σ around the hinge-
effector axis. 
Summarizing, coordinates of elbow G can be determined 
with the following steps: 
• locate the swivel plane σO 
• calculate position of G on σO 
• rotate G following the swivel angle σ around the 

hinge-effector axis 
A practical procedure to calculate the position of elbow G 
follows. 
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Let us rotate and translate the coordinate system so that 
plane XZ and swivel plane σ correspond, GH-E lies on Z 
axis, and the center is in GH.  
Let Φ be the rotation angle of the coordinate system 
around Z, and Θ be the rotation angle around Y. 
Then, let us consider the sphere centered in the origin of 
the Cartesian axes and with radius h=GH-E. We can 
express the position of E(x,y,z) in the spherical coordinate 
system: 

yarctan
x

ϕ ⎛ ⎞= ⎜ ⎟
⎝ ⎠ , 

zarcos
h

θ ⎛ ⎞= ⎜ ⎟
⎝ ⎠  

Since φ is defined in interval (–π/2,π/2), 
, se 0

, se 0
x

x
ϕ

π ϕ
≥⎧

Φ = ⎨ + <⎩
 

while 
θΘ= . 

Let GH-G-E be a triangle on plane XZ; it is possible to 
apply Carnot’s theorem to find angle α: 

2 2 2

2
n harccos

hm
mα

⎛ ⎞−−
= −⎜ ⎟

⎝ ⎠
 

where m, n are the lengths of arm and forearm and h the 
length of GH-E. 
Once the angle α is calculated, we have the coordinates of 
point G in the rotated system: 

( )xG sm en α⋅=  
0yG =  

zG m c )os(α= ⋅  
The rotation of elbow G by the swivel angle σ is defined 
by: 

xrot x yG G cos( ) G s )en(σ σ= ⋅ ⋅−  
yrot y xG G cos( ) G s )en(σ σ= ⋅ ⋅+

 
zrot zG G=  

Finally, in order to obtain the coordinates of G in the 
original coordinate system it is sufficient to make inverse 
rotations by angles Θ e Φ, and afterwards the translation 
which moves GH into its original position. 
 
3.2 Resolution of the shoulder joint 
 
As in the free limb, we want to isolate the resolution of 
this sub-chain in order to reduce DOF doing some 
assumptions: 
- hinge in SC can be considered fixed in space. This joint 

has 2 DOF (elevation and ante-position of clavicle); 
- clavicle can be represented by segment SC-AC; 
- joint AC has 3 DOF (ante/retro-position, elevation, 

medial/lateral elevation); 
- scapula cam be semplified with segment AC-GH; 
- effector is positioned in GH 
Let 4 3f : p∈ℜ → ℜ be the direct kinematics mapping 
of this kinematic chain, where p is a vector having 5 
components, namely the  joint variables p1,p2  for SC e 
p3,p4,p5 for AC; we can express the position of the effector 

3GH∈ℜ  as 

( )GH GH AC AC SCf p T M T M SC= = ⋅ ⋅ ⋅ ⋅  
Eq. 4 

where 
• MSC and MAC are the homogeneous transformation 

matrices related to joint SC and AC 

( )1 2

0
0
0

0 0 0 1

SC
SC

R p , p
M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, ( )3 4 5

0
0
0

0 0 0 1

AC
AC

, p p
M

,R p
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

• RSC e RAC  are the rotation matrices related to joint SC 
and AC defined as: 

zSC y( (R R )R )ϕ θ=  and zAC y xR R R( ) ( )R ( )ϕ θ ψ= , with 

1 0 0
0
0

xR cos sen
sen cos

( )ψ ψ ψ
ψ ψ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢⎣ ⎦

=
⎥

0
0 1 0

0
y

cos sen
R

sen cos
( )

θ θ
θ

θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢

=
⎥−⎣ ⎦   

0
0

0 0 1
z

cos sen
R se( ) n cos

ϕ ϕ
ϕ ϕ ϕ

−⎡ ⎤
⎢ ⎥
⎢
⎢⎣ ⎦

= ⎥
⎥  

as rotation matrices around axis X, Y and Z. Such rotation 
angles are elements of vector p; 
•  TAC and TGH are the constant homogeneous 

transformation matrices related to clavicle and scapula 

0 0 0 1
AC

AC

I v
T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 
0 0 0 1

GH
GH

I v
T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

with I the 3x3 identity matrix, νAC a vector which 
components represent the coordinates of AC relative to 
SC, and νGH a vector which components represent the 
coordinates of GH relative to AC. 
The problem of resolving the shoulder kinematic sub-
chain consists in finding the position of joint GH defined 
by Eq. 4, that is to find the five joint parameters in vector 
p. 
In section 2 we introduced the scapulohumeral rhythm to 
reproduce natural movements of the upper limb. 
In order to apply the scapulohumeral rhythm it is 
necessary to find the orientation of the humerus into  
space as regards to joint GH. This is simply calculated 
finding humeral elevation and anteposition angles by 
means of the coordinates of joints GH and G. 
Let humerus be the vector representing the humerus into 
space. The angles characterizing his direction in polar 
coordinates are: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

x

y
O humerus

humerus
arctanϕ  

( )xO humerusarccos−= πθ
 

where φO is the longitude, and θO  the colatitude of vector 
humerus direction (Fig. 5), in other words these angles are 
the anteposition and elevation angles we where looking 
for. 
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Fig. 5 
 
Recalling Eq. 1 and Eq. 2, and fixing the wrist position, it 
is possible to manipulate joint AC by modifying the 
clavicle angles θCL and φCL. Since the scapula follows 
clavicle movements, also its position is modified 
according to scapulohumeral rhythm. 
We can also suppose the shoulder being manipulated by 
the user. In such case the clavicle angles will become 
θCL+ θM  and φCL+ φM , where θM  and φM   are the 
increments of rotation angles. 
 
4.  Iterative Method for Calculating the  
     Upper Limb 
 
We described two analytical methods to get a solution for 
both the shoulder joint and the free limb sub-chains. 
These are connected in joint GH, which is the effector of 
the first and the hinge of the second respectively. 
Joint GH position is both an input parameter of the free 
limb resolution method, and an output parameter of the 
shoulder joint resolution method: there is a reciprocal 
dependence between the two methods. In other words the 
resolution method for the shoulder joint uses information 
on humerus to calculate GH, while the method for the free 
limb uses GH to calculate the humerus, among other 
things (Fig. 6). 
Our resolution method for the whole human upper limb 
solve this dependence iteratively, converging to a posture 
of the upper limb which is coherent with both the sub-
chains.  

 
Fig. 6 

Let limb be the vector representing the kinematic chain 
position (its elements are AC, GH and G), iteration k of 
our method is: 

limb k= F (limbk-1) 
where F is the function which represent the sequence of 
transformations executed at each iteration. Let us describe 
iteration k. 
If we know the last position of chain (limbk-1), we also 
know GHk-1 e then we can use the free limb resolution 
method and calculate elbow G: 

Gk ← elbow_solver ( GHk-1, E , σ ) 
where E and σ remain constant during iteration k. 
Once calculated the position of elbow G, we can calculate 
humerus position and obtain its angles. These are 
necessary to utilize the relations of scapulohumeral 
rhythm and calculate clavicle and scapula positions. 

θO
k
, φO

k
  ← humerus_solver ( GHk-1, Gk ) 

Using the elevation and ante-position angles of the 
humerus just calculated, we can obtain the clavicle and 
scapula angles using the scapulohumeral rhythm. 

θCL
k, φCL

k
  ← clavicle_solver ( θO

k
, φO

k  ) 
θSC

k, φSC
k
 , ψSC

k
  ← clavicle_solver ( θO

k
, φO

k , θCL
k, φCL

k
  ) 

Rotating the clavicle according to its calculated angles, 
we can obtain joint AC position, which is its external 
extreme and scapula joint. That is, scapula rotations 
happens in joint AC. If we rotate the scapula according to 
its calculated angles, we can calculate the new position of 
joint GH, i.e. (GHk). 
We can express clavicle and scapula rotations at iteration 
k with the following rotation matrices expressed in 
homogeneous coordinates: 

1 0 0 0
0 0 0
0 0 0
0 0 0 1

k
CL Mk

CL k
CL M

R
θ θ

ϕ ϕ

⎛ ⎞
⎜ ⎟+⎜ ⎟=
⎜ ⎟+
⎜ ⎟
⎝ ⎠  

0 0 0
0 0 0
0 0 0
0 0 0 1

k
SC

k
k SC
SC k

SC

R

ψ
θ

ϕ

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

Joint AC at iteration k is given by: 
k k

AC CLAC T R SC= ⋅ ⋅  
while joint GH is given by: 

k k
G

k
H SCGH T R AC= ⋅ ⋅  

Calculation of AC and GH can be summarized as follows: 
ACk

  ← rotationAC ( θCL
k, φCL

k  ) 
GHk

  ← rotationGH ( θO
k
, θSC

k, φSC
k
 , ψSC

k
 ) 

Once calculated GHk position, iteration k ends. 
Iterative cycle terminates when  

( )1 maxk k
relGH GH tol ε−− < −  

where tol is the requested accuracy for the solution, and 
εrel is the maximum precision relative to GHk-1.  
The algorithm is presented in (Fig. 7). 
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5.  Performance 
 
The algorithm for upper limb resolution (upper_limb_ 
solver) has a complexity which depends on the 
convergence speed of the iterative method. At each 
iteration ~130 flop (floating point operations) are 
executed (Fig. 7).  
We run four different test sets: two using double and 
single precision with zero tolerance (Fig. 8, Fig. 9), and 
other two with different higher tolerances (Fig. 10,Fig. 
11). For each of them we executed 1000 moves of the 
limb along random directions. 

 
Fig. 8 Histogram of iterations when using double 

precision accuracy with zero tolerance 

 
Fig. 9 Histogram of iterations when using single 

precision accuracy with zero tolerance 
 
From our tests we noticed that there are not significant 
differences between the distribution estimations for 
double and single precision accuracies, with a narrower 
graph for the latter case. More interesting considerations 

can be done when analyzing the last two test sets: we can 
notice a significant reduction of the number of iterations 
when raising the tolerance of some order of magnitude.   
Let us consider a scale, based on parameters from [14], in 
which the average upper limb elements measure as 
follows: arm 3 units, forearm 2.7 units, clavicle 1.654 
units, and the glenohumeral joint positioned at point with 
coordinates (0.09, 0.29, 0.5) with respect to the oriented 
acromioclavicural center. In this case we can obtain a 
satisfactory visual result with tolerance distance of 0.001 
between two subsequent GH positions. This means that 3 
iterations are generally enough to converge to a solution. 
Therefore we can conclude that our method solve the 
inverse kinematic problem for this 9 DOF chain in a few 
hundred flop. 

 
Fig. 10 Histogram of iterations when using double 

precision accuracy with tolerance of 10-4 

 
Fig. 11 Histogram of iterations when using double 

precision accuracy with tolerance of 10-3 
 
With the purpose of studying performance for our 
software, we examined comparative results from Tolani et 
al.[8], which were presented in terms of seconds. Those 
results include classical inverse Jacobian and optimization 
methods, as well as their own approach. We assumed that 
they were being run on an SGI Octane2 system available 
in 1999, so we scaled the published absolute times trying 
to deduce how they could perform on our computer 
equipped with an Intel QuadCore 2.4 GHz processor. We 
executed 10000 tests, each consisting in a movement in a 
random direction from a valid random posture within the 
workspace of the limb. We took each execution time and 
calculated their arithmetic mean.   Results are presented in 
Tab. 2 and expressed in seconds. 
 

Fig. 7 Algorithm and its Computational Complexity 
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Our method Tolani et al. Optimization Inverse 
Jacobian 

0.000028 0.00025 0.005 0.372 
Tab. 2 

We can assert that our method performs better than the 
one from Tolani et al. of an order of magnitude, and of 
four orders of magnitude in comparison with the 
traditional Inverse Jacobian.  
As our table was deduced using a simple theoretical 
scaling based on processors nominal clock rate, one can 
expect some difference on the real measurement. We 
believe such differences would not produce better 
numbers than the measurements we deduced. In fact, as 
proposed in [15], internal Instruction Level Parallelism 
(ILP) and pipeline length did not historically scaled 
proportionally to clock rate, while energy losses 
increased. This means that processor performances on 
single cores did not increase significantly during recent 
years.     
 
6.  Conclusion 
 
We proposed a skeleton model of the human upper limb 
and a kinematic resolution method. We showed that they 
enable the user to find a new posture when moving the 
wrist, as traditional inverse kinematic chains do. But at 
the same way our user can also move the elbow and the 
shoulder with the wrist kept hold in its position, 
reproducing movements of the limb when holding firmly 
something in the hand. Moreover, when applying 
biomechanical regression equations and joint limits, it is 
possible to reproduce natural postures. These are very 
useful for many different real-time applications 
reproducing human movements of singles and crowds. 
More generally this work shows a different approach to 
the reproduction of human skeletons in Computer 
Graphics. Following the example for upper limbs as 
discussed here, we can think to revisit resolution methods 
of other human skeletal subsystems in order to 
realistically and naturally reproduce postures of the entire 
human skeleton. In these terms, new models for vertebral 
column, lower limbs, hands and feet are still to be 
developed. 
Finally, convergence of our iterative method for the upper 
limb remains to be analytically proved, although it 
produced excellent experimental results (~3 iterations for 
most postures). 
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