
Int J Parallel Prog (2012) 40:397–409
DOI 10.1007/s10766-011-0191-4

A Double Adaptive Algorithm for Multidimensional
Integration on Multicore Based HPC Systems

Giuliano Laccetti · Marco Lapegna ·
Valeria Mele · Diego Romano · Almerico Murli

Received: 20 January 2011 / Accepted: 18 November 2011 / Published online: 6 December 2011
© Springer Science+Business Media, LLC 2011

Abstract In this work, a parallel double adaptive algorithm for the computation of
a multidimensional integral on multicore based multicomputer systems is described.
This new algorithm is the revision of a procedure developed by one of the present
authors for multicomputer systems, with the aim to introduce features for an efficient
implementation in multicore based hierarchical environments. Two different adaptive
strategies have been combined together in the algorithm: a first procedure is respon-
sible for load balancing among the system nodes and a second one is responsible for
coordinating the cores within a single node. The performance is analyzed and exper-
imental results on a Blade Server with 8 nodes and 2 quad-core CPUs per node have
been achieved.

Keywords Multicomputer system · Multicore node · Hierarchical environment ·
Multidimensional integration · Parallel adaptive algorithm

G. Laccetti · M. Lapegna (B) · V. Mele
Department of Mathematics and Applications, University of Naples Federico II,
Via Cintia Monte S.Angelo, 80126 Naples, Italy
e-mail: marco.lapegna@unina.it

G. Laccetti
e-mail: giuliano.laccetti@unina.it

V. Mele
e-mail: valeria.mele@unina.it

D. Romano
ICAR-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
e-mail: diego.romano@na.icar.cnr.it

A. Murli
SPACI c/o Department of Mathematics and Applications, University of Naples Federico II,
Via Cintia Monte S.Angelo, 80126 Naples, Italy
e-mail: almerico.murli@unina.it

123

398 Int J Parallel Prog (2012) 40:397–409

1 Introduction

From an architectural point of view, a multicore based High Performance Comput-
ing system can be described by means of a hierarchical two-level structure: at the
highest level there are several nodes based on multicore CPUs connected among
them by dedicated fast networks or high performance switches (Node level) and at
the lowest level there are several computing elements, the cores, sharing resources
in a single CPU (Core level). In the following we consider an homogeneous sys-
tem, composed by N P nodes Ph (h = 1, . . . , N P) each of them with NC cores
Chk (k = 1, . . . , NC). These two architecture levels have very different features
and they require different algorithmic development methodologies. The nodes in a
multicomputer system have a private memory and they communicate only by means
of explicit message passing. On the other hand in a single node the cores cannot be
considered as separate computing units because they share both on-chip resources like
caches, as well as the external main memory that is used to exchange data among the
cores [5]. For such a reason, the development of algorithms and scientific software
for multicomputer systems based on multicore CPUs implies a suitable combination
of several methodologies to deal with the different kinds of parallelism correspond-
ing to each architectural level (distribution of the computation among the nodes of
the system, as well as among the cores of a single node), so that such kind of algo-
rithms are often called Hybrid or Hierarchical Algorithm. The development of such
hybrid and hierarchical algorithms, able to be aware of the underlying topology, is
one of the recommended action in the research agenda for the next generation HPC
systems [6].

The aim of this work is the development of a new algorithm for the computation
of multidimensional integrals on these innovative computing systems. The result-
ing algorithm is a deep revision of an already existing algorithm, originally devel-
oped by one of the present authors for multicomputer systems with traditional CPUs
[4,10]. Computational kernels for this problem are on the basis of several applications
in fields like quantum chemistry, high energy physics and computational finance,
and several techniques and methodologies are available to this aim (e.g. [9]). In this
paper we pay special attention to the class of the parallel adaptive algorithms, because
they are able to achieve high accuracies with a reasonable computational cost, so
that they are on the basis of several mathematical software libraries and routines.
Furthermore at the moment of writing this document we have not found significant
works for implementing such a class of algorithms on HPC systems with multicore
CPUs.

The development of parallel adaptive algorithms for multidimensional integration
is a challenging task, because in such algorithms the execution is strongly dependent
from the input data (requested tolerance, integrand function, integration domain, …),
so that it is possible to balance the workload among the computing units only by using
a run time approach, with a significant cost in terms of communications and synchro-
nizations. Considering all these facts, we propose an algorithm where two workload
distribution strategies are combined together with the aim to reduce synchronization
points and communications among the computing units: a first one is responsible for
task scheduling in the cores of a single node according to the availability of the local

123

Int J Parallel Prog (2012) 40:397–409 399

resources; a second one periodically rearranges the tasks among the computing nodes
of the system to balance the workload.

The document is then structured as follow: after a brief introduction of a general
framework used to describe the adaptive algorithms for multidimensional integration
in Sect. 2, in Sect. 3 we describe a hierarchical adaptive algorithm for multicore based
HPC systems. Therefore, in Sect. 4 we analyze the performance of the algorithm by
means of a model based on a estimate of the communication and synchronization
overhead and, in Sect. 5, we describe the tests conducted on a Blade Server with
nodes equipped with 2 quad-core CPUs. Finally we report conclusions and future
works.

2 Adaptive Algorithms for Multidimensional Integration

Given U = [a1, b1]× · · ·× [ad , bd] ⊂ Rd a d-dimensional hyper-rectangular region,
an adaptive algorithm for the numerical computation of a multidimensional integral:

I (f) =
∫

U
f (t1, . . . , td)dt1 · · · dtd (1)

is an iterative procedure that, at each iteration j, process the subdomains s(j)
i (i =

1, . . . , K) of a partition ℘(j) of U, where K is the number of subdomains in the par-
tition. More precisely, at each iteration j the algorithm computes an approximation
Q(j)of I (f) and an error estimate E (j) of the absolute error |I (f) − Q(f)| by means
of composite quadrature rules defined on the subdomains of ℘(j). Since the conver-
gence properties of the composite quadrature rules, the sequence Q(j) approaches
I (f) and the sequence E (j) approaches zero. Therefore the procedure is repeated
until:

|I (f) − Q(f)| ≈ E (j) < ε (2)

where ε is a user-requested tolerance. Alternative stopping criterion are based on
allowed bounds on the number of function evaluations or on the number of iter-
ations. The last computed approximation Q(j) is the result of the algorithm. For
dimension up to d = 15 are available efficient rules for standard regions [3] as
well reliable procedures for the error estimate e(j)

i in the subdomains s(j)
i [1]. Since

the convergence rate of this procedure depends on the analytical properties of the
integrand function (presence of peaks, singularities, oscillations, etc), in order to
reduce as fast as possible the error E (j), at the generic iteration j, the subdomain
ŝ(j−1) ∈ ℘(j−1) with maximum absolute error estimate ê(j−1) = max

s(j−1)
i ∈℘(j−1)

e(j−1)
i is

split in two parts sλ and sμ that take the place of ŝ(j−1) in the new partition ℘(j). Con-
sequently the partition ℘(j) is updated through ℘(j) = ℘(j−1) − {

ŝ(j−1)
} ∪ {

sλ, sμ

}
.

In a similar way the approximations Q(j) and E (j) over U are updated by using
the quadrature rule and the error estimates evaluated in the new subdomains sλ

and sμ. The described refinement procedure is generally called global adaptive

123

400 Int J Parallel Prog (2012) 40:397–409

algorithm for multidimensional integration, and more general details can be found
in [9].

Let us now focus on some implementation issues of a global adaptive algorithm.
In this algorithm, at each iteration j, it is necessary to arrange all the subdomains
s(j)

i ∈ ℘(j) in a suitable data structure able to supply the subdomain with maxi-
mum error estimate with the lowest computational cost. In this sense, a widely used
data structure is a partially ordered binary tree called heap. For a heap with K ele-
ments, the management steps have a computational cost equal to log2(K) access to
the memory. This cost is much smaller than the cost of evaluating a multidimensional
integration rule, mainly for large values of the space dimension d. Actually a mul-
tidimensional integration rule has a cost typically equal to γ1d4 integrand function
evaluations where 0.1 < γ1 < 1 is a real constant (see e.g. [3]), each of them hav-
ing a cost of at least d floating point operations. Consequently we can assume that
the computational cost of a multidimensional quadrature rule is γ1d5 floating-point
operations.

3 A Parallel Double Adaptive Algorithm

We start this section with a short description of the adaptive algorithm for multidimen-
sional integration on MIMD distributed memory multicomputers developed by one
of the present authors in [4]. The algorithm is based on a Parallelism at Subdomain
Level approach [9], where the subdomains of ℘(j) are distributed in h subpartitions
℘

(j)
h , one for each node Ph (h = 1, . . . , N P), so that it is possible to process them

concurrently. The main problem of this approach is that the sequence of the subdo-
mains is unpredictable because it depends on the analytical features of the integrand
function. Therefore, in order to avoid the splitting on unimportant subdomains with
small error and to ensure a proper load balancing, the algorithm uses a dynamic load
balancing strategy based on a periodic redistribution of the subdomains ŝ(j−1)

h with

largest error ê(j−1)
h among the nodes Ph, connected in a 2-dimensional periodical

mesh. The described procedure is repeated until a node stopping criterion is satisfied
in each node. For example it is possible to use a local stopping criterion, without
global communications, based on the allowed number of iterations in each node Ph

or based on the stopping criterion (2) scaled on the total volume of the subdomains
s(j)

h ∈ ℘
(j)
h :

E (j)
h =

∑
s(j)
i ∈℘

(j)
h

e(j)
i < ε

[vol(℘(j)
h)]

[vol(U)]

More details can be found in [4]. Algorithm 1 represent the described algorithm by
using the Single Program Multiple Data (SPMD) model. In each nodePh, the steps
a), b) and c) balance the workload by exchanging the subdomains with maximum
error estimate among other nodes, and the step d) updates the partial results. This
algorithm has been chosen for the implementation of the mathematical software sub-
routine D01FAFP in the NAG Parallel Library [11].

123

Int J Parallel Prog (2012) 40:397–409 401

Algorithm 1 : procedure executed by each process in the node Ph at the Node Level

Initialize ℘
(0)
h , Q(0)

h and E (0)
h

while (node stopping criterion not satisfied) do iteration j1
a) define 2 connected nodes Ph+ and Ph− in one of the two directions of the

2-dimensional periodical grid
b) if (êh > êh+) send ŝh to Ph+
c) if (êh− > êh) receive ŝh from Ph−
d) split ŝh in two subdomains sλ and sμ and update Q(j1)

h and E (j1)
h on ℘

(j1)
h

endwhile
compute Q(f) = ∑

h Q(j1)
h and E(f) = ∑

h E (j1)
h

In the following we describe how to exploit the parallelism among the cores of a single
CPUs, in the step d) of Algorithm 1. At the Core Level level, each node Ph has NC
cores Chk (k = 1, . . . , NC), that cannot be considered as completely independent
processing units, because they share resources such as caches, main memory or I/O
devices. These hardware features outline a scenario where several computing units
need to access shared resources, so that a natural programming model for an efficient
use of these devices is based on the Thread Level Parallelism, where each thread is
assigned to a single core. The issues related to the use of these devices have been
extensively studied for other problems [2], so that it is possible to identify some com-
mon properties of the algorithms in order to achieve the highest performances from
these devices:

• Fine granularity: by splitting the computation in small tasks and by increasing the
ratio of floating point computation on data movement, the cores can reuse data in
their caches while reducing the number of memory accesses through the shared
bus;

• Asynchronicity: by reducing the synchronization points, even a large number of
threads can achieve good performance, because idle times are eliminated.

The easiest way to parallelize step d) of Algorithm 1 is based on the fair distribu-
tion of the function evaluations of the quadrature rules applied to sλ and sμ among the
threads assigned to the cores Chk, because a quadrature rule is a weighted summations
of independent function evaluations. After the computation of the partial sum in each
thread, only one global synchronization point occurs to evaluate the final sum. This
approach is referred as Parallelism at Integration Formula Level [9] and it exploits the
parallelism only at a very low level, because it produces a very synchronous execution:
parallel tasks (evaluations of the integration function) are interleaved by sequential
ones (error estimations, integral approximations and management of the data struc-
tures), with large intervals of idle time. More generally the Parallelism at Integration
Formula Level is a special case of the fork-join approach, that it is known as a very
inefficient approach for parallel algorithms in multicore environments also in other
fields [2]. For these reasons, our strategy to introduce parallelism a the Core Level
is based on the concurrent execution of a new adaptive procedure by several threads,
each of them executed by a core. Therefore, the threads assigned to the cores Chk of the
node Ph can refine the subdomains of ℘

(j)
h independently of the threads of the other

123

402 Int J Parallel Prog (2012) 40:397–409

nodes. However it should be noted that the data structure used to store the subdomains
s(j)

i ∈ ℘
(j)
h and the values Q(j)

h and E (j)
h resides in the main memory of Ph, and they

have to be accessed by all the threads in the steps in charge of the data structure man-
agement, so that they have to be executed in critical sections because of the risk of race
condition. These are the only critical sections in the procedure, and the computational
cost of such steps is smaller than the cost of the multidimensional integration rule that
are concurrently evaluated by the threads, as stated at the end of the Sect. 2. In any
case these critical sections are aimed only to avoid the risk of race condition when two
or more threads are accessing the shared data and it cannot considered a global syn-
chronization point as in fork-join approach. Furthermore we remark that this strategy
has a very favorable ratio of floating point computation on data movement, because
there are several symmetrical rules defined over regular regions, like the cube or the
sphere, that are identified by very few data [3]. For example, a d-dimensional hyper-
rectangular region is described by its center and the dimensions of the edges, that is
only two array with d elements that must be taken from the memory, compared with
the much larger computational cost equal to γ1d5 floating point operations required
by a multidimensional quadrature rule. Such a favorable ratio produces a better use of
the cache memories with a reduced number of accesses to the main memory.

The described redistribution procedure is repeated until a core stopping criterion is
satisfied in each thread. More precisely it is possible to use a local stopping criterion,
without global synchronizations, similar to the ones described for the parallelization
at the Node Level.

Algorithm 2 : procedure executed by each thread in the core Chk at the Core Level

Initialize ℘
(0)
h = ℘

(j1)
h , Q(0)

h = Q(j1)
h and E (0)

h = E (j1)
h

while (core stopping criterion not satisfied) do iteration j2
{enter critical section}
1) pick up ŝ(j2−1) ∈ ℘

(j2−1)
h with maximum error estimate

{exit critical section}
2) divide ŝ(j2−1) in two parts sλ and sμ

3) evaluate the quadrature rules and compute error estimates in sλ and sμ

{enter critical section}
4) insert sλ and sμ in ℘

(j2)
h

5) update Q(j2) and E (j2)

{exit critical section}
endwhile
update ℘

(j1)
h = ℘

(j2)
h , Q(j1)

h = Q(j2)
h and E (j1)

h = E (j2)
h

Algorithm 2 is the adaptive procedure described for the Core Level in a hierarchi-
cal computational environment and it is the refinement of Step d) in Algorithm 1. It
is replicated in each core Chk of Ph as a thread function. where each thread start its
execution from data in the subpartition ℘

(j1)
h , defined after the workload redistribution

in the Algorithm 1. The main loop is in charge for tasks distribution among the cores
in a single node. More precisely each thread access the data structure containing the
subdomains to be process independently of the other ones, according to the availability

123

Int J Parallel Prog (2012) 40:397–409 403

of the local resources. In any case it should be noted that the critical sections in steps
1), 4) and 5), necessary to avoid race conditions on the shared data, does not include
the much more expensive evaluation of the multidimensional quadrature rule in steps
2) and 3), with a significant increase of the concurrency in the algorithm and a reduc-
tion of the idle time in the threads executions. We conclude this section by remarking
that the obtained algorithm is not a simple revision of the original algorithm in a
hybrid programming environment (MIMD distributed/shared memory systems), but
a new hierarchical algorithm obtained by the combination of two adaptive strategies
for different architectures: a first strategy described for the Node Level (Algorithm 1)
and a second one for the Core Level (Algorithm 2). Therefore we can define the new
algorithm as a Parallel Double Adaptive Algorithm for Multidimensional Integration.

4 Performance Analysis

To evaluate the performance of the algorithm, we use the well known Scaled Speed-up
introduced by Gustafson in [8], where it is proposed that, mainly for a large number of
processing units, the Speed-up should not be measured taking a fixed-size problem and
run it on various numbers of processors, but scaling the problem size to the number of
processing units. In other words it is remarked that, when measure Speed-up, it is most
realistic to assume that the computational cost in each processing unit, not the problem
size, is constant when the number of processing units increases. Now we remember
that for a multidimensional quadrature algorithm the computational cost is usually
measured by using the number of function evaluations, so that it is possible to define
T (N ; F) as the elapsed time to compute (1) with F integrand function evaluations on
N processing units. From [8], the classical definition of Scaled Speed-up is:

SSN = T (1; N · F)

T (N ; N · F)
(3)

The ideal value is SSN = N but in practice a slight degradation is acceptable. In order
to assess a real model for SSN , in [8] the computing time T (N ; N · F) is decomposed
into:

T (N ; N · F) = TS + TC

where TC is the part of the algorithm that can be decomposed in N fully indepen-
dent tasks and TS is the part of the algorithm that cannot be parallelized and that it
contains the communication and synchronization steps of the algorithm. Therefore it
is possible to define the impact of TS on T (N ; N · F) by means of the serial frac-
tion σ = TS/T (N ; N · F), that represents a measure of the overhead introduced
parallelizing the algorithm. From the above follows:

T (1; N · F) = TS + N · TC = σ (T (N ; N · F) − N · T (N ; N · F))

+N · T (N ; N · F)

123

404 Int J Parallel Prog (2012) 40:397–409

Substituting into the definition of SSN in (3), a model for the Scaled Speed-up in term
of the serial fraction σ is achieved:

SSN = T (1; N · F)

T (N ; N · F)
= N − σ(N − 1) (4)

We conclude this section with an estimate of the serial fraction σ in the case of our
double adaptive parallel algorithm introduced in Sect. 3. To this aim we remark that
Algorithm 1 is based on a iterative procedure, where we say Nit1 total the number of
iterations. Then, at each iteration, steps a), b) and c) redistribute the subdomains with
maximum error estimate among the nodes connected in a 2-dimensional periodical
grid without global communications. Since the subdomains are described by means 2
arrays with dimension d, the communication cost of such steps is τ1 = 2d tcom where
tcom is the time spent for the communication of a word between two nodes. Then, each
node Ph generates NC concurrent threads in step d), where Algorithm 2 is executed as
thread function. Also Algorithm 2 is based on a iterative procedure where we say Nit2
the number of iterations. In such iterative procedure, steps 1), 4) and 5) manage the
data structures required for the subdomains to be process, so that, as stated in Sect. 3,
they must to be executed in two critical sections in order to avoid race conditions on
the shared data structure. These steps are dominated by step 1), where it is necessary to
sort the heap with a cost equal to log2(K) where K is the number of items in the heap.
Since at each iteration, in steps 1), 4) and 5) the number of subdomains in the heap
increases by one, each thread traverses the critical section in log2(Nit2)tmem, where
tmem is the memory access time. Then we remark that steps 1), 4) e 5) are executed
in critical sections, so that the 8 threads in each single node have, as worst case, a total
cost of τ2 = 8 log2(Nit2)tmem. Finally steps 2) and 3) evaluate the quadrature rule
in two new subdomains sλ and sμ, and they dominate the computational cost of the
algorithm. These steps have computational cost of τ3 = γ1d5tcal where tcal is the
time for a floating point operation, and they are the only steps that we consider run in
parallel by the threads. Then we assume tcal as a measure unit, and we introduce the
two reasonable assumptions:

tcom

tcal
= γ2103 tmem

tcal
= γ3102

where 0.1 < γi < 1 i = 2, 3 are real constant. Therefore we achieve:

τ1 = 2dγ2103 τ2 = γ3 log2(Nit2)102 τ3 = γ1d5

and, from the definition of serial fraction, we have:

σ = TS

T (N ; N · F)
= τ1 + Nit2τ2

τ1 + Nit2(τ2 + τ3)

= 2dγ2103 + Nit2(γ38 log2(Nit2)102)

2dγ2103 + Nit2(γ3 log2(Nit2)102 + γ1d5)
(5)

123

Int J Parallel Prog (2012) 40:397–409 405

5 Test Results

In this section we present the experimental results achieved on a DELL blade server
with 8 nodes, each of them equipped with 2 Intel Xeon quadcore CPU (Harpertown)
and 16 GBytes of shared main memory. The nodes are connected by means of a Infin-
iband network DDR 4X at 16 Gbit/s (Mellanox Technology 25418). In this system we
implemented our algorithm in double precision using C and Fortran language, with
the libraries Mellanox OFED 1.3.1 (a MPI implementation for the communication
among the nodes) and POSIX thread and semaphores (for the synchronization among
the cores in a single node).

For the experiments we used a standard procedure based on the well known Genz’s
package [7]. This package is composed by six different families of functions, each of
them characterized by some issues making the problem (1) hard to integrate numer-
ically (peaks, oscillations, singularities..). Each family is composed by 10 different
functions where the parameters αi and βi change and related test results are computed
(execution time, error,…). Here we report the results for the following three families:

1 = cos

(
2πβ1 +

d∑
i=1

αi xi

)
oscillating function

2 =
(

1 +
d∑

i=1
αi xi

)
−d − 1 corner peak

3 = exp

(
−

d∑
i=1

αi |xi − βi |
)

C (0) function

where U = [0, 1]d with dimension d = 10. We selected these functions because their
different analytical features. However, for other functions in the Genz’s package we
achieved similar results. In our experiments we measured for each test family:

– The average of the experimental Scaled Speed-up (SSN) as defined in (3) on the
10 functions of each family

– The estimated Scaled Speed-up (SSN) as defined in (4)
– The minimum (MinErr) and the maximum (MaxErr) relative error |I (f) − Q(f)|

/|I (f) on the 10 functions of each family

In order to estimate the serial fraction σ in (5), we use γi = 1, d = 10 and Nit2 ≤
10, 000, so that it is reasonable to assume σ ≈ 0.1. Finally we remark that in our
algorithm we use the Genz and Malik quadrature rule with ϕ = 1, 245 function eval-
uations when d = 10 so that at each iteration 2ϕ = 2, 490 function evaluations are
computed in the two new subdomains sλ and sμ.

A first set of experiments is aimed to study the Double Adaptive Algorithm on
several cores by using only one node. Therefore such experiments are aimed to test
the adaptive strategy at Core Level described in Algorithm 2. In these tests the num-
ber of processing units in (3) is the number of cores N = NC = 1, 2, 4, 8. To
the aim of computing the Scaled Speed-up, the computational cost in each core is
F = 10 × 106 function evaluations, so that the total number of function evaluations
is Fval = NC × 10 × 106 when the number of cores increases. The core stopping

123

406 Int J Parallel Prog (2012) 40:397–409

criterion in Algorithm 2 is based on the maximum allowed number of iterations in
each core Nit2 = F/2ϕ = 4,016, while the node stopping criterion in Algorithm
1 is based on only one iteration Nit1 = 1. Figure 1 reports the experimental Scaled
Speed-up in (3) for the three families of functions
1,
2 and
3 compared with
the model in (4). From the Figure we observe a good scalability when the number
of cores increases. The experimental Scaled Speed-up are generally well estimated
by the model in (4), mainly with 2 and 4 cores. Actually it can be observed a more
evident reduction for SSN when 8 cores are used. As already remarked in Sect. 3, the
evaluation of the multidimensional integration rules are tasks with a favorable ratio of
floating point computation on data movement. Then their data can be easily stored in
the CPUs caches and reused in the next iterations. When our Parallel Double Adaptive

0,4

1,4

2,4

3,4

4,4

5,4

6,4

7,4

8,4

N=NC=1 N=NC=2 N=NC=4 N=NC=8

φ1

φ2

φ3

estimated

Fig. 1 Scaled Speed-up for the three families of functions φ1, φ2 and φ3 with only 1 node and 1, 2, 4
and 8 cores. The experimental values are compared with the estimated values of (4). The workload in each
processing unit is F = 10 × 106 when the number of core increases. The average execution times with 1
core for the three families of functions are: Time(φ1) = 1, 67, Time (φ2) = 1.45, Time (φ3) = 1.76

Table 1 The minimum (MinErr) and the maximum (MaxErr) achieved relative error, on the ten functions,
when the number of core increases

N = NC = 1 N = NC = 2 N = NC = 4 N = NC = 8

Family
1

MinErr 0.92 (−9) 0.44 (−9) 0.15 (−9) 0.48 (−10)

MaxErr 0.98 (−7) 0.47 (−7) 0.23 (−7) 0.11 (−7)

Family
2

MinErr 0.97 (−7) 0.32 (−7) 0.78 (−8) 0.41 (−7)

MaxErr 0.63 (−6) 0.63 (−6) 0.58 (−6) 0.47 (−6)

Family
3

MinErr 0.24 (−4) 0.40 (−4) 0.29 (−4) 0.40 (−4)

MaxErr 0.11 (−2) 0.73 (−3) 0.55 (−3) 0.46 (−3)

The workload in each processing unit is F = 10 × 106

123

Int J Parallel Prog (2012) 40:397–409 407

0,4

10,4

20,4

30,4

40,4

50,4

60,4

70,4

N=TC=8 N=TC=16 N=TC=32 N=TC=64

φ1

φ2

φ3

estimated

Fig. 2 Scaled Speed-up for the three families of functions φ1, φ2 and φ3 with 1, 2, 4 and 8 nodes and 8
cores for node. The experimental values are compared with the estimated values of (4). The workload in
each processing unit is F = 10×106 when the number of core increases. The average execution times with
1 node for the three families of functions are: Time (φ1) = 2.25, Time (φ2) = 1.91, Time (φ3) = 2.36

Table 2 The minimum (MinErr) and the maximum (MaxErr) achieved relative error, on the ten functions,
when the number of core increases

N = T C = 8
(N P = 1)

N = T C = 16
(N P = 2)

N = T C = 32
(N P = 4)

N = T C = 64
(N P = 8)

Family
1

MinErr 0.48 (−10) 0.15 (−10) 0.65 (−11) 0.22 (−11)

MaxErr 0.11 (−7) 0.75 (−8) 0.45 (−8) 0.33 (−8)

Family
2

MinErr 0.41 (−7) 0.4 (−7) 0.4 (−7) 0.4 (−7)

MaxErr 0.47 (−6) 0.35 (-6) 0.22 (-6) 0.13 (−6)

Family
3

MinErr 0.40 (−4) 0.45 (−4) 0.42 (−4) 0.42 (−4)

MaxErr 0.46 (−3) 0.31 (−3) 0.25 (−3) 0.19 (−3)

The workload in each processing unit is F = 10 × 106

Algorithm is executed with only 4 cores there is an extensive use of cached data. On
the other hand, the use of 8 cores, that is two CPUs, needs a more frequent access to the
main memory because the larger number of caches miss. Table 1 reports the minimum
(MinErr) and the maximum (MaxErr) achieved relative errors for the three families
of function. Families
1 and
2 show generally smaller numerical errors than family

3 because of their better analytical properties.

A second set of experiments is aimed to study the algorithm by using 8 cores per
node and N P = 1, 2, 4, 8 nodes of the system, so that the number of processing units
is the total number of cores N = T C = 8 × N P . In this way both strategies (parallel-
ism among cores and parallelism among nodes), combined as described in Sect. 3, are

123

408 Int J Parallel Prog (2012) 40:397–409

tested together. To this aim, we allow Nit1 = 10 iterations as the node stopping crite-
rion of Algorithm 1 and Nit2 = F/20ϕ = 402 iterations as core stopping criterion in
Algorithm 2. The computational cost in each core is F = 10 ×106 integrand function
so that the total number of function evaluations is Fval = N P × 8 × 10 × 106 when
the number of nodes increases. Figure 2 reports the experimental Scaled Speed-up in
(3) for the three families of functions
1,
2 and
3 compared with the model in (4).
Also for these experiments, acceptable values for experimental Scaled Speed-up SSN

are achieved, that are quite well estimated by the model (4) also for large number of
computing units. Finally Table 2 reports the numerical errors for the three families of
function, where the same considerations of Table 1 holds.

6 Conclusions

In this work we address the problem of the development of an adaptive algorithm for
the multidimensional quadrature on a hierarchical HPC systems with nodes based on
multicore CPUs. For this environment we need to combine two different algorithm
development methodologies: a message passing based paradigm for the dynamic load
balancing of the algorithm among the nodes of the system, and a shared memory based
paradigm for the synchronization of the cores in each node. The resulting algorithm
can be defined as a Parallel Double Adaptive Algorithm, in order to recall the two
different adaptive strategies combined together in a single hierarchical algorithm. The
obtained results confirm our expectation of good scalability for the proposed algorithm
on this High Performance Computing environment.

In any case further investigations are needed. As the number of processing units
will grow in the next generations of multicore CPUs, a key factor for the performance
will be the memory levels management (caches and main memory), since the memory
bandwidth usually grows much slower than the CPUs speed and limitations on space
will not permit a growth of caches dimension proportional with the number of cores.
Furthermore, modern HPC systems exhibit hybrid architectures mixing together tra-
ditional CPUs with other components, like hardware accelerators or GPUs, making
much more difficult to define general strategies good enough for a large set of HPC
systems. A notable example in this sense is the Tianhe-1A HPC system [12], that
is based on hybrid nodes equipped with multicore Intel Xeon CPUs and NVIDIA
Tesla general purpose GPUs. It requires different and specialized strategies in order
to extract the maximum performance from the different components.

References

1. Berntsen, J.: Practical error estimation in adaptive multidimensional quadrature routines. J. Comput.
Appl. Math. 25, 327–340 (1989)

2. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms for
multicore architectures. Parallel Comput. 35, 38–53 (2009)

3. Cools, R., Rabinowitz, P.: Monomial cubature rules since “Stroud”: a compilation. J. Comput. Appl.
Math. 48, 309–326 (1993)

4. D’Apuzzo, M., Lapegna, M.: Scalability and load balancing in adaptive algorithms for multidimen-
sional integration. Parallel Comput. 23, 1199–1210 (1997)

123

Int J Parallel Prog (2012) 40:397–409 409

5. Dongarra, J., Gannon, D., Fox, G., Kennedy, K.: The impact of multicore on computational science
software. CTWatch Q. 3(1), 3–10 (2007)

6. Dongarra J., Beckman P., et al.: The international exascale software roadmap. Int. J. High Perform.
Comput. Appl. 25, 3–60 (2011)

7. Genz, A.C.: A package for testing multiple integration subroutines. In: Keast, P., Fairweather, G. (eds.)
Numerical Integration, pp. 337–340. D. Reidel Publishing Co., Dordrecht (1987)

8. Gustafson, J.: Reevaluating Amdahl’s law. Commun. ACM 31, 532–533 (1988)
9. Krommer, A., Ueberhuber, C.: Computational Integration. SIAM, Philadelphia (1998)

10. Laccetti, G., Lapegna, M.: PAMIHR. A parallel FORTRAN program for multidimensional quad-
rature on distributed memory architectures. In: Proceedings of EUROPAR99 Conference, LNCS
1685, pp. 1144–1148. Springer-Verlag, Berlin, Heidelberg (1999)

11. Numerical Algorithms Group Ltd. NAG Parallel Library release 3. NAG Oxford
12. Top500 list www.top500.org

123

www.top500.org

	A Double Adaptive Algorithm for Multidimensional Integration on Multicore Based HPC Systems
	Abstract
	1 Introduction
	2 Adaptive Algorithms for Multidimensional Integration
	3 A Parallel Double Adaptive Algorithm
	4 Performance Analysis
	5 Test Results
	6 Conclusions
	References

