
Advanced environments for
parallel and distributed applications:

a view of current status q

Pasqua D�Ambra a,*, Marco Danelutto b, Daniela di Serafino c,
Marco Lapegna d

a Institute for High-Performance Computing and Networking (ICAR)––Italian National Research Council

(CNR), Complesso Monte S. Angelo, Via Cintia, I-80126 Naples, Italy
b Department of Computer Science, University of Pisa, Via F. Buonarotti, 2, I-56127 Pisa, Italy

c Department of Mathematics, Second University of Naples, Via Vivaldi, 43, I-81100 Caserta, Italy
d Department of Mathematics and its Applications, University of Naples ‘‘Federico II’’,

Complesso Monte S. Angelo, Via Cintia, I-80126 Naples, Italy

Received 3 July 2002; received in revised form 25 September 2002; accepted 28 September 2002

Abstract

In this paper we provide a view of the design and development activity concerning ad-

vanced environments for parallel and distributed computing. We start from assessing the main

issues driving this research track, in the areas of hardware and software technology and of ap-

plications. Then, we identify some key concepts, that can be considered as common guidelines

and goals in the development of modern advanced environments, and we come up with a

‘‘classification’’ of these environments into two main classes: programming environments

and problems solving environments. Both classes are widely discussed, in light of the key con-

cepts previously outlined, and several examples are provided, in order to give a picture of the

current status and trends.

� 2002 Elsevier Science B.V. All rights reserved.

www.elsevier.com/locate/parco

Parallel Computing 28 (2002) 1637–1662

qThis work has been supported by the ASI-PQE2000 ProgrammeDevelopment of Applications for Earth

Observation with High-Performance Computing Systems and Tools, and by the CNR Agenzia 2000

Programme An Environment for the Development of Multi-platform and Multi-language High-Performance

Applications based on the Object Model and on Structured Parallel Programming.
* Corresponding author.

E-mail addresses: dambra.p@cps.na.cnr.it (P. D�Ambra), marcod@di.unipi.it (M. Danelutto), dani-

ela.diserafino@unina2.it (D. di Serafino), marco.lapegna@dma.unina.it (M. Lapegna).

0167-8191/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8191 (02 )00199-0

mail to: dambra.p@cps.na.cnr.it


Keywords: Parallel and distributed computing; Programming environments; Problem solving environ-

ments

1. Introduction

This paper is aimed at discussing advanced environments for parallel and distrib-

uted computing. With the term ‘‘advanced environments’’ we mean both hardware

and software resources arranged in such a way that they can be used to develop
high-performance software for large-scale science and engineering applications.

However, focus here is on the software ensemble providing such kind of environ-

ments, rather than on the hardware resources needed to support them. Therefore,

the focus will be on advanced environments intended as software architectures for

current high-end computers, including SMP, MPP and distributed/Grid-aware com-

puter architectures.

There is no standard definition of software architecture, although this concept

has deep roots in the context of software engineering. More than one definition
of software architecture can be found in the literature [1]; here we quote the follow-

ing ones:

The software architecture of a program or computing system is the struc-

ture or structures of the system, which comprise software components,

the externally visible properties of those components, and the relationships

among them [2].

and

. . . the structure of the components of a program/system, their interrelation-
ships, and principles and guidelines governing their design and evolution

over time [3].

Note that we report both definitions, since each shows a different interesting as-

pect of a software architecture. The former explicitly refers to the externally visible

properties of software components, intended as their services and behaviours, and

hence stresses the importance of abstracting specific functionalities from the entire
system by means of clear interfaces. The latter definition underlines the need of spec-

ifying a clear methodology for the design and the evolution of software components,

that are closely connected to the advances of basic research in computing/computer

science and technology.

The development of high-performance parallel and distributed applications re-

quires a combined use of many software tools, that can be arranged in multiple lay-

ers. Usually, a base layer implements basic mechanisms, such as interprocessor and

intersystem communication and memory hierarchy access, a top layer provides the
users with functionalities that can be exploited to develop (hopefully) efficient, scal-

able and performant applications on the target architecture at hand, and one or

more intermediate layers are built on lower ones and provides services to upper lay-

ers. The interlayer and intralayer interactions among software components should be

1638 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662



realized through well-defined APIs, in order to achieve goals such as reliability,

maintainability, extensibility, reuse, and so on.

In this paper we try to draw the main requirements, aspects and paradigms of

modern advanced environments for parallel and distributed computing, in light of

the concept of software architecture previously outlined. In Section 2, we point
out the main issues driving advanced environments research and development.

In Section 3, we assess our view of the directions where the research on advanced

environments moves to and we identify two main typologies of advanced environ-

ments. Such typologies are discussed in Sections 4 and 5, respectively, giving a

picture of the last decade and outlining current trends. Conclusions are reported

in Section 6.

2. Driving forces for advanced environments

Three areas can be identified where continuous advances and improvements

drive or influence the development of environments to support parallel and dis-

tributed computing. They are hardware technology, base software and applica-

tions.

2.1. Hardware technology

Recent improvements in hardware technology and architecture concern basic

components of parallel and distributed systems: processors, memory hierarchies

and networks.

Processors, and, in particular, the commodity-off-the-shelf (COTS) processors

used to develop most of current Top500 machines [4], reached impressive peak per-

formance values. Memory hierarchies, including on-chip level one caches, and off-

chip dedicated bus secondary caches, also deliver high bandwidth, in particular
the bandwidth necessary to properly feed a typical 2 GHz super-pipeline processor

with the data needed to keep its pipelines filled. Interprocessor networking techno-

logy has become more and more aggressive. The standard network technology

reached Gbps with latencies accounting in the field of micro or submicro seconds

[7], giving great impulse to cluster and high-performance distributed computing.

Such technology, in particular, also exploits possibilities offered by optical and radio

interconnection media. These improvements in network technology greatly profited

from the design of faster and more powerful dedicated communication processors
that have been made available at reasonable prices [5,6].

Furthermore, technologies have been or are currently being developed that also

allow faster and faster CPUs to be implemented. These technologies either affect cir-

cuit manufacturing techniques (Heterojunction Bipolar Transistors, Quantum-effect

devices, Rapid-Single-Flux-Quantum circuits and non-electronic DNA computing

approach), or they affect the CPU architecture itself (processor in memory and mul-

tithreaded architectures, as an example) [8–10].

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1639



2.2. Base software technology

In the field of base software technology, we individuate four different aspects with

impact on the design of advanced environments: network management software, com-

piler technology, parallelism exploitation tools and software engineering techniques.
The evolution of networking technologies and the increasing possibility of connect-

ing a variety of different standing and mobile devices, over short and long distances,

require newprotocols, services and tools that cannot be provided by operating systems.

Operating systems still include the basic mechanisms needed to handle network oper-

ations, but policies and high-level mechanisms have moved to middleware. Examples

can be found in software architectures for heterogeneous and distributed computing,

such as CORBA [11], where a software bus is implemented on the top of plain send/

receive packet protocols handled by operating system, in order to interconnect
mixed-language software components for execution in heterogeneous environments.

In the more recent Grid Computing literature, the term middleware identifies a soft-

ware layer that provides all the network services needed to support a set of applications

in distributed, dynamic and cross-organizational environments. In the last decade

many research efforts have been devoted to the development of Grid middleware

[12–16]; today, the most widely used middleware toolkit is Globus, which implements

basic services for buildingGrids andGrid-enabled applications, according to a layered

model proposed to define the fundamental structure of a computational Grid [17].
In the meanwhile, research and application have introduced a novel concept: peer-

to-peer computing, i.e. the ability to install cooperative processes on a network that

do not rely on hierarchical, client–server relationships to reach their common goal

[18]. Peer-to-peer technology has been impressively demonstrated with a software

that has nothing to do with the application fields we discuss here, namely Napster.

Napster allows file collection and exchange to be realized between a completely dis-

tributed community of users. The techniques used by Napster are now being consid-

ered to be used in the design of advanced, high-performance, parallel and distributed
computing environments [19].

From the compiler technology point of view, we can see that new compilers afford

more and more complex and effective tasks, leading to code with high performance,

both in terms of sequential code execution (single processor resource optimization)

and in terms of parallel/distributed computation (communication optimizations,

scheduling and load-balancing optimizations, etc.). As an example, commodity pro-

cessors nowadays implement ‘‘parallel instructions’’ (e.g. I32/64 SIMD extensions)

that exploit the large number of functional units/ALUs present in the CPU itself.
This has led to the introduction of suitable compiling algorithms able to extract (lim-

ited amounts of) SIMD parallelism out of plain sequential code [20]. As a further

example, the wide diffusion of explicitly data-parallel languages such as HPF has

led to the development of compiling techniques that optimize different aspects inter-

related with parallel program execution, such as data distribution or communication

optimization [21].

Parallelism exploitation techniques also improved. While in the past parallel

applications often exploited a single kind of parallelism, i.e. data or control/task

1640 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662



parallelism, nowadays advantages of exploiting both forms of parallelism within the

same application have been demonstrated [22–25]. Therefore, compiling technology

exploiting ‘‘mix’’ of parallelism exploitation patterns has been developed, either

based on the concept of template [26] or on macro data flow [27]. Such techniques

apply different algorithms to get rid of data distribution or task mapping and sched-
uling.

Last but not least, software engineering research led to the development of a set of

techniques that are having a deep impact on the whole program development pro-

cess, both in the field of sequential programs and in that concerning parallel and dis-

tributed code development. In particular, components [28], design patterns [29] and all

the related software design and development techniques become more and more ma-

ture and can be usefully exploited in the design of both high-performance software

and environments supporting software development. We come back to this point la-
ter, in Sections 3 and 4.

2.3. Applications

A key role in the development of advanced environments for parallel and distrib-

uted computing is played by the applications, not only in the scientific fields which

traditionally use high-performance computing, but also in public services, govern-

ment policies and industry.
Scientists always wish to investigate increasingly complex problems with an in-

creasing level of detail, requiring more and more computing power and sophisticated

algorithms and software. The complexity and scale of scientific Grand Challenges

justify the large investments towards petaflops machines, exhibiting parallelism at

many different levels, and stress the importance of software environments allowing

to effectively exploit such parallelism in order to get acceptable percentages of the

peak performance, in a reliable and predictable way [30,31]. Furthermore, those ap-

plications are usually multidisciplinary and require collaboration among different
teams of scientists having a deep knowledge only of their own specific domains.

Therefore, advanced simulations are characterized by the interaction and the compo-

sition of many simulation kernels and subsystems, often developed for different

hardware/software platforms, with different tools and for various purposes.

On the other hand, it has been recently recognized that fields such as Medicine,

Environment, Crise Management, etc. [10] can benefit from high-performance com-

puting and networking, since emerging applications in those fields require the com-

bined use of hardware, software, datasets, instruments and skills not available at a
single site, but distributed geographically and among different organizations. Finally,

an increasing number of industrial users looks at parallel and distributed computing

as a key technology to reduce time-to-market and to increase competitiveness. In

both cases, aspects such as rapid prototyping, fast code development, software re-

structuring and reuse, and interoperability, are even more central than in the devel-

opment of high-end scientific applications.

The advances in hardware and base software and the varied requirements of the

applications provide guidelines, methodologies and tools for the development of

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1641



effective advanced environments for parallel and distributed computing. On the

other hand, all the aspects previously outlined show the difficulties concerning the

development of standard software infrastructures that are able to provide adequate

answers to all needs.

3. Key concepts and trends

Once recognized the main areas influencing the design and development of envi-

ronments for parallel and distributed computing, we wish to outline some general

but key issues naturally emerging from advances and changes in those areas, and

to analyze the typologies of modern advanced environments, both existing and under

development.
Two fundamental concepts are software integration and interoperability, that refer

to the growing need of assembling software modules or subsystems into an opera-

tional system and of doing such composition easily and reliably, possibly in a

‘‘plug-and-play’’ fashion [32]. Strictly connected is the concept of reuse of existing

software, expressing the need of preserving years of research and development. To

satisfy these needs many issues must be addressed: the definition of interoperability

standards, including common software abstractions and interfaces and standard lan-

guages for describing them, models and mechanisms for linking different software
units and transferring data between them, consistent schemes for memory manage-

ment and error handling, and so on.

Answers to the problem of integration and interoperability can be found in the

component programming model, that can be considered as an evolution of the ob-

ject-oriented model, in order to overcome the complexity of composition and reuse

of heterogeneous cross-project software, providing also seamless access to distrib-

uted software resources. Shortly, a component can be defined as an independent soft-

ware unit, encapsulating a set of functionalities and having a well defined and
published interface, that allows it to be composed with other components, according

to the rules of a component architecture.

Component standards and implementations, e.g. OMG CORBA [11], Microsoft

DCOM [33], Sun Java Beans and Enterprise Java Beans [34,35], were initially devel-

oped by the business world, that recognized their importance. However, they do not

support basic needs of high-performance computing, such as the abstraction needed

by parallel programming and the performance. A large effort is currently devoted to

defining a standard component architecture for high-performance computing in the
context of the Common Component Architecture (CCA) Forum [36,37].

Applications are even more complex and multidisciplinary, hardware, software,

data and skills are distributed among different sites and organizations, and network-

ing technologies and infrastructures make it possible to share and aggregate them.

Network-based computing is therefore a central concept in the development of ad-

vanced computing environments. In this context, software is increasingly regarded

as a service to be provided on demand, rather than a product to be obtained, in-

stalled and updated; hence, the concept of network-enabled computational servers

1642 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662



is emerging, that implement the remote computing paradigm. Furthermore, distrib-

uted resources must not only be accessed, but must also be located and selected as

much transparently as possible, and used in a reliable and secure way. Therefore,

middleware, either special-purpose or general-purpose one, is even more important

in building infrastructures that ease the development of applications in a distributed
setting, and an intense research activity is carried out in this field (see, for example,

[16]).

In this scenario, a significant role should be played by repositories of software in-

terfaces, implementations and documentation, searchable by both human and ma-

chine clients. Mobile agents are recognized as a possible solution for resource

discovering and monitoring, and expert assistants and knowledge discovery in data-

base techniques are considered useful for the selection of the most appropriate soft-

ware or software/machine pair [38,39].
As already observed, performance is still a fundamental feature, and achieving it is

made much more difficult by the variety and complexity of current hardware and

software platforms. A challenging goal is to obtain software with portable perfor-

mance. In this context, compiler technology and parallelism exploitation tools play

a central role, as well as techniques for the development of self-adaptive, latency-tol-

erant, parameterized or performance-annotated codes [40].

Finally, an important design principle of advanced environments is ease of use,

where the term ‘‘ease’’ is obviously related to the expertise of the target users. Among
the other things, this requires languages and or graphical user interfaces (GUIs) close

to the users� knowledge domain, for design, implementation, composition, execution

and analysis of applications, and other tools such as debuggers and profilers.

All the above concepts can be considered suitable common goals in the design of

modern environments for parallel and distributed computing. However, existing im-

plementations or proposals of such environments usually address different topics

with different emphasis.

Depending on both the amount of programming effort required to develop satis-
factory applications and on the application field addressed, we basically recognize

two main typologies of environments: programming environments (PEs) and problem

solving environments (PSEs).

With the generic term programming environments we denote the environments

that basically provide all the tools needed to design, code and debug parallel and/

or distributed applications, according to a given programming model or language.

Programmers using a PE to develop a parallel application must know very well

the features of the PE in order to be able to fully exploit its potentialities. In addi-
tion, they must have knowledge of the specific application field, in order to suitably

exploit the PE features in the target application code. However, depending on the

programming abstraction level provided by PE, the kind of knowledge required to

the user may vary a lot. PEs just supporting a conjunction of plain sequential lan-

guages with common communication libraries (e.g. C or C++ with MPI [41] or

PVM [42]) require a consistent knowledge to develop an efficient application, even

in case that complex, effective debugging and optimizing tools are provided.

On the other hand, PE based on design patterns or skeletons (see Section 4) already

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1643



provide suitable, efficient frameworks that can be easily used to implement new ap-

plications, requiring a moderate knowledge of the base mechanisms used to imple-

ment parallel/distributed application features. PEs generally succeed in providing

tools that allow very high-performance applications to be developed. This is due

both to the fact that the mechanisms used in PEs are usually state-of-the-art, very
efficient tools, and to the fact that a programmer is allowed to proceed with perfor-

mance debugging within all the levels of the application.

PSEs provide a set of user-friendly mechanisms and tools that allow to ‘‘build up’’

an application, within a specific application domain, by gluing together, with an in-

tuitive compositional model and using some kind of problem-oriented language, dif-

ferent building blocks. Such building blocks range from libraries and application

codes, to tools for I/O, data visualization and analysis, and interactive steering. In

a distributed/Grid setting, they usually also include tools for data set online access,
resource management, interconnection and monitoring tools. Therefore, PSEs en-

able applications to be developed without requiring the users to explicitly deal with

most of the details related to solution algorithms and their implementations, to re-

source discovery, allocation and use, etc. The user of a PSE, therefore, must only

have an appropriate knowledge of the specific application domain, plus some limited

knowledge concerning the compositional model exported by the environment. In this

context, performance is still important, but it is not the primary goal; indeed, a small

loss in performance is acceptable to achieve a ‘‘more productive’’ application devel-
opment environment.

Although the properties discussed above separate PEs from PSEs, different ‘‘con-

taminations’’ can be observed, that move positive features of each kind of environ-

ment on the other side. On one hand, higher and higher level PEs provide the

programmer with abstractions of computation patterns that are closer and closer

to the components typical of PSEs, while preserving general purpose-ness (e.g.

PEs based on both skeleton and design pattern programming models). On the other

hand, the compositional models implemented by PSEs include more and more gen-
eral patterns; indeed, a current trend is designing PSE infrastructures that are appli-

cation-independent, and then customizing them for a specific problem. Furthermore,

the standardization of the component concept allows components developed for one

PSE to be used in other PSEs, making PSEs more and more general purpose. Last

but not least, our experience in PE and PSE usage shows that performances demon-

strated by software developed using PSEs are becoming closer to those of software

developed using PEs, while the time spent in developing applications with PEs is be-

coming closer to the usually lower time required to develop applications using a PSE.
A discussion on PEs and PSEs, with focus on the current status and perspectives,

is carried out in Sections 4 and 5.

4. Programming environments

PEs have been traditionally developed as a set ot tools built on top of a given ex-

isting programming language, and of a particular library providing the basic parallel

1644 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662



and/or distributed mechanisms. To a closer look, these PE do not exist ‘‘as a whole’’

but, instead, machine vendors as well as user communities build them by gluing to-

gether software components coming from different places or experiences. The base

programming languages and models used turn out to be very well assessed. This

allows to reuse, within a PE, lots of existing codes and libraries. However, the design-
ers and implementors of PE tools must cope with all the features of the supported

languages, in order to guarantee that integration of existing code in the parallel/dis-

tributed framework effectively and efficiently works.

As an example of traditional PE, we consider the one built around the C language

and the MPI communication library. This PE usually runs on top of Linux/Unix

workstation clusters and networks, as well as of widely used MPPs. It can include

existing tools, such as editors with specialized editing modes able to handle C as well

as MPI code (e.g. emacs), debuggers that can deal with multithreaded code and can
be run in multiple instances to get rid of multiprocess code (gdb, ddd, totalview and

the alike), profilers (prof, gprof), proper versioning software (rcs, cvs), etc. The pro-

gramming model provided to the user is basically SPMD, which is definitely a well-

known programming model. Other programming models are possible (the MPI-2

standard supplies also APIs to handle dynamic process generation), but nevertheless

the most widely used way to write working and efficient MPI programs is SPMD.

The C language is also a well-known (although definitely not a modern) program-

ming language. Despite this fact, and despite the high effectiveness demonstrated
by the single PE components, the development of a working and efficient parallel ap-

plication using such PE is a really hard task. The programmer must know very well

the SPMD programming model as well as the details needed to set up an SPMD pro-

cess network, including those details needed to set up communication/synchroniza-

tion channels between processes, otherwise he cannot succeed in writing a working

parallel code.

Therefore, although very efficient applications can be developed using the C/MPI

PE, and have actually been developed, nobody claims it is user friendly. On the other
hand, code reuse can be easily achieved not only concerning C code, but also FOR-

TRAN or C++ code, which, in particular, can be reused exploiting the common ob-

ject code format of the Unix architecture. Furthermore, C offers bindings to APIs of

commonly used middleware, such as CORBA, that can be exploited in parts of MPI

C code, to access external functionalities or to provide parallel application function-

alities to the external world, thus achieving a very rough level of interoperability.

The situation just described can be easily generalized to other PEs: C++/ACE, i.e.

C++ used in conjunction with the ACE cooperative library [43], HPF/MPI, i.e. High
Performance Fortran used to exploit data parallelism with MPI calls to express task

parallelism forms that are not primitive within HPF, and so on. The basic nature of

‘‘software collection’’ of these PEs can be better understood taking into account how

different products can be used to provide some of the PE components. As an exam-

ple, the C/MPI PE can exploit MPICH [44] as well as LAM [45] software to provide

MPI compliant communications, C compilers can come either from machine

vendors (Intel, IBM, etc.) or from the open source community (GNU, Cygnus),

etc. There are also ‘‘organized software collections’’ that can be viewed as full

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1645



PEs. A notable example, may be the only one, is the Linux Beowulf distribution. But

in this case too the PE is just a collection of packages built starting from existing as-

sessed software components coming from different sources.

While such traditional PEs were being developed, research concentrated on the

design of parallel and distributed PEs that could relieve the programmer from most
of the parallelism exploitation details, while preserving his ability to handle the qual-

itative aspects of parallelism exploitation. This happened in three main flavors, with

each flavour usually ‘‘inheriting’’ useful features from the others: algorithmic skele-

tons, design patterns and coordination languages.

The original skeleton idea was introduced by Cole in the last 80s [46,47]. Accord-

ing to Cole, an algorithmical skeleton is a known reusable parallelism exploitation

pattern. Cole originally proposed a fairly small set of skeletons that can be used

to drive parallel application development. Starting from this idea, some PEs were de-
veloped, that provided the user with skeletons modeling different parallelism exploi-

tation patterns. P3L is an example of such kind of PEs. It was designed in early 90s

within a joint ‘‘academic’’ project between HP and University of Pisa [48] and suc-

cessively refined into an industrial product named SkIE [49]. In P3L every skeleton

can be instantiated providing the sequential code needed to model sequential parts of

an application. Skeletons can also be nested in order to obtain more complex paral-

lelism exploitation patterns. In any case, the work needed to generate parallel code

out of skeleton code was mostly automated by P3L tools. Besides P3L, notable exam-
ples of skeleton-based PEs developed in the 90s come from Imperial College [50–53],

the Basel group [54] and the Alberta group [55]. In late 90s a lot of research work was

dedicated to skeletons by different research groups, leading to the development of

different prototype skeleton-based PEs [27,56–60].

By using skeleton-based PEs, programmers wrote simple and concise code, just

modeling the qualitative aspects of parallelism exploitation. Then, either the skeleton

compiling tools or their runtime support managed to handle all the quantitative and

‘‘mechanic’’ aspects of parallelism exploitation. However, two major problems af-
fected skeleton-based PEs and avoided them to be used, but within a small group

of researchers and parallel application developers. On one hand, most skeleton based

programming systems (including P3L) only provided a fixed set of skeletons.

Although these sets covered the most common parallelism exploitation patterns,

software developers often required slightly different skeletons, and there was no

chance either to extend the language or to use, into the sequential code, alternative

mechanisms (e.g. MPI or even sockets) without interfering with the global parallel

semantics. On the other hand, skeleton PEs were usually provided with completely
new languages and sometimes they did not allow dusty-deck code to be used as skel-

eton parameters.

This notwithstanding, skeleton-based PEs demonstrated to be able to match per-

formance values achieved by hand-written code, while guaranteeing shorted design

and implementation times (in [61] performance results concerning ray tracers,

OCR and other numerical applications are reported, while in [62] the results of an

experiment aimed at measuring the effort required to write parallel applications with

skeletons vs. that required using traditional PEs are discussed).

1646 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662



Coordination languages play a different role. They have been developed to solve

the problem of having different software components to interact to perform complex

tasks. Linda [63] is a notable example of something which is universally recognized to

be a coordination tool. Linda provides a global tuple space along with simple oper-

ations working on the tuple space (in––reads and consumes a tuple, out––place a tu-
ple in the tuple space, read––read a tuple, and eval––evaluate a tuple, a shortcut for

starting new processes). It is not a real programming language. Instead, it has to be

intended as a library to be linked to code written in any existing sequential program-

ming languages, and to be used to make different processes to cooperate in order to

achieve some common goal.

Coordination languages and tools immediately demonstrated that users can actu-

ally exploit them to implement a small number of interaction and cooperation pat-

terns in many applications. In late 90s, it was understood that it would have been
better to have more complex operations in a coordination framework, i.e. not only

the basic operations needed to make existing different processes to cooperate by syn-

chronizing and exchanging messages, but also the complex mechanisms used to

make a set of processes to cooperate in a structured way. Therefore, the research ac-

tivity on coordination languages focused on the development of environments that

could provide the users with primitive mechanisms, interpreted as well as compiled,

directly implementing the most typical parallelism exploitation patterns, in the same

way skeletons do within the skeleton-based languages.
Differently from plain skeletons, however, a major attention has been posed on

the fact that processes interacting through these patterns may come from different

environments: they may be written in different languages or they may also autono-

mously use communication libraries, such as MPI and PVM, or operating system

mechanisms, such as sockets and threads. Therefore, coordination languages have

been defined that allow different sequential or parallel processes to be integrated into

the same parallel application via the coordination patterns.

Eventually, a third research line came to the scene, in the framework of advanced
environments for parallel and distributed computing. In late 90s, the software engi-

neering community found out that it was convenient to formalize somehow the struc-

turing mechanisms used when writing sequential code, mainly in the object-oriented

(OO) framework. This led to the definition of the design pattern concept. A design

pattern is a well-known pattern that can be adopted to write code matching given con-

straints. As an example, the ‘‘factory’’ pattern allows all those situations where a basic

set of operations may be provided using different implementations to be modeled. The

initial focus of the design pattern community was on the discovery and formalization
of the whole set of patterns used in the OO framework to write efficient and maintain-

able programs. Soon after, a community of researchers involved in OO program de-

velopment and in the design pattern stuff, started to be interested in parallel and

distributed computations. The step moving patterns to parallel and distributed com-

puting was natural. Therefore, some groups started to define parallel design patterns,

aimed at modeling the most common parallel programming techniques. This led to

two consequences: on one hand, most of the interaction (communication/synchroni-

zation) patterns used in the skeleton and coordination languages framework have

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1647



been modeled by proper design patterns; on the other hand, PEs have been built that

provide the user with parametric runnable implementations of parallel design pat-

terns, in such a way that those patterns take care of all the details involved in the ex-

ploitation of parallelism, in the same way skeletons do in the skeleton framework.

A notable example of PE based on design patterns is CO2P3S (Correct Object-
Oriented Pattern-based Parallel Programming System), coming from the Alberta

University [25,64]. CO2P3S provides the user with a set of parallel design patterns

which are implemented in a framework and can be used to model the parallel behav-

iour of an application. The user simply subclasses a pattern and provides the hook

methods used to model the application specific code. Different levels of interaction

are assumed in CO2P3S: application developers may just use patterns, but may also

intervene on the implementation layer framework to make performance tuning.

Other groups are working on parallel design patterns, either in the perspective of
providing users with design-pattern-based PEs [65], or to better assess parallel design

pattern concepts [66,67]. One more example of PE inheriting concepts from the OO

world (although not directly from the design patterns) is POOMA [68], which uses

C++ templates to implement high-level parallel features (basically a parallel/distrib-

uted array data type).

Last but not least, the component model came to the high-performance parallel

and distributed computing scene, and affected the development of advanced environ-

ments, exploiting somehow the experiences from skeletons, design patterns and co-
ordination languages. As previously noted, the component technology has been

developed mainly with the aim of providing easy and affordable software composi-

tion and reuse. Some widely used software packages (e.g. window managers) are

based on the concept of component; components are parameterized and reused in

multiple places in these packages, thus boosting the software development process.

Concerning advanced parallel and distributed PEs, the component technology has

been adopted to provide a feature that was not formerly present, namely interoper-

ability. On one hand, by making parallel application to look like standard compo-
nents (i.e. objects in a CORBA framework), the parallel application code become

usable outside its developing environment, even to those users that are not familiar

with parallelism. On the other hand, by allowing to import and use external compo-

nents in a parallel or distributed application prototype, the development of new ap-

plications can be performed faster, and better code reuse capabilities can be provided

to the final user. CORBA itself has been used as the basic component mechanism in

different projects aimed at providing advanced parallel PEs [69,70]. Currently, efforts

are carried out to develop frameworks that implement the specifications given by the
CCA Forum. Notable examples are CCAFFEINE [71], for developing SPMD paral-

lel applications, and XCAT [72], for building Grid applications.

Altogether, skeletons, design patterns and coordination languages provided suit-

able ways to overcome a main problem in developing parallel and distributed appli-

cations with classical communication libraries, middleware or operating system

mechanisms: writing all the low-level code needed to set up an effective application,

i.e. the code for process network setup, mapping and scheduling, communication

coding, synchronization handling and so on. New PEs are being designed that

1648 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662



include features from the three worlds. As an example, ASSIST [73,74] provides a

skeleton-based coordination language that allows components (distributed objects,

actually) to be used within the sequential portions of code encapsulated in skeletons.

Furthermore, it has been designed in such a way that complete ASSIST programs

can be encapsulated within a definite CORBA object, that can be used from (possibly
sequential) CORBA compliant applications. ASSIST provides features that are

aimed at overcoming some of the problems found in other skeleton-based parallel

PEs. In particular, ASSIST provides methods to define and use arbitrary graphs

of concurrent activities (each described by one of the supported skeletons) as well

as a new skeleton (the parmod one) modelling the more common data-parallel and

task-parallel parallelism exploitation patterns. Currently, ASSIST is being developed

for homogeneous and heterogeneous workstation clusters. Plans have been made to

extend ASSIST in such a way that it can be used on Grids. More generally, the skel-
eton and design pattern experience is moving towards the Grid community, to match

some of the ‘‘desiderata’’ about Grid programming models and tools [75,76].

However, the users of any existing PE are still required to be somehow aware of

the parallel and/or distributed platform they are operating on. Furthermore, they

must learn a consistent amount of details concerning the PE in order to be able to

use it. This makes a fundamental difference with the PSEs. Although some of the

PSEs discussed in Section 5 also require consistent knowledge related to parallelism

exploitation, the original idea of PSE is such that only application-specific knowl-
edge is required to the PSE user in order to be able to develop parallel/distributed

applications.

5. Problem solving environments

PSEs can be considered as a ‘‘natural’’ evolution of the computational approach

to the solution of scientific and engineering problems. For many years, this approach
consisted in the development of large monolithic codes, usually written by a re-

stricted group of people with a good level of expertise of the specific application do-

main and a reasonable level of expertise of computing techniques. However, since

from the 70s, it was recognized, in the scientific community, that an effective solution

of even more complex application problems would have required specialized com-

puting skills, to exploit the advances in hardware, software and algorithmic technol-

ogies. Software libraries begun to be developed to solve computational kernels

common to different applications, with the final goal of enhancing the quality of
the results, while saving a lot of human effort [77,78]. Later on, PSEs appeared on

the scene, to satisfy the increasing need of integrated environments supporting the

whole process of development of an application, from problem description to solu-

tion analysis, in a specific domain [79].

The emergence of a wide variety of parallel and distributed computer architec-

tures have stressed the difficulties arising in the development of efficient and reliable

software, and have emphasized the role of high-quality software modules in building

computational applications, and even more the role of PSEs providing such modules

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1649



as well as user-friendly mechanisms for their integration and interaction [80,81]. The

advantages of the modular approach have more clearly appeared also in the business

world, although monolithic codes are still dominant there; some efforts have been

carried out to exploit parallel library software modules into existing industrial appli-

cation codes [82–84], and many more efforts have been devoted, as already observed
in previous sections, to the development of component architectures and environ-

ments, allowing the interoperation of distributed software units, possibly produced

by various developers and running on different hardware/software platforms.

The first ‘‘clear’’ definition of PSE was given by Gallopoulos et al. in the 90s [85]:

A PSE is a computer system that provides all the computational facilities

needed to solve a target class of problems. These features include advanced

solution methods, automatic and semiautomatic selection of solution meth-

ods, and ways to easily incorporate novel solution methods. Moreover,

PSEs use the language of the target class of problems, so users can run

them without specialized knowledge of the underlying computer hardware

or software. . .

The above definition sets the main general features of a PSE and is still able to

describe many modern PSEs. However, as observed by Houstis and Rice in 2000

[86], due to rapid advances in high-performance computing and networking tech-

nologies, computational modeling is shifting from the single physical component
design to the design of a whole physical system, with a large number of components

that have different shapes, obey different physical laws and manufacturing con-

straints, and interact with each other through geometric and physical interfaces. In

this scenario, the concept of multidisciplinary, or multiphysics, PSE (MPSE), has

emerged. Simply speaking, a MPSE can be defined as a framework and software

kernel for combining PSEs for tailored, flexible, multidisciplinary applications [38];

furthermore, it is naturally thought as network or Grid-enabled.

More generally, the research activity in the field of PSEs has been so active that
several very different environments are available or under development, which can be

classified as PSEs, since they exhibit many or all the features reported in the above

definitions. Furthermore, they implement these features with different base techno-

logies, architectural solutions, levels of user interaction and goals.

An exhaustive discussion of PSEs is beyond the scope of this paper. Our aim is to

sketch the current status of PSEs in the context of parallel and distributed comput-

ing, through a few representative projects, for modeling, simulation and design op-

timization in scientific and engineering applications. More details on PSEs can be
found, for example, in [79,81].

To give an idea of ‘‘traditional’’ PSEs for parallel computing architectures,

we consider the Portable Extensible Toolkit for Scientific Computation (PETSc)

[87], developed at Argonne National Laboratory, and Parallel ELLPACK

(//ELLPACK), developed at Purdue University [88]. Both of them have a quite gen-

eral scope, i.e. applications modeled by partial differential equations (PDEs), but

differs in their architecture and set of tools, thus allowing different levels of user

interaction.

1650 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662



In PETSc, data structures and support for distributed matrix/vector management,

preconditioners, linear solvers, non-linear solvers and time-stepping routines are or-

ganized into a hierarchical architecture, using an object-oriented programming

model. The bottom layer of this architecture is implemented on the top of the

MPI and BLAS [89–91] standard interfaces and of the LAPACK library [92], thus
ensuring portability on a wide range of machines. Routines from other well-known

numerical software libraries, converted to the C language, are included into higher

layers. C/C++ and Fortran interfaces are provided at the highest level. PETSc can

be used at a beginner level, but it is suited for advanced users wishing to have a de-

tailed control over the solution process. Although PETSc does not have all of the

features reported in the definition of PSE, it is widely used by the scientific commu-

nity, since it makes available a large selection of advanced solvers for main compu-

tational kernels arising in scientific simulations, hiding the complexity of algorithms
and data structures.

//ELLPACK evolved from the sequential ELLPACK PSE [93], not only by intro-

ducing PDE solvers and facilities for parallel processing, but also by including other

discretization techniques and an advanced GUI. //ELLPACK has a software architec-

ture consisting of five main layers [88]. The top one is the above mentioned GUI,

which allows to specify the PDE problem, the solution process and various post-

processing analyses, with the help of a knowledge-based system, assisting the users

in their choices. The specifications are transformed into a high-level PDE-oriented
language, which is the second layer of interface of the architecture, and, at the third

layer, the //ELLPACK language preprocessor compiles this language into a Fortran

program, that calls the library modules needed by the solution process. The fourth

layer is the execution environment, which assists users in compiling and running

//ELLPACK programs, and is therefore responsible for locating and allocating hard-

ware and software resources and for managing data scatter/gather to/from distributed

machines. The fifth, and bottom, layer is composed by several libraries of sequential

and parallel PDE solvers, both ‘‘native’’ and ‘‘foreign’’, provided with suitable inter-
faces that allow them to be composed and to interact with the whole system; the par-

allel solvers have been implemented on the top of many communication libraries.

Other traditional parallel PSEs could be mentioned here, targeted at different ap-

plication domains and implementing somewhat different software architectures, but

showing essentially the same general features of the previous ones [79]. To give just

an example of a PSE with a narrow, i.e. more specific, scope, we cite the AirShed

Modeler, developed by the University of California–Irvine and the California Insti-

tute of Technology, which provides a workbench for simulations with different air
quality models and solution algorithms [94]. It is also interesting to mention

CAMEL, as an example of parallel PSE based on the cellular automata approach

to scientific and engineering modeling [95].

The previous PSEs do not implement the modern concept of network-based com-

puting. Actually, an interesting evolution toward that direction isWebPDELab [96],

which is an Internet-based client–server implementation of //ELLPACK, and shows

a possible approach for building network-enabled computational servers. From the

point of view of software architecture, it can be seen as an extension of //ELLPACK,

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1651



through the addition of further layers addressing issues of network-based comput-

ing. The WebPDELab server is accessed from the WebPDELab web site, by using

a Java-enabled browser; indeed, the //ELLPACK GUI is made available through a

Java-based remote display system, which uses the TCP/IP protocol. A WebPDELab

manager, made of CGI scripts, controls all the user-server interactions; it also se-
lects the machine with the lightest traffic among the available ones, to run the

//ELLPACK software, in a pool of machines available at Purdue University.

A different approach to building a network-enabled computational server is im-

plemented by NetSolve, under development at the Innovative Computing Labora-

tory of University of Tenneesee [97]. In this case, a distributed virtual library for

numerical computation is made available to the user by simple APIs for a wide va-

riety of programming languages/environments, like C, Fortran, Java, Matlab and

Mathematica. NetSolve can be regarded as a PSE for remote computing and, more
generally, for Grid computing. The NetSolve architecture is based on a client–server

design, with intelligent agents keeping the state of the whole system. At the top layer,

the NetSolve client library is linked in with the user�s application, that makes RPC-

style calls to NetSolve APIs for specific services. At the bottom layer, there is a set of

loosely-connected machines (workstations, SMPs, MPPs, clusters), in a local or non-

local, homogeneous or heterogeneous network, running a NetSolve computational

server, i.e. a computational resource, that has access to sequential and parallel li-

braries for scientific computing. The bottom layer, in turn, is built on the ‘‘abstract
machine’’ that is provided by middleware and by single-machine software. The whole

system can be seen as a completely connected graph, in which every agent maintains

a database of NetSolve servers along with their hardware/software capabilities and

dynamic usage statistics, for using this information to allocate the ‘‘best’’ resource

for client requests, balance the load among the servers and keep track of failed ones.

It is also worth noting that NetSolve provides the possibility of extending its services

by the use of problem description files to generate wrappers to library codes.

Somewhat similar projects to build remote computing servers are Ninf [98], Nim-
rod [99], andMetaNEOS [100], but their discussion is beyond the scope of this paper.

We spend instead some more words on NetSolve, to show another interesting ap-

proach in the extension and evolution of PSEs toward Grid computing. Rather than

a PSE, NetSolve is more often ‘‘classified’’ as a middleware enabling the access to

remote hardware and software resources. Therefore, it offers a possibility for tying

together PSEs and Grid resources. In other words, NetSolve can act as a middle

layer between a front-end, such as a PSE, and a Grid back-end, such as Globus.

In this context, some efforts have been carried out to integrate NetSolve with the
SCIRun PSE, under continuous development at the SCI Institute of University of

Utah [101,102]. SCIRun has been designed to allow interactive construction, debug-

ging and steering of large-scale scientific computations, via a component-based

visual programming model. The SCIRun architecture has been built looking at an

application as a dataflow graph of computational modules, linked together in a

visual composition environment. Execution is multi-threaded, with each SCIRun

module having its own thread of execution and running as soon as it receives all

of its own parameters; therefore, task parallelism is allowed, on SMP machines. This

1652 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662



point makes difficult to extend SCIRun to a distributed-memory environment. The

integration of SCIRun and NetSolve, allows not only to extend the functionality of

the PSE with optimized numerical libraries, but also to provide a mechanism to dis-

tribute some compute-intensive task to an MPP, without merging the SCIRun multi-

threaded environment with the MPP message-passing environment.
The RPC-style mechanism exploited by NetSolve can be used as a possible mech-

anism supporting the integration of heterogeneous and distributed units into large

software systems, in the same way other common communication and cooperation

mechanisms can be used. Another approach, also exploiting the agent technology,

is that implemented in the GasTurbnLab project, at Purdue University, for develop-

ing a MPSE that supports the simulations needed for the design of efficient gas tur-

bine engines [38]. The whole PSE framework is based on a network of computational

agents, assuming a network-enabled run-time support environment. Three main ar-
chitectural layers can be identified: the user interface, the middleware and the com-

putational software infrastructure. A visual composition environment, to construct

and wire components in the form of a dataflow graph, is provided as user interface.

The Grasshoper distributed agent environment is used as middleware, to facilitate

the agent-based computational simulation paradigm; it runs on all the distributed

hosts making the hardware infrastructure and manages resource selection, allocation

and monitoring through the so-called database agents and resource agents. The com-

putational software infrastructure, determined by the target class of problems, is
made essentially by computational fluid dynamics codes, such as ALE-3D and

KIVA-3V, and by //ELLPACK modules, encapsulated within agents, using a multi-

layered model, designed to facilitate agent mobility.

A completely different approach to software integration and reuse is based on the

component programming model. In this context, several CORBA-based PSEs have

been designed. A representative example is the MDS-PSE project, under develop-

ment at Cardiff University and targeted at molecular dynamics simulations (MDS)

[103,104]. In the MDS-PSE architectural design, each component is represented by
a well-defined component model specified in XML and is stored in a component re-

pository. A visual program composition environment enable users to build and edit

applications by plugging together components, by inserting components into

pre-defined templates or by replacing components in higher-level hierarchical com-

ponents; a Java-based expert system gives the user some advice on the use of

components. An intelligent resource management system assigns to different compu-

tational resources the tasks corresponding to the composed application. Either a

whole MPI-based legacy code or subsystems of it have been wrapped as CORBA ob-
jects with no extensions of OMGs CORBA specification and IDL compiler; a com-

bination of the MPI run-time with the CORBA environment allows to use MPI to

manage intracommunications of components, and the CORBA ORB to manage in-

tercommunications of components [105].

A slightly different solution for wrapping MPI legacy codes as CORBA objects

has been chosen in the Esprit project JaCo3, carried out by many European research

and industry partners to develop a PSE for building multi-code simulation applica-

tions. In this case, the CORBA object model has been extended by introducing the

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1653



Table 1

Key features of current PEs and PSEs (part 1)

Scope Parallel and

distributed processing

Programming

methodology

Software interoper-

ability, expandability

and reuse

PEs

C & MPI General purpose SMP, MPP, COW,

distributed systems

(message passing)

User and developer

view: procedural

Any C/Fortran

bindings can be used,

provided there are C

wrappings

HPF Data parallel,

general purpose,

emphasis on

numerical

applications

SMP, MPP, COW

(message passing +

shared memory)

User and developer

view: procedural

Bindings for many

environments avail-

able (e.g. CORBA)

ASSIST General purpose SMP, MPP, COW,

distributed systems

(message passing)

User view: skeleton

(coordination frame-

work setup); devel-

oper view: object

oriented

CORBA (use

external objects,

export program

functionalities);

C, C++, Fortran

supported; modular

compiler design

allows introduction

of new skeletons

Skipper General purpose,

with emphasis on

image processing

applications

COW, distributed

systems (message

passing)

User view: skeleton

(parallel framework

setup); developer

view: functional

C, Ocaml supported;

possibility to

implement new

skeletons in terms

of the existing ones

CO2P3S General purpose SMP (multithreading) User and developer

view: design pat-

terns, object oriented

Java supported;

modular compiler

design: different

levels of intervention

allowed, tools to edit

new patterns pro-

vided to experts users

PSEs

PETSc PDE problems SMP, MPP, COW

(message passing)

User and developer

view: object oriented

C, C++, Fortran

bindings provided,

C++ wrappers

required to

integrate software

//ELL-

PACK

PDE problems SMP, MPP, COW

(message passing)

User view: object

oriented; developer

view: procedural

Suitable interfacing

code required

NetSolve Scientific computing

applications

Distributed systems

(client/agent/server

architecture)

User view:

procedural;

developer view

procedural,

RPC style

Can act as a middle

layer between appli-

cations/PSEs and

Grid resources,

provides tools

generating wrappers

for code integration

1654 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662



concept of parallel object and IDL distributed data structures (arrays and sequences)

[106], following the approach proposed in Pardis [69].

The different solutions to the problem of interoperability and software reuse in a

distributed and/or Grid environment naturally raise the problem of having a well-

defined standard to be used in developing large high-performance multi-component

applications. The CCA Forum is certainly addressing this problem, not only by de-

fining the required specifications, but also working to develop CCA-compliant

frameworks, such as the already mentioned CCAFFEINE and XCAT, and CCA-
compliant components to be connected inside the frameworks, such as the ones de-

veloped at the Argonne National Laboratory [107].

From the previous discussion on PSEs for parallel, distributed and Grid comput-

ing we see that a great effort is currently carried out to design and build PSEs that

can match the current needs of science and technology. Furthermore, an interesting

debate on features and requirements of the future generations of PSEs is active, in

order to individuate the research issues to be addressed in the medium and long term.

6. Conclusions

The previous discussion on PEs and PSEs was aimed at giving a unifying view of

the design and development activity concerning advanced environments for parallel

and distributed computing, in light of the key concepts identified in Section 3. These

concepts indeed provide common guidelines and goals in the development of ad-

vanced environments, although they are addressed with different emphasis and using
different solutions. In order to give a more compact picture of the current status of

PEs and PSEs, in Tables 1 and 2 we summarize the key features of several PEs and

PSEs cited in Sections 4 and 5 (only one out of advanced environments with close

characteristics has been selected for inclusion in the tables).

Table 1 (continued)

Scope Parallel and

distributed processing

Programming

methodology

Software interoper-

ability, expandability

and reuse

SCIRun Scientific computing

applications

SMP (multithreading) User view: data flow;

developer view:

object oriented

C++ wrappers/

classes and Tcl

scripts required to

integrate software

GasTurbn-

Lab

Design and

simulation of

turbine engines

Distributed systems

(agent-based

architecture)

User view: data flow;

developer view:

agent-based

Wrapping as agents,

or as servers

accessible by agents,

required

MDS-PSE Molecular dynamic

simulations

Distributed systems

(agent-based

architecture)

User and developer

view: component-

based (Java and

CORBA objects)

Interoperability with

Java/CORBA

objects, predefined

templates to create

new components

provided

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1655



From the previous discussion it also appears that a significant evolution of PEs

and PSEs took place in the last decade and that the research in this field is currently

very active, to match the rapid changes in technology and the new requirements of

applications. On the other hand, to make such environments effectively, easily and

reliably usable by a wide community, many problems must still be addressed and

solved.

Table 2

Key features of current PEs and PSEs (part 2)

User interface Resource selection, allocation

and management

Performance tuning

PEs

C & MPI Command line

interface

Hardware targeting at user

level

HPF Command line

interface

Distributed data structure and

loop parameter tuning

ASSIST Command line

interface

XML resource configuration

file automatically generated by

the compiler, GUI tools allow

user config file editing

Possible via alternative

skeleton/coordination pattern

application structure

Skipper Command line

interface

Possible via alternative

skeleton application structure

CO2P3S GUI Different levels possible: user

(rewrite application code with

different patterns), expert

(overwrite methods in the

implementation framework)

PSEs

PETSc C, C++, Fortran

APIs

At implementation level, user

tuning allowed

//ELLPACK Problem oriented

GUI and textual

language, expert

system support in

selecting solution

modules

Assisted, based on user�s
requirements and static

configuration infos

At implementation level

NetSolve C, Fortran, Java,

Matlab and

Mathematica APIs,

web-based Java

GUI

Agent-based dynamic selection

of ‘‘best-suited’’ computational

server, fault tolerance

At implementation and

resource allocation level

SCIRun Visual composition

environment

Thread allocation and man-

agement mechanisms provided

At implementation and thread

management level

GasTurbnLab Visual composition

environment

Agent-based dynamic selection

of resources, fault tolerance

At implementation and

resource allocation level

MDS-PSE Visual composition

environment, expert

system support in

locating and using

components

Task scheduling and

allocation, based on

resource infos and component

performance models

At implementation and task

scheduling/allocation level

1656 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662



We also note that, despite the fact we discussed PEs and PSEs separately, we do

not consider them ‘‘antagonist’’ categories. In our opinion, they simply provide dif-

ferent tools to solve problems. In particular, they provide tools requiring a different

user participation in the development of the final application. In many cases, when

users are faced with the problem of developing a high-performance application, they
can use both PEs and PSEs. The choice is mainly driven by the user experience, the

effort that can be spent in the application development as well as the performance

results expected.

Finally, we report the ‘‘origins’’ of this paper. The authors are involved in two on-

going Italian National Research Programmes, funded by the Italian Space Agency

(ASI) and by the Italian National Research Council (CNR). These Programmes

share the objective of developing an advanced PE for a wide range of parallel and

distributed architectures, which provides also numerical software components that
can be easily exploited into existing and new high-performance applications. In this

context, the authors met several times and discussed their different experiences and

points of view, coming to the view presented in this paper.

References

[1] Carnegie Mellon Software Engineering Institute, <http://www.sei.cmu.edu/architecture/defini-

tions.html>.

[2] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-Wesley, 1997.

[3] D. Garlan, D. Perry, Introduction to the special issue on software architecture, IEEE Transactions

on Software Engineering 21 (1995) 269–274.

[4] Top500.org, Top500 supercomputer sites, <http://www.top500.org>.

[5] J. Hsieh, V. Mashayekhi, R. Rooholamini, Architectural and performance evaluation of GigaNet

and Myrinet interconnections on clusters of small-scale SMP servers, in: Proceedings of

SuperComputing 2000, 2000.

[6] QSNet, <http://www.quadrics.com/website/pages/02qsn.html>.

[7] The Myricom home page: <http://www.myrinet.com/>.

[8] P. Messina, High-performance computers: The next generation (Part I), Computers in Physics 11

(1997) 454–466.

[9] P. Messina, High-performance computers: The next generation (Part II), Computers in Physics 11

(1997) 598–610.

[10] USA Interagency WG on Information Technology Research and Development, Networking and

Information Technology Research and Development, 2002. Available from <http://www.itrd.gov/

pubs/blue02>.

[11] Object Management Group, Common Object Request Broker Architecture (CORBA/IIOP), version

3.0, OMG specification document, 2002. Available from <http://www.omg.org/technology/docu-

ments/formal/corba_iiop.htm>, see also the CORBA home page: <http://www.corba.org/>.

[12] I. Foster, C. Kesselman, Globus: a metacomputing infrastructure toolkit, International Journal of

Supercomputer Applications 11 (1997) 115–128, see also the Globus Project home page: <http://

www.globus.org/>.

[13] A. Grimshaw, A. Ferrari, F. Knabe, M. Humphrey, Legion: an operating system for wide-area

computing, IEEE Computer 32 (1999) 29–37.

[14] J. Basney, M. Livny, Deploying a high throughput computing cluster, in: R. Buyya (Ed.),

Performance Cluster Computing, vol. 1, Prentice Hall PTR, 1999, see also the CONDOR Project

home page: <http://www.cs.wisc.edu/condor/>.

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1657

http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html
http://www.top500.org
http://www.quadrics.com/website/pages/02qsn.html
http://www.myrinet.com/
http://www.itrd.gov/pubs/blue02
http://www.itrd.gov/pubs/blue02
http://www.omg.org/technology/documents/formal/corba_iiop.htm
http://www.omg.org/technology/documents/formal/corba_iiop.htm
http://www.corba.org/
http://www.globus.org/
http://www.globus.org/
http://www.cs.wisc.edu/condor/


[15] R. Wolski, N. Spring, J. Hayes, The network weather service: a distributed resource performance

forecasting service for metacomputing, Future Generation Computer Systems 15 (1999) 757–

768.

[16] USA NSF Middleware Initiative, <http://www.nsf-middleware.org>.

[17] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the Grid: enabling scalable virtual organizations,

International Journal of Supercomputer Applications 15 (2001).

[18] G. Fox, Peer-to-peer networks, Computing in Science and Engineering 3 (3) (2001) 75–77.

[19] G. Fox, D. Gannon, Computational Grids, Computing in Science and Engineering 4 (2001) 74–

77.

[20] GNU, GCC home page: <http://www.gnu.org/software/gcc/gcc.html>.

[21] The Portland Group home page: <http://www.pgroup.com/index.htm>.

[22] P. Au, J. Darlington, M. Ghanem, Y. Guo, H. To, J. Yang, Co-ordinating heterogeneous parallel

computation, in: L. Bouge, P. Fraigniaud, A. Mignotte, Y. Robert (Eds.), Euro-Par�96, 1996, pp.
601–614.

[23] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, M. Vanneschi, P3L: a structured high level

programming language and its structured support, Concurrency Practice and Experience 7 (3) (1995)

225–255.

[24] S. Chakrabarti, J. Demmel, D. Yelick, Modeling the benefits of mixed data and task parallelism,

Lapack Working Note 97, Technical Report CS-95-289, University of Tennessee, 1995. Available

from <http://www.netlib.org/lapack/lawns/>.

[25] S. McDonald, D. Szafron, J. Schaeffer, S. Bromling, Generating parallel program frameworks from

parallel design patterns, in: A. Bode, T. Ludwing, W. Karl, R. Wism€uuller (Eds.), Euro-Par 2000

Parallel Processing, vol. 1900, Springer-Verlag, 2000, pp. 95–105.

[26] S. Pelagatti, Structured Development of Parallel Programs, Taylor and Francis, 1998.

[27] M. Danelutto, Efficient support for skeletons on workstation clusters, Parallel Processing Letters 11

(1) (2001) 41–56.

[28] C. Szyperski, Component software: beyond object-oriented programming, ACM Press, 1998.

[29] E. Gamma, R. Helm, R. Johnson, J. Vissides, Design Patterns: Elements of Reusable Object-

Oriented Software, Addison Wesley, 1994.

[30] J.J. Dongarra, D.W. Walker, The quest for Petascale computing, Computing in Science and

Engineering 3 (3) (2001) 32–39.

[31] R. Stevens, Applications for PetaFLOPs, PetaFLOPs II Conference, 1999. Available from <http://

www.cacr.caltech.edu/pflops2/>.

[32] J. Ambrosiano, D. Quinlan, R.A. Armstrong, Software interoperability, ASCI Technology Prospec-

tus on Simulation and Computational Science 1 (2001) 25–35.

[33] M. Horsmann, M. Kirtland, DCOM Architecture, Microsoft White Paper, 1997. Available from

<http://www.microsoft.com/com/wpaper/>.

[34] R. Englander, Developing Java Beans, O�Really & Associates, 1997.

[35] R. Monson-Haefel, Enterprise Java Beans, third ed., O�Really & Associates, 2001.

[36] The Common Component Architecture Forum home page: <http://www.cca-forum.org/>.

[37] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, B. Smolinski,

Toward a common component architecture for high-performance scientific computing, in: Proceed-

ings of the 1999 Conference on High Performance Distributed Computing. Available from <http://

www-unix.mcs.anl.gov/%7Ecurfman/cca/web/cca_paper.html>.

[38] S. Markus et al., An agent-based Netcentric framework for multidisciplinary problem solving

environments, International Journal of Computational Engineering Science 1 (2000) 33–60, see also

GasTurbnLab home page: <http://www.cs.purdue.edu/research/cse/gasturbn/>.

[39] A. Joshi, N. Ramakrishnan, E.N. Houstis, Multiagent recommender systems in networked scientific

computing, in: E.N. Houstis, J.R. Rice, E. Gallopoulos, R. Bramley (Eds.), Enabling Technologies

for Computational Science. Frameworks, Middleware and Environments, Kluwer Academic

Publishers, 2000, pp. 213–223.

[40] A. Petitet et al., Numerical libraries and the Grid, International Journal of High Performance

Applications and Supercomputing 15 (2001) 359–374.

1658 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662

http://www.nsf-middleware.org
http://www.gnu.org/software/gcc/gcc.html
http://www.pgroup.com/index.htm
http://www.netlib.org/lapack/lawns/
http://www.cacr.caltech.edu/pflops2/
http://www.cacr.caltech.edu/pflops2/
http://www.microsoft.com/com/wpaper/
http://www.cca-forum.org/
http://www-unix.mcs.anl.gov/%7Ecurfman/cca/web/cca_paper.html
http://www-unix.mcs.anl.gov/%7Ecurfman/cca/web/cca_paper.html
http://www.cs.purdue.edu/research/cse/gasturbn/


[41] M. Snir et al., MPI: The Complete Reference, 2-volume set, MIT Press, 1998. See also the MPI

standard home page: <http://www.unix.mcs.anl.gov/mpi/>.

[42] A. Geist et al., PVM––Parallel Virtual Machine, MIT Press, 1994.

[43] D.C. Schmidt, The ADAPTIVE communication environment: object-oriented network programming

components for developing client/server applications, in: 11th and 12th Sun Users Group Conference,

1993–94. Available from <http://www.cs.wustl.edu/�schmidt/ACE-papers.html>, see also the Adap-

tive Communication Environment (ACE) home page: <http://www.cs.wustl.edu/�schmidt/ACE.

html>.

[44] MPICH home page: <http://www.unix.mcs.anl.gov/mpi/mpich/>.

[45] LAM-MPI home page: <http://www.lam-mpi.org/>.

[46] M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computations, Pitman,

Research Monographs in Parallel and Distributed Computing, 1989.

[47] M. Cole, A skeletal approach to exploitation of parallelism, in: C. Jesshope (Ed.), Proceedings of

CONPAR�88, British Computer Society Workshop Series, Cambridge University Press, 1989.

[48] M. Danelutto, R.D. Meglio, S. Orlando, S. Pelagatti, M. Vanneschi, A methodology for the

development and support of massively parallel programs, Future Generation Computer Systems 8

(1–3) (1992) 205–220.

[49] B. Bacci, M. Danelutto, S. Pelagatti, M. Vanneschi, SkIE: a heterogeneous environment for HPC

applications, Parallel Computing 25 (1999) 1827–1852.

[50] J. Darlington, A.J. Field, P. Harrison, P.H.J. Kelly, D.W.N. Sharp, Q. Wu, R.L. While, Parallel

programming using skeleton functions, in: M.R.A. Bode, G. Wolf (Eds.), PARLE�93 Parallel

Architectures and Languages Europe, Lecture Notes in Computer Science, vol. 694, Springer-Verlag,

1993.

[51] J. Darlington, Y. Guo, H.W. To, J. Yang, Parallel skeletons for structured composition, in: Fifth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM Press,

1995.

[52] J. Darlington, Y. Guo, H.W. To, Q. Wu, J. Yang, M. Kohler, Fortran-S: a uniform functional

interface to parallel imperative languages, in: Third Parallel Computing Workshop (PCW�94),
Fujitsu Laboratories Ltd., 1994.

[53] J. Darlington, M. Ghanem, H.W. To, Structured parallel programming, in: Programming Models

for Massively Parallel Computers, IEEE Computer Society Press, 1993.

[54] H. Burkhart, S. Gutzwiller, Steps towards reusability and portability in parallel programming, in:

K.M. Decker, R.M. Rehmann (Eds.), Programming Environments for Massively Parallel Distrib-

uted Systems, Birkhauser, 1994, pp. 147–157.

[55] J. Schaeffer, D. Szafron, G. Lobe, I. Parsons, The enterprise model for developing parallel

applications, IEEE Parallel and Distributed Technology 1 (3) (1993) 85–96.

[56] T. Bratvold, Skeleton-based parallelisation of functional programs, Ph.D. thesis, Heriot-Watt

University, 1994.

[57] J. Serot, Embodying parallel functional skeletons: an experimental implementation on top of MPI,

in: G. Lengauer, M. Griebl (Eds.), Euro-Par�97 Parallel Processing, Lecture Notes in Computer

Science, vol. 1300, Springer-Verlag, 1997, pp. 629–633.

[58] J. Serot, D. Ginhac, J. Derutin, SKiPPER: a skeleton-based parallel programming environment for

real-time image processing applications, in: Proceedings of the 5th International Parallel Computing

Technologies Conference (PaCT�99), 1999.
[59] M. S€uudholt, The transformational derivation of parallel programs using data-distribution algebras

and skeletons, Ph.D. thesis, Technische Universit€aat Berlin, 1997. Available from <http://

www.emn.fr/dept_info/perso/sudholt/papers/phd.ps.gz>.

[60] B. Bacci, S. Gorlatch, C. Lengauer, S. Pelagatti, Skeletons and transformations in an integrated

parallel programming environment, in: Proceedings of the 5th International Parallel Computing

Technologies Conference (PaCT�99), 1999.
[61] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, M. Vanneschi, Summarising an experiment in

parallel programming language design, in: B. Hertzberger, G. Serazzi (Eds.), High-Performance

Computing and Networking, vol. 919, 1995, pp. 8–13.

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1659

http://www-unix.mcs.anl.gov/mpi/
http://www.cs.wustl.edu/~schmidt/ACE-papers.html
http://www.cs.wustl.edu/~schmidt/ACE-papers.html
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.lam-mpi.org/
http://www.emn.fr/dept_info/perso/sudholt/papers/phd.ps.gz
http://www.emn.fr/dept_info/perso/sudholt/papers/phd.ps.gz


[62] D. Szafron, J. Schaeffer, Experimentally assessing the usability of parallel programming systems, in:

Programming Environments for Massively Parallel Distributed Systems, Birkhauser, 1994, pp. 203–

212.

[63] N. Carriero, D. Gelernter, Linda in context, Communications of the ACM 32 (4) (1989) 444–458.

[64] S. McDonald, J. Anvik, D. Szafron, J. Schaeffer, S. Bromling, K. Tan, From patterns to frameworks

to parallel programs, this issue.

[65] B.L. Massingill, T.G. Mattson, B.A. Sanders, A pattern language for parallel application programs,

in: A. Bode, T. Ludwig, W. Karl, R. Wismuller (Eds.), Euro-Par 2000 Parallel Processing, Lecture

Notes in Computer Science, vol. 1900, Springer-Verlag, 2000, pp. 678–681.

[66] B.L. Massingill, Experiments with program parallelization using archetypes and stepwise refinement,

Technical Report TR 98-012, University of Florida, CISE, 1998.

[67] B.L. Massingill, T.G. Mattson, B.A. Sanders, A pattern language for parallel application languages,

Technical Report TR 99-022, University of Florida, CISE, 1999.

[68] The POOMA home page: <http://www.acl.lanl.gov/pooma/>.

[69] K. Keahey, D. Gannon, PARDIS: a CORBA-based architecture for application-level parallel

distributed computation, in: Proceedings of Supercomputing �97, 1997. Available from <http://

www.supercomp.org/sc97/proceedings/TECH/KEAHEY/INDEX.HTM>.

[70] P. Beaugendre, T. Priol, C. Ren�ee, Cobra: a CORBA-compliant programming environment for high-

performance computing, Technical Report PI 1141, INRIA, 1998. Available from <http://

www.irisa.fr/EXTERNE/bibli/pi/1141/1141.html>.

[71] B.A. Allan et al., The CCA core specification in a distributed memory SPMD framework,

Concurrency and Computation––Practice & Experience 14 (5) (2002) 323–345. Available from

<http://www.cca-forum.org/old/ccafe03a/index.html>.

[72] M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon, R. Bramley, XCAT 2.0: a

component based programming model for Grid Web services, Technical Report 562, Indiana

University, Bloomington, Indiana, 2002, see also XCAT home page: <http://www.extreme.indi-

ana.edu/xcat/>.

[73] M. Vanneschi, ASSIST: an environment for parallel and distributed portable applications, Technical

Report TR-02-07, Department of Computer Science, University of Pisa, Italy, 2002. Available from

<http://www.di.unipi.it/ricerca/TR>.

[74] M. Vanneschi, The programming model of ASSIST, an environment for parallel and distributed

portable applications, this issue.

[75] Global Grid Forum, Application Programming Models home page: <http://www.gridforum.org/

7_APM/APS.htm>.

[76] F. Berman et al., The GrADS project: software support for high-level Grid application development,

International Journal of High Performance Computing Applications 15 (4) (2001) 327–344, see also

the GrADS home page: <http://hipersoft.cs.rice.edu/grads/>.

[77] J.R. Rice, Mathematical Software, Academic Press, 1971.

[78] W.J. Cody, Observations on the mathematical software effort, in: W.R. Cowell (Ed.), Sources and

Development of Mathematical Software, Prentice-Hall, 1984.

[79] Problem Solving Environments home page: <http://www.cgi.cs.purdue.edu/cgi-bin/acc/pses.cgi/>.

[80] D. di Serafino, L. Maddalena, P. Messina, A. Murli, Some perspectives on high-performance

mathematical software, in: R. De Leone, A. Murli, P.M. Pardalos, G. Toraldo (Eds.), High

Performance Algorithms and Software in Nonlinear Optimization, Kluwer Academic Publishers,

1998, pp. 1–23.

[81] E.N. Houstis, J.R. Rice, E. Gallopoulos, R. Bramley (Eds.), Enabling Technologies for Compu-

tational Science. Frameworks, Middleware and Environments, Kluwer Academic Publishers, 2000.

[82] D. di Serafino, L. Maddalena, A. Murli, PINEAPL: a European project to develop a parallel

numerical library for industrial applications, in: C. Lengauer, M. Griebl, S. Gorlatch (Eds.), Euro-

Par�97 Parallel Processing, Lecture Notes in Computer Science, vol. 1300, Springer-Verlag, 1997, pp.

1333–1339.

[83] I. de Bono, D. di Serafino, E. Ducloux, Using a general-purpose numerical library to parallelize an

industrial application: design of high-performance lasers, in: D. Pritchard, J. Reeve (Eds.), Euro-

1660 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662

http://www.acl.lanl.gov/pooma/
http://www.supercomp.org/sc97/proceedings/TECH/KEAHEY/INDEX.HTM
http://www.supercomp.org/sc97/proceedings/TECH/KEAHEY/INDEX.HTM
http://www.irisa.fr/EXTERNE/bibli/pi/1141/1141.html
http://www.irisa.fr/EXTERNE/bibli/pi/1141/1141.html
http://www.cca-forum.org/old/ccafe03a/index.html
http://www.extreme.indiana.edu/xcat/
http://www.extreme.indiana.edu/xcat/
http://www.di.unipi.it/ricerca/TR
http://www.gridforum.org/7_APM/APS.htm
http://www.gridforum.org/7_APM/APS.htm
http://hipersoft.cs.rice.edu/grads/
http://www-cgi.cs.purdue.edu/cgi-bin/acc/pses.cgi/


Par�98 Parallel Processing, Lecture Notes in Computer Science, vol. 1470, Springer-Verlag, 1998, pp.

812–820.

[84] L. Arnone, P. D�Ambra, S. Filippone, A parallel version of KIVA-3 based on general-purpose

numerical software and its use in two-stroke engine applications, International Journal of Computer

Research 10 (2001) 31–46 (special issue on Industrial Applications of Parallel Computing).

[85] E. Gallopoulos, E. Houstis, J.R. Rice, Computer as thinker/doer: problem-solving environments for

computational science, IEEE Computational Science and Engineering 1 (2) (1994) 11–23.

[86] E.N. Houstis, J.R. Rice, Future problem solving environments for computational science,

Mathematics and Computers in Simulation 54 (2000) 243–257.

[87] S. Balay, W.D. Gropp, L. Curfman McInnes, B.F. Smith, Efficient management of parallelism in

object oriented numerical software libraries, in: E. Arge, A.M. Bruaset, H.P. Langtangen (Eds.),

Modern Software Tools in Scientific Computing, Birkhauser Press, 1997, pp. 163–202, see also

PETSc home page: <http://www.mcs.anl.gov/petsc>.

[88] E.N. Houstis et al., Parallel ELLPACK: a problem solving environment for PDE based applications

on multicomputer platforms, ACM Transaction of Mathematical Software 24 (1998) 30–73, see also

Parallel ELLPACK home page: <http://www.cs.purdue.edu/research/cse/pellpack/>.

[89] C.L. Lawson, R.J. Hanson, D. Kincaid, F.T. Krogh, Basic linear algebra subprograms for

FORTRAN usage, ACM Transactions on Mathematical Software 5 (1979) 308–323.

[90] J.J. Dongarra, J. Du Croz, S. Hammarling, R.J. Hanson, An extended set of FORTRAN basic linear

algebra subprograms, ACM Transactions on Mathematical Software 14 (1988) 1–17.

[91] J.J. Dongarra, J. Du Croz, I.S. Duff, S. Hammarling, A set of level 3 basic linear algebra

subprograms, ACM Transactions on Mathematical Software 16 (1990) 1–17.

[92] E. Anderson, LAPACK Users� Guide, third ed., SIAM, 1999.

[93] J.R. Rice, R.F. Boisvert, Solving Elliptic Problems Using ELLPACK, Springer-Verlag, 1984.

[94] D. Dabdub, K.M. Chandy, T.T. Hewett, Managing specificity and generality: tailoring general

archetypal PSEs to specific users, in: E.N. Houstis, J.R. Rice, E. Gallopoulos, R. Bramley (Eds.),

Enabling Technologies for Computational Science. Frameworks, Middleware and Environments,

Kluwer Academic Publishers, 2000, pp. 65–77.

[95] G. Spezzano, D. Talia, S. Di Gregorio, A parallel cellular tool for interactive modeling and

simulation, IEEE Computational Science and Engineering 3 (3) (1996) 33–43.

[96] E.N. Houstis, A.C. Catlin, N. Dhanjani, The WebPDELab server: a problem solving environment

for PDE-based applications, IMACS, in press, see also WebPDELab home page: <http://

www.webpdelab.org/>.

[97] D. Arnold et al., Users� Guide to NetSolve V1.4.1, Technical Report ICL-UT-02-05, Innovative

Computing Department, University of Tennessee, Knoxville, Tennessee, 2002, see also NetSolve

home page: <http://icl.cs.utk.edu/netsolve/>.

[98] H. Nakada, M. Sato, S. Sekiguchi, Design issues of network enabled server systems for the Grid, in:

R. Buyya, M. Baker (Eds.), Grid Computing––GRID 2000, Lecture Notes in Computer Science, vol.

1971, Springer-Verlag, 2000, pp. 4–17, see also Ninf home page: <http://ninf.apgrid.org/>.

[99] Nimrod home page: <http://www.csse.monash.edu.au/�davida/nimrod.html/>.

[100] MetaNEOS home page: <http://www-unix.mcs.anl.gov/metaneos/>.

[101] C. Johnson, S. Parker, D. Weinstein, Large-scale computational science applications using the

SCIRun problem solving environment, Supercomputer (2000). Available from <http://www.sci.

utah.edu/pubs/scirun_pubs.html>, see also SCIRun home page: <http://software.sci.utah.edu/

scirun.html>.

[102] M. Miller, C. Moulding, J. Dongarra, C. Johnson, Grid-enabling problem solving environments: a

case study of SCIRun and NetSolve, in: Proceedings of High Performance Computing Symposium

2001––Grand Challenges in Computer Simulation (HPC 2001), High Performance Simulation

Environments, 2001, Seattle, Washington, pp. 98–103.

[103] D.W. Walker, M. Li, O.F. Rana, M.S. Shields, Y. Huang, The software architecture of a distributed

problem-solving environment, Concurrency Practice and Experience 12 (2000) 1455–1480.

[104] O.F. Rana, M. Li, D.W. Walker, M.S. Shields, An XML-based component model for generating

scientific applications and performing large scale simulations in a metacomputing environment,

P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662 1661

http://www.mcs.anl.gov/petsc
http://www.cs.purdue.edu/research/cse/pellpack/
http://www.webpdelab.org/
http://www.webpdelab.org/
http://icl.cs.utk.edu/netsolve/
http://ninf.apgrid.org/
http://www.csse.monash.edu.au/~davida/nimrod.html/
http://www.csse.monash.edu.au/~davida/nimrod.html/
http://www-unix.mcs.anl.gov/metaneos/
http://www.sci.utah.edu/pubs/scirun_pubs.html
http://www.sci.utah.edu/pubs/scirun_pubs.html
http://software.sci.utah.edu/scirun.html
http://software.sci.utah.edu/scirun.html


in: K. Czarnecki, U.W. Eisenecker (Eds.), Generative and Component-Based Software Engineering,

Lecture Notes in Computer Science, vol. 1799, Springer-Verlag, 2000, pp. 210–224.

[105] M. Li, O.F. Rana, D.W. Walker, Wrapping MPI-based lagacy codes as Java/CORBA components,

Future Generation Computer Systems 18 (2) (2001) 213–223.

[106] C. Ren�ee, T. Priol, MPI code encapsulation using parallel CORBA object, in: Proceedings of the 8th

IEEE International Symposium on High Performance Distributed Computing (IEEE), 1999, p. 3–10.

[107] B. Norris et al., Parallel components for PDEs and optimization: some issues and experiences, this

issue.

1662 P. D’Ambra et al. / Parallel Computing 28 (2002) 1637–1662


	Advanced environments for parallel and distributed applications: a view of current status
	Introduction
	Driving forces for advanced environments
	Hardware technology
	Base software technology
	Applications

	Key concepts and trends
	Programming environments
	Problem solving environments
	Conclusions
	References


