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Abstract. We address synchronization issues of some block matrix mul-
tiplication algorithms in a distributed computing environment. We dis-
cuss performance behavior of a client/server implementation of these
algorithms focusing on the most appropriate version which delivers the
minimum synchronization overhead. Numerical experiments are carried
out using the NetSolve distributed computing system.

1 Introduction

Distributed computing aggregates computational resources in order to tackle
problems that cannot be solved on a single system. Depending on the software
and hardware infrastructure, these resources might comprise the majority of the
supercomputers in the country or simply all the workstations within a depart-
ment. Over the last decade, distributed computing received great attention from
the scientific computing communities, thanks to a substantial improvement of
the networks bandwidth, and it is now feasible the use of geographically scat-
tered computers as a single computational resource. A significant example is
the Italian national research network GARR [7], where the backbone bandwidth
has grown from 2Mbit/sec in 1994 up to 2.5Gbit/sec in 2002, a growth factor of
about 1000 in eight years, much more than the Moore’s law about the processors
speed. In general, for computationally demanding problems the exploitation of
parallelism is a key issue in order to compute the solution within a reasonable
time. This means to decompose the given problem into smaller subproblems to
be solved concurrently (data or task decomposition).

However, it is important to underline that distributed computing environ-
ments are composed by heterogeneous computational resources, both from the
static (processors, operating systems, arithmetic,...) and dynamic (workload of
the systems, effective bandwidth of the networks,..) point of view, making very
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difficult an efficient synchronization among the nodes. For this reason, one of the
main approaches towards the development of distributed applications is based
on the client/server programming model where the application is divided into
a large number of essentially independent tasks that are dispatched to several
servers, and a “coordinator” task managed by the client module. In the parallel
computing community these problems are called “pleasingly” or “embarrass-
ingly” parallel.

The most significant example in this sense is the SETI@home project [10].
This project uses idle computers for the analysis of radio signals outcoming
from space to find extraterrestrial intelligence, and it has been able to aggregate
more than 5 millions of computers, achieving a average performance of about 60
Tflops, about the same of today’s most powerful supercomputers [4].

Beyond such example of mere networked computing, new issues arise in the
development of algorithms and software able to run efficiently on such a pervasive
hardware and software infrastructure. Following [5], in this paper we deal with
on-demand computing where remote resources are used to meet short term re-
quirements that cannot be cost effectively or conveniently locally located. These
resources may be hardware, software libraries, data repositories, and so on. In
contrast to traditional supercomputing, these applications are often driven by
cost-performance concerns rather than absolute performance. The challenging of
on demand computing derives primarily from the dynamic nature of resources re-
quirements and the potentially large populations of users and resources. Main is-
sues include middleware related topics like resources brokering and management,
configuration, authentication and security as well algorithm related aspects like
fault tolerance, latency tolerance, heterogeneity management and performance.

In this paper our reference computational environment agrees with a
client/server programming model where:

– the servers do not communicate directly each other but with the client only,
– the selection of the resources is in charge to the underlying computing envi-

ronment by means of their own dynamic allocation strategies.
– the computational information about the servers, including their availability,

load, processor speed, are hidden to the client.

In these years several computing environments have been developed with the
aim to address these topics, allowing, at the same time, a friendly access to re-
mote resources. Among them there are NetSolve [1] and Condor [8]. NetSolve is
the distributed computing environment where we implemented our algorithms.
It has been developed at the University of Tennessee to be a simple-to-use mid-
dleware system that allows users to access computational resources and to use
remote libraries, without the need to locate, configure and install them. How-
ever, for the development of algorithms for distributed computing environments,
a completely different approach with respect to the classical parallel computing
methodologies, is necessary. As case study we consider a block matrix multipli-
cation algorithm because it is a basic linear algebra computational kernel rep-
resentative of similar other computations. On the other hand, it encompasses a
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lot of data movements, so that to minimize the synchronization overhead among
the nodes becomes a challenging task.

The paper is organized as follows: in section 2 we analyze the performance be-
havior of some versions of block matrix multiplication algorithm in a client/server
programming model, in section 3 we describe experiments on two different Net-
Solve systems: a “wide area” system located at the University of Tennessee and
a “local area” system installed in our university campus. Finally, conclusions are
discussed in section 4.

2 A Client Server Block Matrix Multiplication Algorithm

Starting from PUMMA (Parallel Universal Matrix Multiplication Algorithm)
[3], the algorithm on which PDGEMM routine of ScaLAPACK is based, simi-
lar algorithms for block matrix multiplication have been developed in the last
decade. These algorithms are tuned in order to optimize the synchronization
overheads on tightly coupled distributed memory machines by overlapping com-
putations and communications; recently, new issues on heterogeneous networks
of workstations have been addressed; in this case the load balancing of proces-
sors running at different speed is the challenging task (e.g. [2] and [9]). These
implementations are based on the revision of classical parallel algorithms for ho-
mogeneous environments and they suppose that key features of the computing
resources, as the cycle times of the CPUs, are known, so it is possible to dispatch
to each node an amount of work proportional to its computational speed. How-
ever, these algorithms are based on the SPMD programming model, suitable for
distributed memory multiprocessors with a tightly intra node synchronization
but critically liable for the performance decline in a client/server distributed
computing environment.

As an example of revision for the classical parallel block matrix multiplication
algorithms let us assume that A is an (m × n) matrix, B is an (n × p) matrix
and C is an (m × p) matrix divided for simplicity of notations in square blocks
of order r, with n, m and p divisible by r. Then the blocks number of the matrix
are MB = m/r, NB = n/r and PB = p/r.

In Figure 1, three variants of a standard blocks algorithm for the matrix
multiplication C = A × B, obtained by the permutation of the loops indices are

for I=1, MB (in parallel)
for J=1, PB (in parallel)
for K=1, NB
C(I,J)=C(I,J)+
A(I,K)B(K,J)
endfor
endfor

endfor
a) (I, J, K) ordering

for I=1,MB (in parallel)
for K=1, NB
for J=1, PB (in parallel)
C(I,J)=C(I,J)+
A(I,K)B(K,J)
endfor
endfor

endfor
b) (I,K, J) ordering

for K=1, NB
for I=1, MB (in parallel)
for J=1, PB (in parallel)
C(I,J)=C(I,J)+
A(I,K)B(K,J)
endfor
endfor

endfor
c) (K, I, J) ordering

Fig. 1. Standard versions of parallel blocks matrix multiplication
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then shown. Note that the other versions are equivalent to these ones and all
versions are based on the same matrix operation:

C(I, J) = C(I, J) + A(I, K)B(K, J) (1)

In a client/server implementation, for given values of I, J and K, this oper-
ation can be computed by sending from the client to a server the three blocks
A(I, K), B(K, J) and C(I, J), then the server can update the block C(I, J) and
it can sends back the result to the client. It is important to note that in all
cases the only possible source of parallelism is along the indices I and J , in the
sense that each block C(I, J) can be computed independently from the other
ones. This is not possible for the index K, because of the risk of “race condi-
tion” accessing a given block C(I, J) for different values of K. Then, in order
to reduce the synchronization overhead the main problem in a client/server im-
plementation is to define which of the orderings in Figure 1 has to be used to
compute the several matrix operations involving the blocks C(I, J), A(I, K) and
B(K, J). For the (I,J,K) ordering (Figure 1.a) the client generates MB × PB
independent threads of computation, each of them managing the sequence along
the index K. For the (I,K,J) ordering (Figure 1.b) the client generates only MB
independent threads of computation, each of them generating PB parallel tasks
at every step of the index K . Finally, for the (K,I,J) ordering (Figure 1.c) at
each step of the index K, the client generates MB × PB parallel tasks, and it
has to wait for the completion of all these tasks before generating new ones.

For a computational cost analysis, let tijk denote the execution time (compu-
tation and communication) needed to perform the operation (1) and T (a), T (b)

and T (c) the total execution times for the three orderings in Figure 1. It is easy
to found that:

T (a) = max
i,j

∑

k

tijk T (b) = max
i

∑

k

max
j

tijk T (c) =
∑

k

max
i,j

tijk

so that:
T (a) ≤ T (b) ≤ T (c)

Then the (I,J,K) ordering is more oriented to a distributed client/server imple-
mentation than the others two orderings. The worst case is the (K, I, J) ordering.
Let us assume, for a while, the ideal case, where the environment is homogeneous
and dedicated to the computation and m = n = p. In this case the execution
time tijk = t, is the same for all the values of I, J , K, and

T (a) = T (b) = T (c) = NB · t

This result shows a linear growth with respect to NB of the total execution
time when the matrix dimension n grows while the block dimension r = n/NB
is kept constant, and that the ideal scaled efficiency when we multiply by α the
matrix dimension n is:

Sα = T (a)
n /T (a)

αn =
n · t/r

αn · t/r
=

1
α
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Finally let us compute the communication overhead of each task. In all the cases,
for each value of K, the core instruction (1) is executed MB · NB · PB times,
each requiring 4 blocks communications of size r2 (C(I, J), A(I, K), B(K, J) and
back the update of C(I, J)) between the client and the servers. This means that
4r2 double precision floating point data, are exchanged between the client and
the servers. Then, the total communication overhead is due to the movement of

CO =
32n2MB · PB

NB
byte.

We implemented the three versions of the block matrix multiplication in the Net-
Solve distributed computing environment. This environment uses a client-agent-
server paradigm aimed to dispatch on the most suitable server those calculations
that require specialized software and, at the same, to minimize the total com-
munication overhead among the nodes of the environment. More precisely, the
agent keeps track of static and dynamic information about all the servers, selects
one of these on the basis of their static (hardware and software) and dynamic
(load balancing, effective networks bandwidth) features and notifies the choice
to the client. The client is then able to send directly to the server the data of the
required task, and the server can use its installed software libraries to perform
the computation on client data. Finally the server sends the results back directly
to the client and the agent is notified of the completion of the task. For instance
the core operation (1) is executed on the servers using the DGEMM routine of
LAPACK library, available with the release 2.0 of NetSolve.

3 Computational Experiments

In this section we discuss experiments that we carried out, aimed to evaluate
performance behavior of the block matrix multiplication algorithms previously
described. For each experiment, the reported total execution times are the aver-
age of 10 runs launched at different day hours in order to use the networks with
different workloads.

To this aim we used two NetSolve infrastructures. The first one is a system
located at our department that we call LAN system, and a second one is the
system located at the University of Tennessee that we call WAN system. For

LAN system WAN system
Client location Dept. Math. and Appl. Dept. Math. and Appl.

Univ. Naples - Italy Univ. Naples - Italy
Agent and Dept. Math. and Appl. Comp. Science dept.
servers location Univ. Naples - Italy Tennessee Univ.
Servers 7 PCs Pentium III and IV > 50 PCs and WS
Measured latency ∼ 200 μsec ∼ 140 msec
and bandwith ∼ 50 Mbits ∼ 1.5 Mbits

Fig. 2. features of the NetSolve systems used for our experiments
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both systems we report in Figure 2 the main features with special regard to the
network. Note the client location is the same in both cases.

A first set of experiments is aimed to verify the effectiveness of the (I,J,K)
ordering of the block matrix multiplication algorithm respect to the other ver-
sions. With this aim we implemented the two orderings (I,J,K) and (K,I,J) in
Figure 1 (namely the best expected version and the worst expected version) on
the WAN NetSolve system with square matrix of order n = 250, 500, 1000, 1500,
2000, and a fixed block size r = 250, thus NB = 1, 2, 4, 6, 8. In Figure 3 we
report the average execution time of the two orderings, where it is evident the
better performance of the (I,J,K) ordering of the algorithm. Actually the (I,J,K)
versione exploits for every test a smaller average execution time, with a gain of
about 50% respect to the (K,I,J) version, because of the smaller syncronization
overhead.

Fig. 3. Average execution time of two orderings of the block matrix multiplication

A second set of experiments is aimed to compare the execution times of the
(I,J,K) ordering of the block matrix multiplication algorithm, on the two different
NetSolve systems. For these experiments the results are reported in Figure 4. For
the same values of n and r used in the previous experiments, we estimate that
on the LAN system the total execution time is about 50% smaller with respect
to the WAN system, because of the smaller latency and the higher bandwidth
of the networks. In order to quantify the performance gain, let us observe the
scaled speed up S2 achieved from n = 1000 up to n = 2000: on the LAN system
S2 = 0.23 whereas on the WAN system S2 = 0.14. These values should be
compared with the ideal scaled efficiency S2 = 0.5. Furthermore, we previously
stated that, in the ideal case, the execution time grows linearly, but in our
experiments we found that the total execution time of the (I,J,K) version grows
roughly as NB2 on the LAN system because of the system overhead. However
this asymptotic rate is still smaller than the asymptotic rate of a sequential
execution, where the total execution time grows as NB3. On the other hand,
when the (I,J,K) version is executed on the WAN system we found the same grow
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Fig. 4. Average execution time for the (I,J,K) of the matrix multiplication algorithms
for the LAN and WAN NetSolve infrastructures

rate NB3 of a sequential execution, then in this case the proposed approach to
the distributed computing is not competitive.

However, in general it is worth to note that efficiency in distributed com-
puting applications is a wrong performance’s measure. Actually, the use of a
distributed computing infrastructure should not be seen as a high performance
computing solution but as a cost / effective solution because it enables the access
to computing resources that cannot be conveniently locally located.

4 Conclusions

The development of cost/effective distributed computing environments is en-
abled by the current advances in networking technologies. The network-based
computing environments provides the computational and storage requirements
for solving distributed applications. Even thought distributed computing envi-
ronments can deliver high performances when lot of computations is needed to do
embarrassingly parallel tasks, the availability of distributed software infrastruc-
ture such as NetSolve and Condor represent a viable and economic solution
when other dedicated resources are unavailable. This often requires detailed un-
derstanding of the underlying architecture and writing parallel or distributed
algorithms needs exploitation of different programming models which are most
suitable for addressing communication and synchronization issues. To this aim,
we discussed performance behavior of a client/server implementation of some
block matrix multiplication algorithms in terms of their synchronization over-
head in order to analyze bottlenecks in the algorithms that critically impact
performance. While in parallel computing we decompose into parts, in distrib-
uted computing we assemble parts [6], and in some cases, composition requires
hard synchronization issues.
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