
Implementing Effective
Data Management Policies in Distributed

and Grid Computing Environments�

Luisa Carracciuolo1, Giuliano Laccetti2, and Marco Lapegna2

1 Institute of Chemistry and Technology of Polymers (ICTP)
National Research Council (CNR)

c/o Department of Chemistry
via Cintia Monte S. Angelo, 80126 Naples, Italy

lcarracci@unina.it
2 Department of Mathematics and Applications

University of Naples Federico II
via Cintia Monte S. Angelo, 80126 Naples, Italy

{giuliano.laccetti,marco.lapegna}@dma.unina.it

Abstract. A common programming model in distributed and grid com-
puting is the client/server paradigm, where the client submits requests
to several geographically remote servers for executing already deployed
applications on its own data. In this context it is mandatory to avoid
unnecessary data transfer because the data set can be very large. This
work addresses the problem of implementing a strategy for data man-
agement in case of data dependencies among subproblems in the same
application. To this purpose, some minor changes have been introduced
to the Distributed Storage Infrastructure in NetSolve distributed com-
puting environment.

1 Introduction

As stated in [8], a computational grid is a system that coordinates resources
that are not subject to centralized control, using standard, open, general purpose
protocols and interfaces, to deliver non trivial qualities of services. That means
that a Grid infrastructure is built on the top of a collection of disparate and
distributed resources (computers, databases, network, software, storage) with
functionalities greater than the simple sum of those addends [9]. The added
value is a software architecture aimed to virtualize scattered computing and
data resources to create a single computing system image, granting users and
applications seamless access to vast IT capabilities. The hardware of this single
computing system is often characterized by slow and non dedicated Wide Area
� This work has been carried out as part of the project ”Sistema Coopera-

tivo Distribuito ad Alte Prestazioni per elaborazioni Scientifiche Multidisciplinari
(S.CO.P.E.)”, supported by the Italian Ministry of Education, University and Re-
search (MIUR), PON 2000-2006.

R. Wyrzykowski et al. (Eds.): PPAM 2007, LNCS 4967, pp. 902–911, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Implementing Effective Data Management Policies 903

Networks (WAN) connecting very fast and powerful processing nodes (that can
be also represented by supercomputers or large clusters) scattered on a huge
geographical territory, whereas the operating system (the grid middleware) is
responsible to find and allocate resources to the scientists applications, taking
into account the status of the whole grid. Many papers focus on this aspect of
the grid computing, addressing topics, such as resources brokering (e.g. [4], [14]),
performance contract definition and monitoring (e.g. [10], [12]) and migration of
the applications in case of contract violations (e.g. [15]).

On the other hand, common scientific applications are characterized by very
large input data and dependencies among subproblems, thus it is not sufficient
to choose the most powerful computational resources in order to achieve good
performance, but it is essential to define suitable methodologies to distribute
application data onto the grid components overlapping communication and com-
putation and to provide tools that eliminate unnecessary data transfers. In this
research area a small number of papers are available (e.g. [7]).

However, because of the natural vision of a computational grid as a single com-
putational resource, it is possible to borrow ideas and methodologies commonly
utilized for traditional systems and to adapt them to new environments. This pa-
per is structured as follows: in section 2 we describe our caching methodologies to
address data distribution onto the grid components in case of significant depen-
dencies among subproblems of a scientific application; in section 3 we describe
the software environment we use with some minor modifications we introduced
to better adapt it to our aims; in section 4 we show the experiments we carried
out to validate our methodology ; finally in section 5 we provide conclusions and
outline our future works.

2 Data Management in Distributed Environments

For many years the dominant style in parallel computing has been the Single
Program Multiple Data programming model, where all processors use the same
program, although each has its own data. The algorithms based on these tech-
niques are designed to be used in a static and dedicated computing environment,
like an MPP supercomputer. They need also frequent data communications and
synchronizations among homogeneous nodes in a systolic fashion, where it is also
possible to overlap communication and computation. A notable example is the
ScaLAPACK library [3] where the data are mapped on a 2D grid of processors.
A computational grid is a computing environment which differs substantially
from the one previously described. In this case the heterogeneity and the shar-
ing capability of the resources make the client/server programming model more
promising compared to the SPMD approach, as it eliminates the need of data
communication among the server nodes. Probably the most famous project based
on this model is the SETI@home project designed to find extraterrestrial intel-
ligence, where a central system send a huge number of independent tasks to the
participating servers for the computation [13]. In the client/server programming
model the data are stored in the client from where are sent in chunks to the

904 L. Carracciuolo, G. Laccetti, and M. Lapegna

servers for computations; after the computation the results are returned to the
client. The data movement from client and servers in a grid is similar to the
data transfer between memories and processing unit in a single Non Uniform
Memory Access (NUMA) machine. A memory-aware model of the grid is shown
in Fig. 1, where the computational units (the servers) can retrieve data from
registers and caches, main memory, secondary storage, as well as from remote
clients. Fast and small memories are positioned at the higher level, whereas slower
memories, that are usually accessed by means of geographic networks, are located
at the lower ones. In this model the servers’ secondary storage level can be rep-
resented by the disks of each server as well as by an external (to the server) data
repository, however close enough to make the access to this level negligible for the
remote client.

Fig. 1. A memory-aware model of a computational grid

Fig. 2 shows typical peak bandwidth and latency of the three lowest memory
levels when accessed from the server. The illustrated values refer to a common
workstation usually available in a distributed computing environment and are
not representative of the leading edge technology. For the server main memory
the values for a DDR2 memory interface running at 400 MHz are reported; for the
server secondary storage the values for a Parallel ATA disk adapter are reported;
for the remote client both values for a Local Area Network (a Fast Ethernet)
and for a Wide Area Network (e.g. a metropolitan area network) are reported.
Note however that the LAN bandwidth is shared among all the data transfers on
the network, so that the actual bandwidth is very sensitive to the network traffic
and can be significantly below the peak bandwidth. This performance reduction
is much less evident for the disk transfer rate because of the optimization of the
disk scheduling algorithms in the current operating systems.

It is commonly acknowledged that the key strategy to achieve high perfor-
mances with a NUMA machine is an extensive use of caching methodologies at

Bandwidth Latency
Server main memory 10 GByte/sec 2-10 ns
Server secondary storage 100 MByte/sec 5 ms
Remote client (LAN) 12.5 MByte/sec 10 ms
Remote client (WAN) < 1 MByte/sec 100 msec

Fig. 2. Typical values for bandwidth and latency in Fig. 1

Implementing Effective Data Management Policies 905

each level of the memory hierarchy, in order to provide the computing elements
with data taken from fast memories at the high level and to avoid unnecessary
data transfer toward the lowest levels. Compilers or problem-oriented libraries,
like the BLAS library for numerical linear algebra [6], are usually in charge of
the management of the higher levels of the memory hierarchy, but the lowest
levels have to be managed by means of suitable programming methodologies
and software tools. Scientific applications rarely can be divided in totally in-
dependent tasks and some data dependencies are always present among them,
thus, the definition of methodologies and the development of software tools for
an effective data distribution among the components of a grid assume a key role
in grid computing. As an example, assume an application composed by three
tasks with dependencies in the form of three pipelined stages, as shown in Fig.
3. In this example the output data from stage 1 represent the input data for
stage 2, and the output data from stage 2 represent, in turn, the input data for
stage 3.

Fig. 3. A pipelined three stages application

A raw implementation of this application with the client/server programming
model is depicted in Fig. 4 where three servers compute the three stages of the
application. In this implementation the output data from stages 1 and 2 are sent
back to the client and then sent again to a new server for the computation of
the next stage. In this case the input data for stages 2 and 3 will be located at
the lowest level of the memory hierarchy in Fig. 1 when accessed by the servers.

In Fig. 5, the use of the server secondary storage as a cache for the intermedi-
ate results allows to locate them to a higher level in the memory hierarchy and
avoids unnecessary data transfers toward the client memory. Furthermore, by
keeping intermediate data in higher level memories it’s possible to overlap data

Fig. 4. Raw implementation of the ap-
plication in Fig. 2

Fig. 5. Implementation of the applica-
tion in Fig. 2 with caching of the inter-
mediate results

906 L. Carracciuolo, G. Laccetti, and M. Lapegna

communication and stage computation if the entire sequence has to be repeated
several times. A similar approach to the data management in distributed envi-
ronments is described in [7], where the server main memory is used as a cache in
place of the server secondary storage. The main advantage of the approach de-
scribed in the current section is the larger amount of available space to cache the
intermediate data, with an access time to the cache however negligible respect
to the client memory.

3 Software Tools for Caching Data in NetSolve

One of the best known software environments for the on demand approach to
distributed and grid computing is NetSolve 2.0 [1]. This is a software environ-
ment based on a client-agent-server paradigm, that provides a transparent and
inexpensive access to remote hardware and software resources. In this environ-
ment a key role is played by the agent, that collects hardware performance
and available software of the servers in the environment setup phase as well as
dynamic information about the workload of the resources. When the agent is
contacted by the client by means of the NetSolve client library linked to the user
application, it selects the most suitable server to be used on the basis of stored
information and notifies the client. Therefore, the client can send data directly
to the selected server that performs the computation by using a code generated
through a Problem Description File that acts as interface between NetSolve and
the legacy software. Finally the result is directly sent back to the client. This
data exchange protocol is executed for every request to NetSolve, then in case of
dependency among multiple tasks in the same application, the execution looks
like those in Fig. 4, with a superfluous network traffic. NetSolve however includes
two tools in order to manage data more efficiently: the Request Sequencing and
the Data Storage Infrastructure.

– The Request Sequencing is realized by means of an appropriate NetSolve
construct that builds a Direct Acyclic Graph where the nodes represent
the tasks and the arcs represent the data dependencies among them. The
main limitation of this approach is that currently the entire DAG sequence
is executed by the same server, even if there are independent tasks in the
sequence that can be executed in parallel by multiple servers.

– The Distributed Storage Infrastructure (DSI) is an attempt to overcome the
limitation of the Request Sequencing in NetSolve, by allowing the client to
place data in a storage infrastructure that can be accessed by the server.
If the storage resource is sufficiently close to the servers, it’s possible to re-
duce the network traffic in case of data dependency among tasks. Currently
NetSolve implements this storage service by means of the Internet Back-
plane Protocol (IBP) [2],[11], a middleware for managing and using remote
resources. Fig. 6 shows how the network traffic is reduced in case of multiple
accesses to the stored data by sending them only once from client to the
computational space formed by the servers and IBP storage. However, this
approach also shows currently a drawback: the servers are able to read data

Implementing Effective Data Management Policies 907

from the IBP storage but they appear to be unable to write on it, so that
the implementation in Fig. 5 can be only partially achieved.

In order to fully implement a caching methodology like those shown in Fig. 5,
it has been necessary to modify in some extent the NetSolve DSI implementation.
More precisely, the DSI infrastructure defines the new data type DSI OBJECT
as a data structure describing the location and several information about the
IBP storage area (dimension, access permissions, access mode,) that can be
used as a cache. In a typical NetSolve session, a DSI OBJECT is generated by
the client and sent to the servers by means of the NetSolve API, so that they can
access the IBP storage. Among the information in a DSI OBJECT there are the
read/write/management capabilities of the IBP storage, i.e. unique character
strings used as keys to access correctly the data on the storage.

Fig. 6. Implementation of the Distributed Storage Infrastructure in NetSolve

The main changes are therefore related to the DSI functions for reading and
writing data on the IBP storage, so that they can be used also by the servers.
Actually, at the present time the servers cannot call directly these DSI functions
because the Problem Description Files used to generate the server codes are un-
able to manage a DSI OBJECT. For this reason in the modified implementation
of the DSI infrastructure, the APIs of the DSI functions for accessing the IBP
storage include the capabilities of the IBP storage in place of the DSI OBJECT.
The character type used for the IBP capabilities is managed by the Problem
Description File, thus the servers can use without restriction the DSI function
for reading and writing on the data storage. As an example, consider the API of
the current DSI function to read a vector from the IBP storage:

intns dsi read vector(DSI OBJECT*dsi obj, void*data, int count, intdata type)

It has been modified in:

int ns new read vector(char* ibp read cap, void* data, int count, int data type)

where ibp read cap is the IBP capability to read data in the storage area.
Similar changes have been carried out to the functions ns dsi write vector(),

908 L. Carracciuolo, G. Laccetti, and M. Lapegna

ns dsi read matrix(), ns dsi read matrix() and ns dsi close(). As a consequence,
it has been necessary to introduce some minor changes in the related code, and
the software infrastructure obtained with the modified functions has been used
in place of the DSI in the NetSolve architecture.

4 Computational Experiments

As a test bed for the software infrastructure described in the previous section
a block matrix multiplication algorithm has been chosen because it is a basic
linear algebra computational kernel which is representative of similar other com-
putations; on the other hand, it encompasses a lot of data movements, and in
such a case, minimizing communication overhead becomes a challenging task.
More precisely, the client/server ijk form of the block matrix algorithm has been
used, because it exploits a smaller synchronization overhead compared to the
other forms [5]. For simplicity, assume that A, B and C are square matrices of
order n, and divided in square blocks C(I, J) , A(I, K) and B(K, J) of order r,
with n divisible by r, so that let NB the number of blocks in each dimension, it
is NB = n/r.

for I=1, NB (in parallel)
for J=1, NB (in parallel)
choose a server
for K=1, NB
send C(I,J), A(I,K), B(K,J)

to the server
receive C(I,J) from the server
endfor
endfor

endfor

client algorithm

receive C(I,J), A(I,K), B(K,J)
from the client

C(I,J) = C(I,J) + A(I,K), B(K,J)
send C(I,J) to the client

server algorithm

Fig. 7. The client server ijk form of the block matrix multiplication algorithm (Algo-
rithm 1)

In Algorithm 1 (Fig. 7) the client can manage NB2 independent tasks over
the indices I and J and synchronizations occur only among two successive values
of K in the same task. Furthermore, the computation of a single matrix product
in the server can be performed through the BLAS3 sequential DGEMM routine
[6]. Let now Ts and Tr be respectively the access time to the server secondary
storage and to the remote client memories. The communication cost for the
complete computation of each block C(I, J) with Algorithm 1 is then:

T1 = 4NB Tr r2.

However in the Algorithm 1 it is obvious that in the innermost loop of the
client algorithm, the same block C(I, J) is received and sent again to the server

Implementing Effective Data Management Policies 909

for successive values of the index K. This is an example of unnecessary data
movement between client and server that can be avoided by storing intermediate
results in the server secondary storage. A more efficient solution is therefore the
Algorithm 2 (Fig. 8). From the bandwidth values in Fig. 2 is Ts < Tr, so the
communication cost for the computation of each block C(I, J) with Algorithm
2 is then :

T2 = 2NB r2 (Ts + Tr) < T1.

To test the software infrastructure needed to implement the data management
policy described in Section 2, some experiments have been carried out on a
cluster of 2.4 GHz PCs, each of them provided with a Parallel ATA disk adapter
with a peak transfer rate of 100 MByte/sec, and connected using a 100 Mbits
switch. The operating system running on the PCs was Linux 2.4. Algorithm
1 and Algorithm 2 have been implemented by using NetSolve-2.0 computing
environment with the DSI infrastructure modified as described in Section 3.
The IBP 1.0.4.2 software infrastructure has been installed on the servers of the
NetSolve system in order to support the modified DSI infrastructure.

for I=1, NB (in parallel)
for J=1, NB (in parallel)
choose a server
store C(I,J) in the server

secondary storage
for K=1, NB
send A(I,K), B(K,J)

to the server
endfor
retrieve C(I,J) from the server
endfor

endfor

client algorithm

retrieve C(I,J) from the
secondary storage

receive A(I,K), B(K,J) from client
C(I,J) = C(I,J) + A(I,K), B(K,J)
store C(I,J) in the

secondary storage

server algorithm

Fig. 8. The client server ijk form of the block matrix multiplication algorithm with
caching of intermediate results in the server secondary storage (Algorithm 2)

Fig. 9 shows the total execution times in seconds for Algorithm 1 and Al-
gorithm 2 for matrices of order n = 50, 100, 200 and 300 with square blocks of
order r = 50 .

In order to minimize the impact of the traffic fluctuation in the network, the
reported values are the average times over 10 runs. The results show a significant
reduction of the total execution time for the computation of the entire matrix
multiplication. Same results are obtained also with larger problems: Fig. 10 shows
the total execution times of Algorithm 1 and Algorithm 2 in case of matrices of
order n = 500, 1000 and 2000 with square blocks of order r = 500.

910 L. Carracciuolo, G. Laccetti, and M. Lapegna

Algorithm 1 Algorithm 2
n=50 (NB=1) 0.08 0.08
n=100 (NB=2) 0.41 0.36
n=200 (NB=4) 9.5 5.2
n=300 (NB=6) 14.38 8.5

Fig. 9. Execution times for a block matrix multiplication with square blocks of order
r = 50

Algorithm 1 Algorithm 2
n=500 (NB=1) 2.46 1.81
n=1000 (NB=2) 17.7 12.2
n=2000 (NB=4) 66.6 44.4

Fig. 10. Execution times for a block matrix multiplication with square blocks of order
r = 500

5 Conclusions and Future Works

In this work, it is addressed the problem of implementing a strategy for data
management in case of data dependencies among subproblems in the same appli-
cation. The main aim of this paper is twice. On one side, an effective methodology
for the placement of data among the resources of a distributed environment with
the client/server programming model has been described. The methodology is
based on the observation that a computational grid is a large NUMA machine,
where at the lowest memory level there is the client and at the highest level
there are the server resources. Therefore an effective client/server implementa-
tion needs that the application data have to be as more as possible close to the
servers. On the other hand it has been necessary to modify in some extents the
Distributed Software Infrastructure, part of the NetSolve distributed computing
system, in order to implement the described methodology. The computational
experiments confirm the expectations, showing a significant reduction of the exe-
cution times when the intermediate data are kept in the secondary storage of the
servers. Future works are devoted to integrate the obtained software infrastruc-
ture in the grid environment of an ongoing project conducted by the University
of Naples Federico II and funded by the Italian Ministry of University and Re-
search. The main aim of the project is to solve multidisciplinary applications,
deriving from Naples scientists researches, in a new powerful grid infrastructure
to be integrated in large national and European grids.

References

1. Arnold, D., Agrawal, S., Blackford, S., Dongarra, J., Miller, M., Seymour, K., Sagi,
K., Shi, Z., Vadhiyar, S.: User’s Guide to NetSolve V. 2.0. Univ. of Tennessee, See
also NetSolve home page (2004), http://icl.cs.utk.edu/netsolve/index.html

http://icl.cs.utk.edu/netsolve/index.html

Implementing Effective Data Management Policies 911

2. Bassi, A., Beck, M., Moore, T., Plank, J.S., Swany, M., Wolski, R., Fagg, G.: The
Internet Backplane Protocol:a study in Resource Sharing. Future Gener. Comput.
Syst. 19, 551–561 (2003)

3. Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.,, R.:
Whaley: ScaLAPACK Users Guide. SIAM, Philadelphia (1997)

4. Czajkowsky, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W.,
Tuecke, S.: A Resource Selection Management Architecture for Metacomputing
Systems. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998,
and JSSPP 1998. LNCS, vol. 1459, pp. 62–82. Springer, Heidelberg (1998)

5. D’Amore, L., Laccetti, G., Lapegna, M.: Block matrix multiplication in a dis-
tributed computing environment: experiments with NetSolve. In: Wyrzykowski,
R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911,
pp. 625–632. Springer, Heidelberg (2006)

6. Dongarra, J.J., Du Croz, J., Hammarling, S., Hanson, R.J.: A Proposal for an Ex-
tended Set of Fortran Basic Linear Algebra Subprograms. ACM SIGNUM Newslet-
ter 20, 2–18 (1985)

7. Dongarra, J.J., Pineau, J.F., Robert, Y., Shi, Z., Vivien, F.: Revisiting Matrix
Product on Master-Worker Platforms. In: APDCM workshop IPDPS 2007 Confer-
ence. A revised version is in International J. on Foundations of Computer Science
(in press, 2007)

8. Foster, I.: What is the Grid? A three point checklist,
http://www-fp.mcs.anl.gov/∼foster/Article/WhatIsTheGrid.pdf

9. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan and Kaufman, San Francisco (1998)

10. Petitet, F., Blackford, S., Dongarra, J., Ellis, B., Fagg, G., Roche, K., Vadhiyar,
S.: Numerical Libraries and the Grid:The GrADS Experiment with ScaLAPACK.
University of Tennessee Technical Report UT-CS-01-460 (2001)

11. Planck, J., Bassi, A., Beck, M., Moore, T., Swany, M., Wolsky, R.: Managing Data
Storage in the Network. IEEE Internet Computing 5, 50–58 (2001)

12. Ribler, R., Vetter, J., Simitci, H.,, D.: Reed: Autopilot:Adaptive Control of Dis-
tributed Applications. In: The 7th IEEE High Performance Distributed Computing
Conference, pp. 172–179. IEEE Computer Society, Los Alamitos (1998)

13. Seti@home home page: http://setiathome.ssl.berkeley.edu/
14. Vadhiar, S., Dongarra, J.: A Metascheduler for the Grid. In: The 11th IEEE High

Performance Distributed Computing Conference, pp. 343–351. IEEE Computer
Society, Los Alamitos (2002)

15. Vadhiar, S., Dongarra, J.: A performance oriented migration framework for the
grid. In: CCGRID 2003 The 3rd International Symposium on Cluster Computing
and the Grid, pp. 130–137. IEEE Computer Society, Los Alamitos (2003)

http://www-fp.mcs.anl.gov/~foster/Article/WhatIsTheGrid.pdf
http://setiathome.ssl.berkeley.edu/

	Implementing Effective Data Management Policies in Distributed and Grid Computing Environments
	Introduction
	Data Management in Distributed Environments
	Software Tools for Caching Data in NetSolve
	Computational Experiments
	Conclusions and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

