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Abstract. The development of scientific software, reliable and efficient,
in distributed computing environments, requires the identification and the
analysis of issues related to the design and the deployment of algorithms
for high-performance computing architectures and their integration in
distributed contexts. In these environments, indeed, resources efficiency
and availability can change unexpectedly because of overloading or failure
i.e. of both computing nodes and interconnection network. The scenario
described above, requires the design of mechanisms enabling the software
to “survive” to such unexpected events by ensuring, at the same time, an
effective use of the computing resources. Although many researchers are
working on these problems for years, fault tolerance, for some classes of
applications is an open matter still today. Here we focus on the design
and the deployment of a checkpointing/migration system to enable fault
tolerance in parallel applications running in distributed environments. In
particular we describe details about HADAB, a new hybrid checkpoint-
ing strategy, and its deployment in a meaningful case study: the PETSc
Conjugate Gradient algortithm implementation. The related testing phase
has been performed on the University of Naples distributed infrastructure
(S.Co.P.E. infrastructure).
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1 Introduction

In recent decades the focus of the scientific community moved from the tradi-
tional parallel computing systems to high performance computing systems for
distributed environments, generally consisting of a set of HPC resources (clus-
ters) geographically scattered. They provide increasing computing power and are
characterized by a great resources availability (typical of distributed systems)
and a high local efficiency (typical of traditional parallel systems). These systems
may be used to solve the so-called “challenge problems”. However, employing
a distributed infrastructure, where HPC resources are geographically scattered



2 V. Boccia et al.

and are not dedicated to a specific application, is not priceless. Indeed such kind
of environments are characterized by high dynamicity in resources load and by
a high failure rate, thus applications fault tolerance and efficiency are key issues
[13].

For many years by now researchers are working to identify standard methods
to solve the problem of fault tolerance and efficiency of software designed for
distributed environments. However, today this is still an open issue.

In this paper we focus on the design and deployment of a checkpointing/
migration system, in order to enable fault tolerance in parallel applications run-
ning in distributed environments.

In Sec. 2 is presented a short overview on fault tolerance and checkpointing
mechanisms. In Sec. 3 is presented our checkpointing strategy, HADAB (Hybrid,
Adaptive, Distributed and Algorithm-Based), underlining criteria to enhance
strategy robustness and to narrow the overhead. In Sec. 4 the HADAB deploy-
ment in a case study (the parallel version of PETSc library Conjugate Gradient)
is shown. In Sec. 5, are described some tests and results, and finally, in Sec. 6,
are presented some conclusions and a preview on future works.

2 Fault Tolerance and Checkpointing: State of the Art

Fault tolerance is the ability of a system to react to unexpected events such as
sudden overload, temporary or persistent failure of resources [12]. An applica-
tion is called fault tolerant if it is able to complete its execution in spite of the
occurrence of faults. In “complex” computing systems, application survival to
failures during execution, depends on the proper behavior of all software layers
that the application uses and on the integrity and coherence of the execution
environment. There are applications that, because of special properties of the
algorithms on which they are based, are “naturally fault tolerant” (i.e. “super
scalable” applications)[5, 6]. For all the others, it is necessary to provide “mech-
anisms” [9] to detect and report the presence of faults (detect/notify), making
it possible “to take a snapshot” of the current execution state (checkpointing)
and allow the application to resume its execution from the point where the fault
occurred (rolling back/migration).

Detect/notify mechanisms are generally in charge to the runtime environ-
ment, while checkpointing/migration mechanisms are in charge to the applica-
tion (or to its runtime environment) and consist of:

– procedures to store data (checkpointing) that, in case of fault, enable the
process restart from the point of execution where the fault occurred (check-
point)

– procedures to resume the execution (rolling back), from where it left off
because of the fault, on alternative resources, by recovering and using check-
pointing data.

In literature there are different approaches that can be followed to realize
checkpointing mechanisms: algorithm-based vs. transparent, disk-based vs. disk-
less and an exhaustive description of these can be found in [3, 7, 8, 14, 15].
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The approaches used to implement such mechanisms are numerous and each
one has advantages and disadvantages in relation to checkpointing technique ef-
ficiency and robustness [3]. Sometimes, it is not sufficient to use a single strategy
to realize a robust checkpointing strategy, but new strategies can arise from the
combination of multiple methodologies (strategies for hybrid checkpointing [11]).
In general, strategies combination can be used to increase the robustness with
respect to the single methodologies, but it is necessary to limit checkpointing
overhead.

3 HADAB: the Hybrid, Adaptive, Distributed,
Algorithm-Based Checkpointing

The strategy described in this work is:

– hybrid, because combines two strategies: a variant of diskless parity-based
[10] and coordinated [11] checkpointing;

– adaptive, because different checkpointing techniques are performed each with
different frequency, with the aim to reduce the total overhead;

– distributed, because checkpointing data are periodically saved on a remote
storage resource;

– algorithm-based because, although hard to implement, this approach is still
the safest method to select and reduce the checkpointing data amount.

We focus on parallel applications based on Message Passing paradigm, in
particular based on MPI standard. Currently FT-MPI [2] is the only existing
message passing library, implementing MPI standard, that providing the soft-
ware tools to identify and manage faults, makes applications able to use a disk-
less approach. Indeed, FT-MPI allows to re-spawn failed processes redefining the
MPI context. Unfortunately, its development has been stopped in 2003 and so,
on some new architectures, the library seems to be not stable.

Other implementations of MPI standard, as Open MPI [4], promise to in-
troduce the important features of FT-MPI, but developers are waiting for the
MPI3 standard to implement these in the production release.

In absence of the software tools needful to use a diskless approach, we chose a
disk-based approach and a stop/restart method to implement our checkpointing
strategy. In the rest of this section we describe how we built the HADAB strategy.

First, we considered a disk-based variant of the parity-based checkpoint,
where the checkpointing phase can be divided into two sub-phases:

1. each application processor [10] saves its checkpointing data locally and sends
them to the checkpoint processor

2. the checkpoint processor [10] calculates the bitwise-XOR of the received data
and stores it on its local storage device.

In a similar way, the rolling back phase can be divided into two sub-phases:

1. survived processors recover their data from local disks
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2. the processor, that took the place of the failed processor, reconstructs its por-
tion of data, by both local data coming from other processors and encrypted
data sent by the checkpoint processor.

The strategy described above is already quite robust because it ensures the
checkpointing integrity (the last successfully saved checkpointing data are re-
moved only after that new coherent checkpointing data are saved) and allows
the application to survive to the fault of one processor at a time (application or
checkpoint processor).

Moreover, the use of encryption offers advantages in terms of efficiency, be-
cause the amount of data that checkpoint processor has to store is drastically
reduced (for a problem of dimension N , using p processors, checkpoint processor
data dimension is equal to N/p). So it is clear that this strategy has a lower I/O
overhead than a non-coding one, but it can tolerate only one fault at a time.

Thus, to improve checkpointing robustness, we decided to add also “few”
phases of coordinated checkpointing, realizing an hybrid strategy.

In general checkpointing frequency cannot be high (to avoid the increasing of
the total checkpointing overhead) and, anyway, the time for data saving should
not be relevant in relation to the total execution time. So we developed our hybrid
strategy using an automatic choice of the checkpointing rate that depends on
the extimated execution time.

The advantage introduced by the hybrid strategy is that, if p is the number
of processors, the application can tolerate up to p−1 simultaneous faults, except
the fault of the checkpoint processor. So, paying a not so relevant price in terms
of total overhead, we gain in terms of checkpointing strategy robustness.

In case of checkpoint processor unavailability, the hybrid strategy is not able
to recover the application, because all checkpointing data are lost. Hence the idea
to build a distributed version of the hybrid strategy (HADAB) that periodically
saves, in an asynchronous way, checkpointing data on an “external” storage
resource.

HADAB is able to guarantee up to p faults at a time:

– up to p−1 faults there always is a local copy of checkpointing data available
(from coordinated or parity-based strategies) to recover from the fault;

– if all processes fail, a remote saved copy of all checkpointing data is available
for application resumption: an external stop/restart system migrates appli-
cation execution on a new set of computational resources, using the remote
copy of all checkpointing data (Fig. 1).

The next section describes the work done to deploy the HADAB checkpoint-
ing strategy in a case study.
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Fig. 1. Migration system schema.

4 HADAB Deployment on the PETSc Conjugate
Gradient (CG)

We deployed HADAB into the parallel version of Conjugate Gradient (CG) algo-
rithm implemented in PETSc library [1] with the objective to realize a fault
tolerant version of such a procedure (CGFT).

In order to develop a fault tolerant version of CG algorithm (Fig. 2), we
followed an algorithm-based approach [3]:

– first we identified the data needed for the checkpointing in the CG algorithm:
four vectors and four scalars

– then we added to the PETSc CG routine, the code needed to implement
checkpointing phases (see lines 19-32 in Fig. 2) and rolling back phases (see
lines 5-14 in Fig. 2) of the HADAB strategy.

Application starts with checkpointing frequency chosen by the user (i.e.,
parity-based checkpointing is performed at each iteration while the coordinated
one is performed every k iterations); during execution the PetscCheckFreq rou-
tine modifies the checkpointing frequency on the bases of both:

– the average of previous iterations execution time and
– the real time spent to save data (for each checkpointing type).

During the recovery phase, the CheckCheckpoint routine selects the most
“convenient”1 checkpointing type to be used in application resumption: if it is
parity-based, the PetscRollbackCodif routine is called, otherwise the PetscRoll
backCoord routine is executed.
1 Metric for convenience is the total cost of the recovery phase that is related to both

the data “freshness” and to the overhead in data reading.



6 V. Boccia et al.

Fault tolerant version of Conjugate Gradient with hybrid adaptive distributed checkpointing:
code fragment.

1 PetscErrorCode KSPSolve_CGFT (KSP ksp)
2 PetscFunctionBegin;
3 /* Initialization phase */
4 ...
5 IF (restart)
6 rt = CheckCheckpoint(...);
7 IF ( rt == 1 )
8 ierr = PetscRollbackCoord(...);
9 ELSE IF ( rt == 0 )

10 ierr = PetscRollbackCodif(...);
11 ELSE
12 printf("It is not possible to recover locally from the fault");
13 ENDIF
14 ENDIF
15 REPEAT
16 ...
17 /* repeat-until loop of the CG algorithm */
18 ...
19 IF (chkenable)
20 /* ck_coord is the iteration number when
21 coordinated checkpointing is performed */
22 /* ck_codif is the iteration number when
23 coded checkpointing is performed */
24 IF (i % ck_coord == 0 )
25 ierr = PetscCheckpointingCoord(...);
26 ierr = PetscStartCopyThreads(...);
27 ELSE /* case i % ck_codif == 0 */
28 ierr = PetscCheckpointingCodif(...);
29 ierr = PetscStartCollectThreads(...);
30 ENDIF
31 ierr = PetscCheckFreq(...);
32 ENDIF
33 UNTIL (i < max_it && r > tol)
34 /* finalization phase */
35 PetscFunctionReturn(0);

Fig. 2. PETSc CG fault tolerant version.

During the checkpointing phase PetscCheckpointingCodif routine (for parity-
based checkpointing) and PetscCheckpointingCoord routine (for coordinated
checkpointing) are called respectively with a frequency equal to ck codif and
ck coord (ϕ2 and ϕ1 respectively, see Fig. 1).

Finally, PetscStartCopyThreads and PetscStartCollectThreads routines
perform the asynchronous distributed checkpointing data saving on external stor-
age resources. Distributed checkpointing phase does not add any overhead ba-
cause of the use of threads.

When ever the local rolling back phase is impossible (see line 14 in fig. 2),
application stops and the migration system migrates the execution on a new
set of computational resources. The remote rolling back phase, included in the
migration task, introduces an overhead that may significantly change on the basis
of several parameters depending on distributed environment characteristics.
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In the next section we report some tests performed at the University of Naples
Federico II on the HPC computational resources available in the S.Co.P.E. GRID
infrastructure. Tests results provided a first validation of HADAB checkpointing
strategy and some useful information about migration system overheads.

5 Tests and Remarks

The first tests have been carried out with the aim to verify the behavior of both
the checkpointing strategies: coordinated and parity-based. Tests are related
to the solution, by means of CGFT, of a linear system where sparse matrix
has N = 3.9 ∗ 1017 non-zero elements2. The linear system is solved after 6892
iterations.

Indeed, depending on when the fault occurs, the overhead introduced by the
checkpointing/rolling back phases becomes more or less relevant in comparison
to the total execution time of the application.

Table 1. Execution times in seconds: to execute one CG iteration (Titer), to save check-
poinitng data with parity-based strategy (TcheckCodif ) and to save checkpoinitng data
with coordinated strategy (TcheckCoord). p is the number of processors. Checkpointing
data are written on a shared area based on Lustre File System. Data dimension is
2.5 ∗ 109. TcheckCoord value is indipendent from p.

p Titer TcheckCodif TcheckCoord

8 8.76 362.68 417
12 5.65 206.81 417
16 5.46 196.19 417
20 4.67 192.85 417
24 4.16 189.72 417
28 2.31 188.12 417

Table 1 is useful to understand the optimal value for checkpointing frequen-
cies. Focusing on the test performed with 16 processors, the total execution time
for the application, in absence of faults, is about 10 hours and 45 minutes. The
PetscCheckFreq routine chooses to execute a coordinated checkpointing every
196 iterations and a parity-based one every 14 iterations.

In the following tables, when HADAB is enabled, we consider checkpointing
frequencies defined on the bases of results reported in table 1.

Looking at the tables 2, 3 and 4 it is possible to evaluate the benefits, if any,
due to the use of HADAB checkpointing in the following scenarios:

– Case 1: failure free execution (see table 2)
– Case 2: a single fault during execution (see tables 3 and 4)

2 Checkpointing data are M = 2.5 ∗ 109 and their amount is of about 18GB
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Table 2. Application execution with HADAB checkpointing enabled: Tcomp is the time
related to the computational phase, Tcheck is the time due to HADAB checkpointing,
Ttot = Tcomp + Tcheck and Overheadcheck = Tcheck/Ttot is the overhead introduced by
HADAB in a failure free execution. All times values are expressed in seconds.

N Tcomp Tcheck Ttot Overheadcheck (%)

3.9 ∗ 1017 37630 18666 56296 33.1%

Table 3. Application execution with HADAB checkpointing disabled in an execution
with one fault occurring at Itfault. Tit−lost is the time spent to re-execute Itfault

iterations where Itfault is: 1000, 2000, 3000, 4000, 5000, 6000. T NoC
tot = Tcomp +Tit−lost.

All times values are expressed in seconds.

Itfault Tit−lost T NoC
tot

1000 5460 37630+5460 = 43090
2000 10920 37630+10920 = 48550
3000 16380 37630+16380 = 54010
4000 21840 37630+21840 = 59470
5000 27300 37630+27300 = 64930
6000 32760 37630+32760 = 70390

Table 4. Application execution with HADAB checkpointing enabled: Tit−lost is the
time spent to execute again only the Itlost iterations from the last saved checkpointing
to Itfault. In last column we report overhead, Overheadchkp, introduced by HADAB
where Overheadchkp = (T C

tot−T NoC
tot )/T NoC

tot . All times values are expressed in seconds.

Itfault Itlost Tit−lost T C
tot Overheadchkp

1000 6 32.76 56296+32.76 = 56328.76 31%
2000 12 65.52 56296+65.52 = 56361.52 16%
3000 4 21.84 56296+21.84 = 56317.84 0%
4000 10 54.60 56296+54.60 = 56350.60 -1%
5000 2 10.92 56296+10.92 = 56306.92 -13%
6000 8 43.68 56296+43.68 = 56339.68 -20%

From table 2 we can observe that HADAB adds about the 33% of overhead
on the total execution time in absence of faults.

However, if we consider execution with faults, the use of HADAB checkpoint-
ing becomes ever more affordable when the iteration number, where the fault
occurs, increases (see table 4). Indeed, in the last three rows of the table 4, the
Overheadchkp is negative, because the TNoC

tot is greater than TC
tot. Thus HADAB

use is even profitable for the application: i.e. if the fault occurs at iteration 6000,
we gain about the 20% on the time TNoC

tot .
Looking at all the tables above it is possible to evaluate the benefits due

to the use of HADAB checkpointing also in an execution where more than a
fault occurs. Indeed, in case where a fault occurs twice, i.e. one at iteration 2000
and the other at iteration 5000, the application recovers twice from the fault,
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re-executing only 14 iterations. In this case, thanks to HADAB checkpointing
we gain about 26% on the time TNoC

tot
3.

Finally table 5 reports the case when all processors p fail at the same time.
Here, a migration phase is needed. HADAB checkpointing saved asyncronously
data on external storage resource during application execution. Thus when p
fault occurr at the same time, migration system selects a new cluster for exe-
cution, moves checkpointing data from external storage to the new cluster and
restarts application execution from the point when it left out.

Table 5. Application execution with HADAB checkpointing enabled and all processors
fail at the same time: TData−trans is the time to move checkpointing data from storage
external resource to the new execution cluster (remote rolling back phase).

N CheckData−dim (GB) TData−trans (secs.)

3.9 ∗ 1017 18 134

TData−trans are related only to the rolling back phase 4, but we have to con-
sider, as overhead, also times due i.e. to new computational resource recruitment
and to the queue time on the scheduling system before application restarts. These
times are not fixed but depend on the distributed infrastructure characteristics.

6 Conclusion and Future Works

Checkpointing mechanisms deployment in scientific libraries, as PETSc, always
is a “good investment”. Indeed, if a library is fault tolerant so are all applica-
tions that use it. The work here reported, gave us the opportunity to evaluate
the benefit in using hybrid strategies for the implementation of checkpointing
mechanisms even when disk-based approaches are used.

The implemented system is robust and efficient enaugh; further improvements
in efficiency can arise from the use of diskless strategies, currently not feasible,
while more improvements in robustness can arise i.e. from the use of virtual
resources, fault tolerant networks and fault tolerant message passing libraries.

The remarks made in Sec. 3 and 5 about the overhead introduced by the
HADAB checkpointing, are related to an application that, on a big amount of
data, performs a “small” amount of computations.

Thus the utility of the checkpointing mechanisms is much more evident in
other contexts as i.e.:

– applications handling the same amount of data, but using algorithms with
more complexity than that here considered;

3 T C
tot = Ttot +Tit−lost(2000)+Tit−lost(5000), by using data in tables 2 and 4; T NoC

tot =
Ttot + Tit−lost(2000) + Tit−lost(5000), by using data in tables 2 and 3.

4 Data have been moved among two clusters of the S.Co.P.E. distributed infrastruc-
ture, by using grid protocols.
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– computer centers where it is permitted the use of computing resources for a
time not adequate to terminate the application execution.
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