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Abstract. In this work, a parallel adaptive algorithm for the computa-
tion of a multidimensional integral on heterogeneous GPU and multicore
based systems is described. Two different strategies have been combined
together in the algorithm: a first procedure is responsible for the load
balancing among the threads on the multicore CPU and a second one
is responsible for an efficient execution on the GPU of the computa-
tional kernel. The performance is analyzed and experimental results on
a system with a quad-core CPUs and two GPUs have been achieved.
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1 Introduction

Modern HPC systems are today characterized by hybrid computing nodes, where
traditional multicore CPUs live together with special purpose hardware such as
Graphical Processing Units (GPUs) used as floating point accelerator. These
components have very different features and require different algorithmic devel-
opment methodologies, so that, in order to efficiently use such emerging hybrid
hardware, the development of algorithms and scientific software implies a suit-
able combination of several methodologies to deal with the various forms of
parallelism corresponding to each device.

The aim of our work is to study a special class of algorithms for numerical
quadrature for such hybrid computing nodes. More precisely we deal with the
numerical computation of multidimensional integrals:

I(f) =

∫
U

f(t) dt =

∫
U

f(t1, ..., td) dt1 · · · dtd, (1)
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where U = [a1, b1] × · · · × [ad, bd] is a d-dimensional hyperrectangular region.
In the last thirty years, several efficient routines have been developed for the
solution of this problem on traditional CPUs. Most of them (see for example
[2, 12, 17]) are based on adaptive algorithms, that allow high accuracy with a
reasonable computational cost.

2 Parallelization of adaptive algorithms on hybrid nodes

Given a family of hyperrectangular subdomains s(k) (k = 1, ..,K) of a partition
S of U , a basic multidimensional quadrature rule r(k) and an absolute error
estimate procedure e(k) defined on s(k), an adaptive algorithm for the com-
putation of (1) is an iterative procedure that, at each iteration j, evaluates an
approximation Q(j) of I(f) and an estimate |E(j)| of the error |Q(j) − I(f)|:

Q(j) =
∑

s(k)∈S

r(k) ' I(f) |E(j)| =
∑

s(k)∈S

e(k) ' |Q(j) − I(f)|

To achieve this, the algorithm computes a sequence Q(j) of composite quadra-
ture rules approaching I(f) and a sequence |E(j)| of approximations of the error
|Q(j) − I(f)| approaching 0, until a stopping criterion is satisfied. For our pur-
poses we remark that the basic quadrature rules r(k) are based on a summation
such as:

r(k) =

n∑
i=1

Ai f(ti) (2)

For dimension up to dimension d = 15 there are several methods to compute the
basic rules r(k) and the absolute errors e(k) in standard regions s(k) [1, 4].

Since the convergence rate of this procedure depends on the behaviour of
the integrand function (presence of peaks, oscillations, etc), in order to reduce
as soon as possible the error, at the iteration j, the subdomain ŝ ∈ S with
maximum error estimate ê is split in two parts s(λ) and s(µ) that take the place
of ŝ in the partition S, that is S = S − {ŝ} ∪ {s(λ) , s(µ)}. In a similar way
the approximations Q(j) and E(j) are updated, evaluating the (2) in the new
subdomains.

Algorithm 1:

Initialize H, Q(0) and E(0)

while (stopping criterion not satisfied) do iteration j
1) select ŝ ∈ H such that ê = maxk=1,..,K e(k)
2) divide ŝ in two parts s(λ) and s(µ)
3) compute r(λ) , e(λ) , r(µ) and e(µ)
4) sort the subdomains according to their errors
5) update H, Q(j) and E(j)

endwhile
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To implement an adaptive algorithm for numerical quadrature, it is necessary
to store all the subdomains s(k) of the partition S in a suitable data structure,
where the subdomain with maximum error estimate ê can be found with a small
computational cost. This can be achieved by storing the data related to the
subdomains s(k) in a partially ordered binary tree H called heap, where the
subdomain with the largest error estimate is in the root. The computational
cost to sort a heap is log2K, where K is the number of subdomains in H.

A framework for a sequential global adaptive algorithm for the computation
of multidimensional integrals is therefore the Algorithm 1 [11]:

There are several approaches to introduce parallelism in adaptive algorithms
[11]. The main strategies are the following:

– Integrand Level Parallelism: the degree of parallelism is given by the num-
ber of integrand functions that have to be be eventually computed at the
same time. Because the integrals are distinct, this is an embarassingly form
of parallelism, and is well suited to computer systems that do not require
frequent communications and / or synchronizations between tasks, such as
geographically distributed systems;

– Subdivision Level Parallelism: the degree of parallelism is given by the num-
ber of subdomains that are subdivided at the same time, so that it is possible
to process several subdomains at each iteration. This is a high form of par-
allelism suited for a SPMD programming model such as that one used for
clusters or MPP systems;

– Subregion Level Parallelism: in this case only one subdomain is divided in
several parts concurrently processed , and the degree of parallelism is given
by the number of these parts. This is a more tight form of parallelism with
respect to the previous level.

– Integration Formula Level Parallelism: the degree of parallelismi is given by
the number of integrand functions required by the integration rule (2). This is
a low level form of parallelism that does not require MIMD based computing
systems, because the function evaluations all have the same expression. So
it is well suited to SIMD or GPU accelerated systems.

– Integrand Function Level: the degree of parallelism is given by the simulta-
neous calculation of different tasks of the integrand function, so it depends
strongly by its analytical form.

For our aims, consider then an environment represented by a computing node
(e.g. a cluster node or a blade in a server) with a node main mamory, one o more
host multicore CPUs and one or more floating point accelerator devices such as
the NVIDIA’s GPUs or the Intel Xeon Phy. Furthermore the acceleration device
has a private memory and cannot access directly the node main memory, so that
the data have to be moved from the host memory to the device memory and
viceversa. From the above, the best strategy to develop a hybrid algorithm for
this environment is then to use a combination of the Subdomain Level Parallelism
for the subdomains management on the host multicore CPU, and an Integration
Formula Level Parallelism to evaluate the basic rule (2) on the GPU device.
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2.1 The host algorithm

To introduce a Subdomain Level Parallelism in Algorithm 1, consider a multicore
based computing environment, where N threads Ti (i = 0, .., N − 1) are in
execution, one on each core, sharing the node main memory.

In a such environment it is then possible to processN subregions concurrently
by different threads. This can be achieved by storing the data related to the
subdomains s(k) in a shared heap H stored in the node main memory. But, in
this centralized approach, where all threads access a single shared heap with a
global synchronization, all the basic operations on the heap must be carried out
in a critical section, so that the synchronization cost depends on the number of
threads N , with a strong scalability degradation [7].

In order to avoid global critical sections, we give up the idea of a single cen-
tralized heap, and we split the heap H in N separate heaps Hi, one for each
thread, each of them accessing its private data structure without synchroniza-
tions with other threads. However also this approach has a side effect: because
of the N items ŝi with the largest error, resident in the heap roots of Hi are not
those that globally have the highest priority, some threads can process unim-
portant items with a slow numerical convergence. At this regard note that the
sequence of items with large error is unpredictable, so that it is impossible to
distribute the subdomains ŝi with large errors uniformly among the heaps Hi
before the computation.

In other words we have to deal with the contraposition between a parallel
algorithm with a centralized data structure requiring several global synchroniza-
tions, with fast numerical convergence and low efficiency, and a parallel algorithm
with independent data structures that do not require synchronizations, with a
slower numerical convergence and a higher efficiency.

In order to combine fast convergence with high efficiency, in our approach,
at each iteration j, the threads compare the maximum error êi in the roots of
Hi and, if the critical items are not equally distributed among the heaps, they
attempt to reorganize the subdomains in a more suitable way.

To this aim we propose a loosely coordinated approach, where the N threads
are logically organized according to a 2-dimensional periodical mesh M2. This
structure is a grid of Λ0 × Λ1 = N threads, arranged along the points of a
2-dimensional space with integer non negative coordinates in which a shared
memory between each couple of connected nodes is established. The shared
memories are used as buffer to exchange data between two threads according
to a producer-consumer protocol. In addition, the corresponding threads on the
opposite faces of the mesh are connected too, so that the mesh is periodical.

In a 2-dimensional periodical mesh, each thread Ti has 4 neighbors: 2 for

each direction. In the horizontal direction (dir = 0), we define T
(0)
i− and T

(0)
i+

respectively the leftmost and the rightmost thread of Ti in M2. Analogously in

the vertical direction (dir = 1) we define T
(1)
i− and T

(1)
i+ the lowermost and the

uppermost threads of Ti.
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We then define H∗ a loosely coordinated heap as a collection of heap Hi i =
0, .., N − 1, where the roots are connected among them according to the M2

topology.
With the described threads organization, at the iteration j, each thread Ti

attempts to share its item ŝi ∈ Hi, with largest error êi, only with the neighbor

thread T
(dir)
i+ alternatively in the two directions horizontal and vertical. More

precisely, in a fixed direction dir, let êi êi+ and êi− be respectively the errors of

the subdomains in the heap root of Hi, H(dir)
i+ and H(dir)

i− . If êi > êi+ then the
item ŝi ∈ Hi with largest error êi is moved forward to the heap Hi+ along the
direction dir, using a producer-consumer protocol on the shared space. In the
same way if êi− > êi the item ŝi− ∈ Hi− with largest error êi− is moved to the
heap Hi. In this way, the critical items with large error are shared among the
heaps with a faster cenvergence.

Furthermore, it should be noted that in this proposed data redistribution,
at each iteration j, there are not global synchronizations among threads Ti and

each of them exchanges data only with the two threads T
(dir)
i+ and T

(dir)
i− with

dir = mod(j, 2), so that the cost of threads synchronization is constant and it
does not depend on the number of threads N , so that the resulting algorithm
can be considered scalable [7].

2.2 The device algorithm

Modern GPUs are designed to efficiently deal with problems in the field of com-
puter graphics. In this field, it is typically necessary to perform the exact same
operations on all pixels in the image where you want to recreate the same effect.
For this reason, modern GPUs provide a SIMD type parallelism where hundreds
of single computing elements work synchronously on different data, under the
control of a single Control Unit. On the other hand, each computing element
is designed as simple as possible in order to keep its production cost low, so
that the power of the single elements is much lower in comparison to those of
the traditional CPUs. These characteristics mean that only some algorithms are
suitable for an efficient implementation on these devices. More precisely only a
fine grained parallelism on many data is able to unleash the computing power
of these devices.

From this point of view, the computation of (2) is well suited for an execution
on a GPU because of the large value of the number of nodes n, so that the n
products Aif(ti) are evaluated concurrently by the GPU computing elements
according to the Integration Formula Level Parallelism.

It should be noted, however, that the use of these environments involves a
heavy overhead. For example in CUDA (the computing platform and program-
ming model created by NVIDIA for its GPUs), the computing elements cannot
directly access the data stored in the node memory, so that it is necessary to
allocate space on the memory graphics card and to transfer data in it. This
transfer is a tremendous bottleneck for the computation: just think that the
NVIDIA Tesla C1060 has a peak performance p∗ = 933 Gflops (single precision)
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and a memory bandwidth of only m∗ = 102 GByte / sec (i.e. 25.5 Gwords/sec,
about 3% of the peak performance) . For such a reason, a key parameter for
the development of efficient algorithms for such computing device is the ratio
Θ = p∗/m∗, which gives a measure of the number of floating point operations
required for each data transferred, in order to support the peak performance.
For the NVIDIA Tesla C1060 we have Θ ' 35.

To this aim we observe that the integrand formula (2) requires the transfer
from the host memory to the device memory of 2 d-dimensional array (the center
of the region and the length of its edges) and it is based on n independent function
evaluations where d3 < n < d4 (see for example [8]), large enough to support
the parameter Θ.

In any case it is important to observe that in a sum-based formula (2), af-
ter the parallel evaluation of then products Ai f(ti), it is necessary to collect
these values together, by summing pairs of partial sums in parallel. Each step
of this pair-wise summation cuts the number of partial sums in half and ulti-
mately produces the final sum after log2 n steps. This procedure that computes
a single value from a set of data by using an associative operation (e.g. sum
or maximum) is called reduction, and its optimization is a key problem in the
development of algorithms for the GPUs, due to a decreasing number of active
threads in the cascade scheme required to calculate a single value from data
produced by several processing units. For such a reason we use the optimization
strategies described in [10] to compute (2).

Algorithm 2:

initialize Hi, Q(0)
i and E

(0)
i

while (local stopping criterion not satisfied) do iteration j
define dir = mod(j, 2)
if êi > êi+ then
remove (ŝi) from Hi
produce (ŝi) for T

(dir)
i+

endif
if êi− > êi

consume (ŝi−) produced by T
(dir)
i−

insert (ŝi−) in Hi
endif

1) select ŝi ∈ Hi such that êi = maxk=1,..,K e(k)
2) divide ŝi in two parts si(λ) and si(µ)
3) compute ri(λ) , ei(λ) , ri(µ) and ei(µ) on the GPU device
4) sort the subdomains according to their errors

5) update Q
(j)
i and E

(j)
i

endwhile

We conclude this section reporting, in Algorithm 2, the description of the
hybrid algorithm obtained by integrating the two described methods. More pre-
cisely, using the programming model SPMD, we describe the subdomains man-
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agement based on the parallelization at Subdivision Level between the threads
Ti, and at the same time we remark the section of the algorithm with the evalu-
ation of the quadrature formula in step 3) executed in SIMD mode on the GPU
using a Formula Level Parallelism.

3 Test results

In this section we present the experimental results achieved on a system com-
posed by a quad-core CPU, an Intel Core I7 950 operating at 3.07 Ghz, and two
NVIDIA’s C1060 GPUs (Tesla). Each NVIDIA C1060 GPU has 240 streaming
processor cores operating at 1.3 Ghz with a peak performance of 933 Gflops in
single precision arithmetic (78 Gflops in double precision arithmetic). The host
main memory is 12 GBytes large and the bandwidht between the host memory
and the device memory is 102 GByte/sec.

In this computational environment we implemented our hybrid Algorithm 2
in double precision using C language, with the CUDA library for the implemen-
tation of the step 3) on the GPU, and POSIX thread library and semaphores for
the redistribution of the subdomains among the threads in the host algorithm.
For the experiments we used a standard procedure based on the well known Genz
package [9]. This package is composed by six different families of functions, each
of them characterized by some issues making the problem ?? hard to integrate
numerically (peaks, oscillations, singularities..). Each family is composed by 10
different functions where the parameters αi and βi change and average test re-
sults are computed (execution time, error,). Here we report the results for the
following three families:

f (1)(x) = cos(2πβ1 +
∑d
i=1 αixi) Oscillating functions

f (2)(x) = (1 +
∑d
i=1 αixi)

−d−1 Corner peak functions

f (3)(x) = exp(−
∑d
i=1 αi|xi − βi|) C(0) functions

(3)

on the domain U = [0, 1]d with dimension d = 10. We selected these functions
because their different analytical features. However, for other functions in the
Genzs package we achieved similar results. We remark that in our algorithm we
use the Genz and Malik quadrature rule with φ = 1, 245 function evaluations so
that at each iteration 2φ = 2, 490 function evaluations are computed in the two
new subdomains sλ and sµ.

A first set of experiments is aimed to study the parallelization at the sub-
divison level implementing only the host algorithm. In these experiments we
measured

– the Scaled Speed-up SSN and the Scaled Efficiency SEN [7] with N=1, 2,
3 and 4 threads.

– The minimum (MinErr) and the maximum (MaxErr) relative error
|I(f)Q(f)|/|I(f) on the 10 functions of each family

To compute SSN we set F = 10×106 function evaluations in each threads, so
that the total number of function evaluations is FV AL = N×10×106 when the
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number of threads increases. The local stopping criterion is based on a maximum
allowed number of iterations in each thread Maxit = F/2φ = 4016.

Table 1 refers to the experiments executed only on the CPU and it reports
the Scaled Speed-up for the three families of functions by using 1, 2, 3 and 4
threads . We observe a good scalability when the number of threads increases.
As already remarked, the evaluation of the multidimensional integration rules
are tasks with a favorable ratio of floating point computation on data movement
so that the data can be easily stored in the core caches and reused in the next
iterations with an extensive use of cached data.

N = 1 N = 2 N = 3 N = 4

Family f (1)

SSN 1 1.9 2.8 3.4
SEN 1 0.95 0.93 0.85

Family f (2)

SSN 1 1.9 2.8 3.6
SEN 1 0.95 0.93 0.90

Family f (3)

SSN 1 1.9 2.7 3.4
SEN 1 0.95 0.90 0.85

Table 1 Scaled Speed-up and Scaled Efficiency for the three families of functions

f (1), f (2) and f (3) with 1, 2, 3 and 4 cores. The workload in each processing unit is

F = 10× 106 when the number of core increases. The average execution times with 1

core for the three families of functions are: T ime(f (1)) = 0.27 sec, T ime(f (2)) = 0.22

sec and T ime(f (3)) = 0.28 sec.

A second set of experiments is aimed to investigate the performance gain
using a GPU device as a floating point accelerator. In this case the quadrature
formula (2) has been implemented in the CUDA programming environment for a
scheduling on the GPU, as described in previous section. More precisely, for our
experiments, we have been used several quadrature formulas belonging to the
family of Genz and Malik [8] with number of nodes n = 1245, 2585, 9385, 37389
respectively. This is because the utilization of the GPU involves a high overhead
due to the data transfer between the host memory and device memory, which is
balanced only by an intensive use of its computational capabilities.

n = 1245 n = 2585 n = 9385 n = 37384

Family f (1)

exec. time 0.079 0.071 0.064 0.055
FV AL/time 506× 106 563× 106 625× 106 727× 106

Family f (2)

exec. time 0.059 0.054 0.048 0.041
FV AL/time 677× 106 740× 106 833× 106 975× 106

Family f (3)

exec. time 0.082 0.074 0.066 0.057
FV AL/time 487× 106 540× 106 606× 106 701× 106
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Table 2 Execution time and number of function evaluations per second with N = 4

threads without the use of GPU, when the number of node n in the basic rule

changes. The total number of function evaluations is F = 4× 10× 106.

n = 1245 n = 2585 n = 9385 n = 37384

Family f (1)

exec. time 0.080 0.053 0.031 0.018
FV AL/time 500× 106 754× 106 1290× 106 2222× 106

Family f (2)

exec. time 0.065 0.049 0.028 0.015
FV AL/time 615× 106 816× 106 1428× 106 2666× 106

Family f (3)

exec. time 0.085 0.056 0.033 0.020
FV AL/time 470× 106 714× 106 1212× 106 2000× 106

Table 3 Execution time and number of function evaluations per second with N = 4

threads with the use of GPU, when the number of node n in the basic rule changes.

The total number of function evaluations is F = 4× 10× 106.

In Tables 2 and 3 are reported the performance results of the hybrid algorithm
by using only the quad-core CPU and by using also the GPU devices as a floating
point accelerator respectively. As a performance measure, we used the number
of function evaluations per second. Also in this case the local stopping criterion
is based on the maximum function evaluations in each thread F = 10× 106, so
that the total number of function evaluations is FV AL = N × 10× 106 (N = 4
is the number of threads) for all test.

From these Tables it is evident that a basic rule with a small number of
function evaluations (n = 1245 and n = 2585) is unable to exploit the computing
power of the GPU used in these experiments. More precisely, we can observe that
the performance gain obtained with the use of the GPU is wasted because of the
overhead related to the memory device allocation and the data transfer, without
significant benefit for the performance. Only with a large number of nodes in the
basic rule (n = 9385 and n = 37384) we report a significant performance gain.
Compared with the value in Tables 3, the performance gain reported in Table 4
is about 3×.

4 Conclusions

We presented a hybrid multicore CPU/GPU approach that can exceed 3× the
performance of traditional quadrature adaptive algorithms running just on cur-
rent homogeneous multicore CPUs. In any case we report a significant perfor-
mance gain only with a large nymber of function evaluations of the basic rule
(n > 104), because the overhead introduced by the memory device management.
In any case our approach demonstrates the utility of graphics accelerators for
multidimensional quadrature problems in a large number of dimensions. Further-
more we remark that our approach can be combined with other hybrid strategies
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for multidimensional quadrature, such as that described in [14] or [13], as well
as for other on going works [3][5][6][15][16].
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