
FINAL WORKSHOP OF GRID PROJECTS “PON RICERCA 2000-2006, AVVISO 1575”
227

Abstract— A multilevel parallel adaptive
algorithm for the approximate computation of a
multidimensional integral over an
hyperrectangular region is described. This new
algorithm is aimed at an efficient implementation
on a MIMD distributed memory Multiprocessor
with multi-core CPUs. For this purpose two levels
have been introduced in the algorithm: an upper
level is responsible of the communication among
the nodes and a lower level is responsible of the
coordination of the cores in a single node. First
performance results on a Blade Server with 16
nodes and 2 quad-core CPUs per node have been
achieved.

I. INTRODUCTION

 ROM an architectural point of view, a
High Performance Computing environment

can be described by means of a tree structure,
where at the lowest level there are multi-core
CPUs, at the middle level there are workstation
clusters and blade servers, and at the highest
level the wide area network connects the
systems. For such a reason, the development of
algorithms and scientific software for these
environments needs the integration of several
methodologies to face the different kinds of
parallelism of each architectural level
(distribution of the computation among the
systems, parallelism among the CPUs as well
among the cores of a single CPU). The aim of
this work is to show the experiences gained

during the development of adaptive algorithms
for multidimensional integration on high
performance computing systems (cluster of
workstations, MPP systems, blade servers) with
multi-core CPUs. In the proposed algorithm the
tasks are dynamically scheduled on the cores of
a single CPUs accordingly to the availability of
the local resources, and periodically rearranged
among the CPUs of the system to balance the
workload. This two-levels approach produces
an algorithm with a reduced number of
synchronization points among the tasks and, at
the same time, a high degree of scalability.

II. ADAPTIVE ALGORITHMS FOR

MULTIDIMENSIONAL INTEGRATION

Since the scientific importance of the
numerical computation of a multidimensional
integral:

nnU
dtdtttffI KK 11),()(∫= (1)

in the past several efficient routines for the

solution of this problem have been developed,
where],[],[11 nn babaU ××= K is a

n-dimensional hyperrectangular region. Most
of them (see for example [1, 6, 8]) are based
on adaptive algorithms that allow high
accuracy with a reasonable computational cost.
Such algorithms are iterative procedure that,

Giuliano Laccetti, Marco Lapegna, Diego Romano,and Valeria Mele

Department of Mathematics and Applications, University of Naples Federico II
via Cintia Monte S.Angelo – 80126 Naples (Italy)

Multilevel Algorithms for
Multidimensional Integration in

High Performance Computing Environment

F

FINAL WORKSHOP OF GRID PROJECTS “PON RICERCA 2000-2006, AVVISO 1575”
228

at each iteration j, evaluates a composite
integration rule on a family of sub-domains

)(j
ks

(k=1,..,K) of a partition)(j℘ of U. The

aim is to compute an approximation Q(f) of I(
f) and an estimate |E(f)| of the absolute error
|I(f)-Q(f)| such that:

ε<<− |)(||)()(| fEfQfI (2)

where ε is an user-requested tolerance. To
achieve this, the algorithm computes a sequence

)(jQ of composite quadrature rules defined on

the sub-domains of)(j℘ approaching I(f)

and a sequence ||)(jE of approximations of

the error approaching 0, until the user-
requested tolerance is satisfied or it is realized
that the error criterion (2) cannot be achieved
within a allowed bound on the number of
function evaluations. For dimension up to 15
we have good rules available for standard
regions [2] .

Since the convergence rate of this procedure
depends on the behavior of the integrand
function (presence of peaks, oscillations, etc),
in order to reduce as soon as possible the error,
at the iteration j the sub-domain

)1()1(ˆ −− ℘∈ jjs with maximum error estimate
)1(

,..,

)1(maxˆ −

=

− = j
k

Kkj

j ee is split in two (or more)

parts λs and µs that take the place of)1(ˆ −js

in the partition)1(−℘ j . In the same way the

approximations)(jQ and ||)(jE are updated.

Usually the sub-domain)1(ˆ −js is split in only
two parts by halving the edges along the
direction where the fourth divided difference of
the integrand function is larger than in the other
directions. Such a value is taken as a measure of
the difficulty of the integration in that direction.
This kind of procedure is called global
adaptive algorithm. A framework for a

sequential global adaptive algorithm for the
computation of multidimensional integrals is
therefore the following :

begin Algorithm 1

Initialize
)0(℘ ,

)0(Q and ||)0(E

while (stopping criterion not satisfied)

1)find
)1()1(ˆ −− ∈℘ jjs such that

)1(

,..,1

)1(maxˆ −

=

− = j
k

Kk

j ee

2) divide
)1(ˆ −js in two parts λs and µs

3) evaluate the quadrature rules and compute the

error estimates in λs and µs

4) insert in
)(j℘ the sub-domains according

their error estimates

5) update
)(jQ and ||)(jE

endwhile
end Algorithm 1

There are several strategy to introduce

parallelism in a quadrature algorithm [7] , but in
order to achieve high efficiency our approach is
based on the distribution of the sub-domains of

)(j℘ among the processing units so that it is

possible to process them concurrently. This
approach is known as Parallelism at subdivision
Level and allows to introduce a sufficient large
granularity in the algorithms with a reduced
cost in synchronization and communication .
The main problem of this approach is that the

sequence of)(j℘ is unpredictable, so that it is

impossible to distribute uniformly the workload
among the computing units beforehand.
Therefore, to ensure proper balancing, a parallel
algorithm needs to reorganize periodically a
more suitable work subdivision among the
computing units of the system (nodes as well
as cores into each node). This type of load
balancing (sometime called dynamic load
balancing) reacts to the current state of the
algorithm during the execution of parallel tasks

FINAL WORKSHOP OF GRID PROJECTS “PON RICERCA 2000-2006, AVVISO 1575”
229

and it can improve the performance of parallel
systems in case of unpredictable workload.

With the aim of defining a suitable strategy

to redistribute the sub-domains among the
processing units, let us observe that the two
architectural levels in a MIMD distributed
memory system with multi-core CPUs (node
level and core level) require different
algorithms development methodologies
because of the very different architectural
features. The upper level require a traditional
approach based on message passing with the
issue of reducing the communication overhead,
whereas the lower level require an approach
based on the concurrent access to shared
memory with the other issue of reducing the
synchronization overhead. For these reasons we
propose a multilevel algorithm, where each
level is responsible to manage data for the
corresponding architectural level.
Three separate discussions on these levels and
how they can be combined together in the same
algorithm follow.

A. Parallelization among the cores

To implement Algorithm 1 in a multi-core

based computing system, firstly we observe that
the cores cannot be considered as completely
independent processing unit, because they share
both on-chip resources like caches or bus, as
well external resources like the main memory or
I/O devices [5]. These hardware features draw
a picture where several computing units access
to shared resources, so that a natural
programming paradigm for an efficient use of
these devices is based on the Thread Level
Parallelism. With this approach, P threads can
execute concurrently the Algorithm 1, with a
completely asynchronous and out-of-order
execution. However, it should be noted that to
achieve high efficiencies in these computing
environments, a key issue is the asynchronicity

of the tasks accessing the on-chip shared
resources. This is a critical issue for an adaptive
algorithm like Algorithm 1, because, as we said,
such an algorithm have to select the sub-domain
with maximum error estimate to reduce as fast
as possible the error estimate. Usually in an
adaptive algorithm for multidimensional
quadrature, the sub-domains are arranged in a
data structure that has to be accessed by all
threads. For a multicore version of Algorithm
1, the data structure resides in main memory
which implies the steps 1) and 4) being two
critical sections of the algorithm because of the
risk for race condition on this shared data
structure. However it should be noticed that the
computational cost of such steps executed in
critical sections is generally much smaller than
the cost of several step 3) executions concurrent
on the cores, since there are several data
structures with a management computational

cost of)(log2 KO , where K is the number of

the stored sub-domains. Such a value is much
smaller than the cost for evaluating an
integration formula, mainly for large values of
n. For such a reasons, the idle times are almost
completely eliminated in Algorithm 1 when
executed on a multi-core CPU.

B. Parallelization among the nodes

After the sub-domains refinement among the

cores described in the previous subsection, in
order to ensure proper load balancing among
the nodes, it is necessary to compare
periodically the data in their private memory
and to reorganize a more suitable sub-domains
distribution in the upper level. A common
strategy in this sense is to exchange the sub-
domains with a large error among the nodes.
However we remember that, since a necessary
condition for the scalability is the data locality,
the communication time for the sub-domains
rearrangements must be independent on the
size of the system (i.e. the number of nodes).

FINAL WORKSHOP OF GRID PROJECTS “PON RICERCA 2000-2006, AVVISO 1575”
230

So all global communications are removed to
improve the scalability of our algorithm,
because such communication tasks depend on
the number of nodes and make the algorithm
poorly scalable. Meanwhile the workload is
balanced by performing only
communications between pairs of directly
connected nodes in a 2-dimensional periodical
mesh [3, 4] . In such a topology each node has
4 neighbours: 2 for every direction. In our
algorithm each node attempts to send its sub-
domain with the largest error estimate to the
connected nodes in the mesh, in order to
share it with the other nodes. More precisely,

let ie
∧

, +

∧

ie and −

∧

ie be respectively the
largest error estimates of the sub-domains in

the current node iP , in the next node +iP and

in the previous node −iP . If +

∧∧
> ii ee then the

current node iP sends the sub-domain with

largest error estimate is
∧

 to the processor +iP .

In the same way if ii ee
∧

−

∧
> the current node

receives the sub-domain with error estimate

−

∧

ie from −iP . In such a workload distribution,

the communication cost is independent of the
number of nodes in the system, thus enhancing
the scalability of the algorithm.

C. The multilevel algorithm

At the end of this section we give a

description of the whole multilevel algorithm.
Algorithm 2 is the node algorithm in the Single
Program Multiple Data (SPMD) model for the

node iP . The inner loop is implemented in a

thread and replicated on each core of the
nodes.

begin Algorithm 2 for node iP

Initialize
)0(

i℘ ,
)0(

iQ and ||)0(
iE

while (node stopping criterion not satisfied)

Define the neighbors nodes +iP and −iP

if (+

∧∧
> ii ee) send is

∧
 to +iP

if (ii ee
∧

−

∧
>) receive is

∧
 from −iP

while (core stopping criterion not satisfied)
{enter critical section}

1) select
)1()1(ˆ −− ∈℘ j

i
j

is with largest error

estimate in)1(−℘ j
i

{exit critical section}

2) divide
)1(ˆ −j

is into two parts λs and µs

3) evaluate the quadrature rules and compute the

error estimates in λs and µs

{enter critical section}

4) insert in)(j
i℘ the sub-domains according to

their error estimates
{exit critical section}

5) update
)(j

iQ and ||)(j
iE

endwhile

endwhile

compute ∑=
i

f
iQfQ)()(and

∑=
i

f
iEfE |||)(|)(

end Algorithm 2

III. TEST RESULTS

In this section we present some results

achieved on a blade server with 16 nodes each
of them equipped with two Intel XEON E5410
quad-core CPU and 16 Gbytes of main
memory.

FINAL WORKSHOP OF GRID PROJECTS “PON RICERCA 2000-2006, AVVISO 1575”
231

The following Figure 1 refers to the
Algorithm 2 implemented on a single node.
Such a test is therefore aimed to measure the
effectiveness of the lower level of the
algorithm, i.e. the level responsible of the
dynamic load balancing on the cores in the
nodes.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

number of cores

ef
fic

ie
nc

y

Figure 1. Algorithm 2 on a single node

 The test refers to the computation of (1)

with n=10, U= [0,1]n and the following
oscillating integrand function

 






 += ∑
=

n

i
ii xf

1
12cos απβ

where α and β are random values that

determine the location and the sharpness of the
oscillation. Therefore the reported results are
the average on 10 executions obtained varying
these parameters.

 The figure shows the efficiency of the
Algorithm 2 with different numbers of function
evaluations, when the number of cores grows.
The graph can be taken as a measure of the
scalability of the Algorithm 2 on the cores of
each node, i.e. as the ability to keep high
efficiencies when the number of cores grows.
Mainly for large problems (5217815 function
evaluations), the Algorithm shows a very good
scalability. However a different slope of the

curves with 8 cores should be observed. This is
because the CPUs have four cores each, so that
the favorable ratio computation/access-to-data
produces an execution with an extensive use of
cached data up to four cores. On the other hand,
the use of eight cores imply a more frequent
access to the main memory charged to the
second CPU.

Figure 2 reports the performance of

Algorithm 2 measured with different numbers
of cores with respect to the problem size, using
the same computation from the previous test. As
a measure of the performance we choose to use
the number of function evaluations per second.
Again we observe a significant gain in
performance for sufficient large problems when
the number of cores grows.

1 2 3 4 5 6 7 8 9 10 11

x 10
6

0

2

4

6

8

10

12

14

16
x 10

7

number of functions evaluation

fu
nc

tio
ns

 e
va

lu
at

io
n

pe
r

se
co

nd

Figure 2. Performance of Algorithm 2

Finally Figure 3 reports a scalability test on

the 16 nodes of the system, using one core per
node. This test is therefore aimed to measure
the effectiveness of the upper level of the
algorithm, i.e. the level responsible of the
redistribution of the sub-domains among the
nodes. The distribution of the sub-domains with
large error among connected nodes in a 2-
dimensional periodical grid without global
communication produce an high degree of
scalability, that is the ability of the algorithm to

8 cores

4 cores

2 cores

1 core

FINAL WORKSHOP OF GRID PROJECTS “PON RICERCA 2000-2006, AVVISO 1575”
232

keep high efficiency when the number of nodes
grows.

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

number of nodes

ef
fic

ie
nc

y

Figure 3. Scalability test

ACKNOWLEDGMENTS

This work has been supported by Italian Ministry of
Education, University and Research (MIUR) within
the activities of the SCOPE project (PON Ricerca"
2000-2006 - Avviso 1575)

REFERENCES

[1] J. Berntsen, T. Espelid and A. Genz - Algorithm
698: DCUHRE - An adaptive
multidimensional integration routine for a
vector of integrals. - ACM Transaction on
mathematical software, 17 (1991), pp. 452-456.

[2] R. Cools and P. Rabinowitz. - Monomial
cubature rules since ``Stroud'': a compilation. -
Journal of Computational and Applied
Mathematics, 48 (1993), pp.309-326

[3] M. D’Apuzzo and M. Lapegna. – Scalability

and Load Balancing in Adaptive Algorithms for
Multidimensional Integration – Parallel
Computing vol. 23 (1997), pp. 1199-1210.

[4] A. D’Alessio and M. Lapegna - A Scalable
Parallel Algorithm for the Adaptive
Multidimensional Quadrature – in Parallel
Processing for the Scientific Computing, R.
Sincovec et al eds, SIAM 1993, pp. 933 - 936

[5] J. Dongarra, D. Gannon, G. Fox, and K.
Kennedy - The Impact of Multicore on

Computational Science Software. - CTWatch
Quarterly, Volume 3 Number 1, February 2007

[6] D. Khaner and O. Rechard, - TWODQD: an
adaptive routine for two-dimensional
integration. - Journal of Computational and
Applied Mathematics, 17 (1987), pp.215-234.

[7] A. Krommer and C. Ueberhuber –
Computational Integration. – SIAM 1998

[8] G. Laccetti and M. Lapegna - PAMIHR. A
Parallel FORTRAN Program for
Multidimensional Quadrature on Distributed
Memory Architectures. – in proceedings of
EUROPAR99 Conference, LNCS 1685,
Springer Verlag, pp. 1144 -1148.

Giuliano Laccetti is full professor of Computer Science in
the Faculty of Sciences, University of Naples Federico II.
He has been/is involved in several (national and european)
Research Projects about Parallel and Distributed
Computing, Scientific Computing, Grid Computing.
Presently he is scientific coordinator of the University of
Naples researchers group in the european EGEE III Project.

Marco Lapegna is associate professor in the Faculty of
Sciences, University of Naples Federico II, where he teach
Parallel Computing, Operating Systems and Programming
Laboratory. He has been involved in many research
projects on the computing science topics, with special
regard to parallel, grid and scientific computing.

Diego Romano is researcher at the Italian National
Research Council where at present is on leave to study for
his PhD on Computational and Computer Sciences at the
University of Naples Federico II. His research interests are
on parallel and distributed computing, focusing on topics
such as Parallel Computer Graphics

Valeria Mele is PhD student in Computational Sciences at
the Department of Mathematics and Applications of the
University of Naples Federico II.

