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Abstract— A multilevel parallel adaptive 
algorithm for the approximate computation of a   
multidimensional integral over   an 
hyperrectangular region is described. This new 
algorithm is aimed at an efficient implementation 
on a  MIMD distributed  memory  Multiprocessor 
with multi-core CPUs. For this purpose two levels 
have been introduced in the algorithm: an upper 
level is responsible of the communication among 
the nodes and a lower level is responsible of the 
coordination of the cores in a single node. First 
performance results on a Blade Server with 16 
nodes and 2 quad-core CPUs per node have been 
achieved.  
 
 

I. INTRODUCTION 

 ROM an architectural point of view, a 
High Performance Computing environment 

can be described by means of a tree structure, 
where at the lowest level there are multi-core 
CPUs, at the middle level there are workstation 
clusters and blade servers, and at the highest 
level the wide area network connects the 
systems. For such a reason, the development of 
algorithms and scientific software for these 
environments needs the integration of several 
methodologies to face the different kinds of 
parallelism of each architectural level 
(distribution of the computation among the 
systems, parallelism among the CPUs as well 
among the cores of a single CPU). The aim of 
this work is to show the experiences gained 

during the development of adaptive algorithms 
for multidimensional integration on high 
performance computing systems (cluster of 
workstations, MPP systems, blade servers) with 
multi-core CPUs. In the proposed algorithm the 
tasks are dynamically scheduled on the cores of 
a single CPUs accordingly to the availability of 
the local resources, and periodically rearranged 
among the CPUs of the system to balance the 
workload. This two-levels approach produces 
an algorithm with a reduced number of  
synchronization points among the tasks and, at 
the same time, a high degree of scalability. 
 

II.  ADAPTIVE ALGORITHMS FOR 

MULTIDIMENSIONAL  INTEGRATION 

Since the scientific importance of the 
numerical computation of a multidimensional 
integral: 

nnU
dtdtttffI KK 11 ),()( ∫=               (1) 

 
in the past several efficient routines for the 

solution of this problem have been developed, 
where ],[],[ 11 nn babaU ××= K  is a  

n-dimensional hyperrectangular region. Most  
of them (see for example  [1, 6, 8])  are based 
on adaptive algorithms that  allow high 
accuracy with a reasonable computational cost. 
Such algorithms are iterative  procedure  that,  
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at each iteration  j, evaluates a  composite 
integration rule  on a family of sub-domains  

)( j
ks    

( k=1,..,K) of a partition )( j℘  of U.  The  

aim  is to compute an approximation Q( f ) of  I( 
f ) and an estimate |E( f )| of the absolute error  
|I( f )-Q( f )| such that: 

 
ε<<− |)(||)()(| fEfQfI     (2) 

where ε is an user-requested tolerance. To 
achieve this, the algorithm computes a sequence 

)( jQ  of composite quadrature rules defined on 

the  sub-domains of )( j℘  approaching I( f )  

and a sequence  || )( jE  of approximations of 

the error  approaching 0, until the user-
requested tolerance is  satisfied or it is realized 
that the error criterion  (2) cannot be achieved 
within a allowed bound on the number of  
function evaluations.  For dimension up to 15 
we have good rules available for standard 
regions [2 ] . 

Since the convergence rate  of this procedure 
depends on the  behavior of the integrand 
function (presence of peaks, oscillations,  etc), 
in order to reduce as soon as possible the error, 
at the iteration j the sub-domain 

)1()1(ˆ −− ℘∈ jjs  with maximum error estimate 
)1(

,..,

)1( maxˆ −

=

− = j
k

Kkj

j ee  is split in two (or more) 

parts λs  and µs  that take the place of )1(ˆ −js  

in the partition )1( −℘ j . In the same way the 

approximations )( jQ  and || )( jE  are updated. 

Usually the sub-domain )1(ˆ −js  is split in only 
two parts by  halving the edges along the 
direction where the fourth divided difference of 
the integrand function is larger than in the other 
directions. Such a value is taken as a measure of 
the difficulty of the integration in that direction. 
This kind of procedure is called  global 
adaptive algorithm. A framework for a 

sequential  global adaptive algorithm for the  
computation of multidimensional integrals is 
therefore the following : 

 
begin Algorithm 1 

Initialize  
)0(℘ , 

)0(Q  and || )0(E  

while (stopping criterion not satisfied)  

1)find 
)1()1(ˆ −− ∈℘ jjs  such that 

)1(

,..,1

)1( maxˆ −

=

− = j
k

Kk

j ee
   

2) divide 
)1(ˆ −js  in two parts λs  and µs  

3) evaluate the quadrature rules and compute the        

error estimates in λs  and µs   

4) insert in 
)( j℘  the sub-domains  according 

their  error estimates 

5) update 
)( jQ  and || )( jE  

endwhile 
end Algorithm 1 

 
There are several strategy to introduce 

parallelism in a quadrature algorithm [7] , but in 
order to achieve high efficiency our approach is 
based on the distribution of the sub-domains of 

)( j℘  among the processing units so that it is 

possible to process them concurrently. This 
approach is known as Parallelism at subdivision 
Level and allows to introduce a sufficient large 
granularity in the algorithms with a reduced 
cost in synchronization and communication . 
The main problem of this approach is that the  

sequence  of )( j℘  is unpredictable, so that it is 

impossible to distribute uniformly the  workload 
among the computing units beforehand. 
Therefore, to ensure proper balancing, a parallel 
algorithm needs to  reorganize  periodically a 
more suitable work subdivision among the 
computing units  of the system  (nodes as well 
as cores into each node). This type of load 
balancing (sometime called dynamic load 
balancing)  reacts   to the current state of the 
algorithm during the execution of parallel tasks 
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and it can improve the  performance of parallel 
systems in case of  unpredictable workload.   

 
With the aim of  defining a suitable strategy 

to redistribute the sub-domains among the 
processing units, let us observe that the two 
architectural  levels in a MIMD distributed 
memory system with multi-core CPUs (node 
level and core level) require different 
algorithms development  methodologies  
because of the very different architectural 
features. The upper level require a traditional 
approach based on message passing with the 
issue of reducing the communication overhead, 
whereas the lower level require an approach 
based on the concurrent access to shared 
memory with the other issue of reducing the 
synchronization overhead. For these reasons we 
propose a multilevel algorithm, where each 
level is responsible to manage data for the 
corresponding architectural level.  
Three separate discussions on these levels and 
how they can be combined together in the same 
algorithm follow. 
 

A. Parallelization among the cores 

 
To implement Algorithm 1 in a multi-core 

based computing system, firstly we observe that 
the cores cannot be considered as completely 
independent processing unit, because they share 
both on-chip resources like caches or bus, as 
well external resources like the main memory or 
I/O devices [5].  These hardware features draw 
a picture  where several computing units access 
to shared resources, so that a natural 
programming paradigm for an efficient use of 
these devices is based on the  Thread Level 
Parallelism.  With this approach, P threads can 
execute concurrently the Algorithm 1, with a 
completely asynchronous and out-of-order 
execution. However, it should be noted that to 
achieve high efficiencies in these computing 
environments, a key issue is the asynchronicity 

of the tasks accessing the on-chip shared 
resources. This is a critical issue for an adaptive 
algorithm like Algorithm 1, because, as we said, 
such an algorithm have to select the sub-domain 
with maximum error estimate to reduce as fast 
as possible the error estimate. Usually in an 
adaptive algorithm for multidimensional 
quadrature, the sub-domains are arranged  in a 
data structure that has to be accessed by all 
threads.  For a multicore version of Algorithm 
1, the data structure resides in main memory 
which implies the steps 1) and 4) being two 
critical  sections of the algorithm because of the 
risk for race condition on this shared data 
structure. However it should be noticed that the 
computational cost of such steps executed in 
critical sections is generally much smaller than 
the cost of several step 3) executions concurrent 
on the cores, since there are several data 
structures with a management computational 

cost of )(log2 KO , where K is the number of 

the stored sub-domains. Such a value is   much 
smaller than the cost for evaluating an 
integration formula, mainly for large values of 
n. For such a reasons, the idle times are almost 
completely eliminated in Algorithm 1 when 
executed on a multi-core CPU.  

 

B. Parallelization among the nodes 

 
After the sub-domains refinement among the 

cores described in the previous subsection,  in 
order to ensure proper load balancing among 
the nodes,  it is necessary   to compare 
periodically  the  data in their private memory 
and to reorganize a more suitable sub-domains 
distribution in the upper level.  A common 
strategy in this sense is to exchange the sub-
domains with a large error among the nodes.  
However we remember that, since a necessary 
condition for the scalability is the data  locality, 
the communication time for the sub-domains 
rearrangements must be  independent on the 
size of the system (i.e. the number of nodes).  
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So all global communications are removed  to 
improve the scalability of our algorithm, 
because such communication tasks depend on 
the number of nodes and make the algorithm 
poorly scalable. Meanwhile  the  workload is 
balanced   by   performing only 
communications between pairs of directly 
connected nodes  in a 2-dimensional periodical 
mesh [3, 4] . In such a topology each node  has 
4  neighbours: 2 for every direction.  In our  
algorithm each node  attempts to send its   sub-
domain with the largest error estimate to  the 
connected nodes in the mesh, in  order   to  
share it with  the  other  nodes. More precisely, 

let  ie
∧

, +

∧

ie  and −

∧

ie   be respectively  the  
largest   error estimates of the sub-domains in 

the current node iP , in the next node +iP  and  

in  the previous node −iP  . If +

∧∧
> ii ee  then the  

current node iP   sends the sub-domain with 

largest error estimate is
∧

 to the processor +iP  . 

In the same way if  ii ee
∧

−

∧
>  the current  node  

receives  the sub-domain with error estimate 

−

∧

ie  from −iP  . In such a workload distribution, 

the communication cost  is independent of the 
number of nodes in the system, thus enhancing  
the scalability of the algorithm.  

 

C. The multilevel algorithm 

 
At the end of this section we give a  

description of the whole multilevel algorithm. 
Algorithm 2 is the node algorithm in the Single 
Program Multiple Data (SPMD)  model for the 

node iP .  The inner loop is  implemented in a 

thread and  replicated on each core of  the 
nodes. 

 

begin Algorithm 2  for  node iP  

Initialize  
)0(

i℘ , 
)0(

iQ  and || )0(
iE  

while (node stopping criterion not satisfied)  

Define the neighbors nodes +iP  and −iP   

if ( +

∧∧
> ii ee )  send is

∧
 to +iP  

if ( ii ee
∧

−

∧
> ) receive is

∧
 from −iP  

 
while (core stopping criterion not satisfied) 
{enter critical section} 

1) select 
)1()1(ˆ −− ∈℘ j

i
j

is  with largest error 

estimate in )1( −℘ j
i   

{exit critical section} 

2) divide 
)1(ˆ −j

is  into two parts λs  and µs  

3) evaluate the quadrature rules and compute the        

error estimates in λs  and µs   

{enter critical section} 

4) insert in )( j
i℘  the sub-domains  according to  

their     error estimates 
{exit critical section} 

5) update 
)( j

iQ  and || )( j
iE  

endwhile 
 
endwhile 
 

compute ∑=
i

f
iQfQ )()(   and   

∑=
i

f
iEfE |||)(| )(  

end Algorithm 2 

 

III.  TEST RESULTS 

 
In this section we present some results 

achieved on a blade server with 16 nodes each 
of them equipped with two Intel XEON E5410 
quad-core CPU and 16 Gbytes of main 
memory.  
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The following Figure 1 refers to the 
Algorithm 2 implemented on a single node. 
Such a test is therefore aimed to measure the 
effectiveness of the lower level of the 
algorithm, i.e. the level responsible of the 
dynamic load balancing on  the cores in the 
nodes. 
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Figure 1. Algorithm 2 on a single node 

 
 The test refers to the computation of  (1) 

with n=10, U= [0,1]n and the following 
oscillating integrand function 

 

  






 += ∑
=

n

i
ii xf

1
12cos απβ   

 
where α and β are random values that 

determine the location and the sharpness of the 
oscillation. Therefore the reported results are 
the average on 10 executions obtained varying 
these parameters. 

 The figure shows the efficiency of the 
Algorithm 2 with different numbers  of function 
evaluations, when the number of cores grows. 
The graph can be taken as a measure of the 
scalability of the Algorithm 2 on the cores of 
each node, i.e. as the ability  to keep high 
efficiencies when the number of cores grows. 
Mainly for large problems (5217815 function 
evaluations), the Algorithm shows a very good 
scalability. However a different slope of the 

curves with 8 cores should be observed. This is 
because the CPUs have four cores each, so that 
the favorable ratio computation/access-to-data 
produces an execution with an extensive use of 
cached data up to four cores. On the other hand, 
the use of eight cores imply a more frequent 
access to the main memory charged to the 
second CPU. 

 
Figure 2 reports the performance of  

Algorithm 2 measured with different  numbers 
of cores  with respect to the problem size, using 
the same computation from the previous test. As 
a measure of the performance  we choose to use 
the number of function evaluations per second. 
Again we observe a significant gain in 
performance for  sufficient large problems when 
the number of cores grows. 
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Figure 2. Performance of Algorithm 2 

 
Finally Figure 3 reports a scalability test on 

the 16 nodes of the system, using one core per 
node. This test is therefore aimed to measure 
the effectiveness of the upper level of the 
algorithm, i.e. the level responsible of the 
redistribution of the sub-domains among the 
nodes. The distribution of the sub-domains with 
large error among connected nodes in a 2-
dimensional periodical grid without global 
communication produce an high degree of 
scalability, that is the ability of the algorithm to 
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1 core 
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keep high efficiency when the number of nodes 
grows. 
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Figure 3. Scalability test 
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