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ABSTRACT

During the last decade the use of visual systems for robotics applications has become

a viable solution, which is often capable to offer a good cost/performance tradeoff.

In fact, the effectiveness and autonomy of a robotic system operating in unstructured

environments can be significantly enhanced if a visual system is adopted to achieve

direct measurements of the state of the environment and of the task in progress.

The use of visual sensors may have high impact in applications where it is

required to measure the pose (position and orientation) and the visual features of ob-

jects moving in unstructured environments. Typical industrial applications are, e.g.,

assembling of mechanical parts, edge/path following, object grasping; non-industrial

applications are, e.g., automotive guidance, spatial and underwater robotics. In par-

ticular, visual sensors offer the possibility to extract multiple information from a

workspace in a noninvasive manner. Moreover, in the last decade, high performance

visual systems are becoming less and less expensive. This scenario is quite appealing

for industries and researchers which are stimulated at developing innovative strategies

that actual technology is able to support.

This thesis considers the problem of the real-time reconstruction of the pose of

3D objects moving within unstructured environments, using the information provided

by a multi-camera visual system. The aim is to study in depth the main issues that

are involved in the pose reconstruction process, and to develop a new and efficient

pose reconstruction technique for the multi-object and multi-camera visual servoing.

The contents of the thesis have been organized into eight chapters and two

appendices.

In Chapter 1 an introduction to the meaning of visual servoing for robotic

applications is presented. Some examples of application of this control strategy are

xv



illustrated to define the actual boundaries of the state of the art. The main features

of visual servoing systems are introduced to provide a basic knowledge of the most

important elements characterizing this field of research.

Chapter 2 presents the main elements to understand the rule and the oper-

ation of each element composing a visual system. In this thesis, the term “visual

system” is used to indicate the set of hardware and software modules that make pos-

sible the acquisition of quantitative and qualitative information about the observed

workspace. Without loss of generality, four modules are considered: the camera, the

frame grabber, the image processing unit, and the image processing library.

Chapter 3 is devoted to the presentation of the mathematical models that are

used for the cameras and for the 3D objects. In particular, the camera model is based

on the pin-hole model and includes some distortion effects; the model used for the 3D

objects is based on a specific and very efficient data structure, known as BSP tree,

which may be directly derived starting from a more intuitive CAD representation

(boundary representation).

In Chapter 4 two of the most important areas of computer vision are described;

namely, the image elaboration and the image interpretation. An introduction to the

most popular techniques of image elaboration and image interpretation are presented,

with particular attention to those used in the proposed visual tracking algorithm.

Further, the so-called windowing technique, used to reduce the image region to be

elaborated, is described.

The issue of Chapter 5 is the problem of the pose reconstruction of a known

moving object using image measurements. The geometric formulation of the pose

reconstruction problem is presented with reference to the case of a fixed mono-camera

system and to the more general case of a fixed multi-camera system, both making

xvi



use of local image features, e.g. corners and holes, as image measurements. The

proposed solutions are based on the Extended Kalman Filter to resolve the complex

and nonlinear equations resulting from the geometric formulation, both in the case

of a mono and of a multi-camera system. Further, to reduce the computational

complexity, a recursive formulation of the filter is proposed. Finally, a new adaptive

formulation of the Extended Kalman Filter is presented to enhance the robustness

with respect to the light condition.

In Chapter 6 the problem of the management of highly redundant informa-

tion provided by a multi-camera system is presented. A new optimal technique for

managing redundant visual information is proposed, that is based on a pre-selection

algorithm and an optimal selection algorithm. It is shown that this two-step proce-

dure allows a sensible reduction of the time spent for the redundancy management

process. In fact, with this approach the image area to elaborate may be limited to a

constant value, independently from the number of the employed cameras, providing

an efficient and flexible tool for real time applications based on multi-camera systems.

In Chapter 7 the proposed reconstruction technique for simultaneous visual

tracking of multiple objects using information provided by a multi-camera system

is presented, while Chapter 8 shows the results of some experiments realized on a

robotic system equipped with a stereo visual system.

Finally, Appendices A and B offer some implementation details of the BSP

Trees structure and of the Extended Kalman Filter, respectively.

xvii





CHAPTER 1

INTRODUCTION

An introduction to the meaning of visual servoing for robotic applications is presented

in this chapter. Some examples of applications of this control strategy are illustrated

to define the actual boundaries of the state of the art. Moreover, the main features

of visual servoing systems are introduced to provide a basic knowledge of the most

important elements in this field of research. Finally, the specific topics covered in this

thesis are briefly introduced.

1.1 Visual servoing

One of the most challenging ambitions of human kind has been the realization of ma-

chines mimicking the human capability to gather and elaborate complex information

on the environment so as to interact with it in an autonomous manner. During this

endeavor humans have supplied such machines with a large sensorial and elaboration

capacity, and have designed their structure so as to replicate human limbs like arms

and hands.

The two most important human senses providing sufficient information on an

unknown environment for the execution of generic interaction tasks are the tactile

sense and the visual sense. Devices able to partially imitate these human senses are
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the force sensors and the visual sensors, respectively. In fact, tasks like parts mating

or localization and grasping of moving objects may appear to be very simple for

humans thanks to their capacity of interaction provided from such senses.

The visual sense, that is probably the most powerful among the human senses,

is often lacking in many human-made devices. In fact, without visual information,

manipulating devices can operate only in well-structured environments, where every

object is known and can be found in a well-known pose (position and orientation).

Thanks to the use of visual sensors, these devices could be used for applications where

the geometry and the pose of the objects to be manipulated or avoided cannot be

known in advance.

The integration of different types of interaction and field sensors has today

become an indispensable step to increment the versatility and the application domain

of modern automation devices. Until a few years ago, the cost of many kinds of these

sensors was actually too high. Only recently, the integration of a visual system into

the sensorial equipment has become affordable for many kinds of applications.

A visual system is a passive, remote and distributed sensor that captures

information from a large region of the workspace in a non-invasive manner. Nowadays,

it provides a partial imitation of the visual human sense in a relatively economical way.

In fact, the cost of a CCD camera and of the relative image processing hardware has

become quite competitive, with respect to the quality and the wealth of the provided

information. With the increasing of real-time capabilities of such systems, vision

is beginning to be utilized in the automatic control community as a powerful and

versatile sensor to measure the geometric characteristics of the workspace. Moreover,

the use of efficient real-time algorithms for visual applications, running on powerful

and economic hardware, make it possible the use of visual information directly in the

control loop, giving origin to what is known as visual servoing.
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Visual servoing is a control strategy based on various kinds of information

extracted from a sequence of images provided by a visual system. In general, this

system may be composed by one or more cameras, computational system, and specific

image processing algorithms. Like human sense during the execution of a specific task,

the visual system may be specialized for measuring a specific features of interest,

e.g. the presence of objects and obstacles, the presence of a target object, etc. This

information, once available, may be used by a specific control unit to perform the

assigned task. Probably, the main difficulty in the study and application of this

technique resides in its intrinsic multidisciplinarity from image processing and sensor

fusion, to real-time computation and control theory.

1.2 Applications of visual servoing

The use of visual systems in automation and robotics has found large diffusion espe-

cially during the last decade (see [17] and [5]). In fact, the reduction of the cost of

the CCD camera sensors combined with the exceptional growth of the computational

capacity of specialized hardware and common PC processors, have made possible the

use of sophisticated image processing real-time algorithms at a very limited cost. The

main application fields of this type of sensors are humanoid robots, robot manipula-

tors, autonomous mobile vehicles, medical applications, etc.

The realization of robots similar to humans has been the goal of many research

groups around the world. The replication of the human visual sense is one of the most

important aspects of such goal. Many attempts have been made to construct robots

with functional and somatic characteristics similar to human (see Fig. 1.1) and some

important results have been obtained. For this kind of applications, visual servoing

is used to provide some important capacities to the robot, as that of reconstructing

a local map, following a path, avoiding an obstacle, climbing the stairs, playing with
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Figure 1.1. Visual servoing applications: human visual sense imitation

a ball, driving vehicle, etc. The execution of all these tasks requires a sophisticated

visual capacity, which has to be provided in real time by a stereo visual system. Even

though significant progress has been made in the latest years, the degree of autonomy

comparable to human autonomy is still far to be reached.

Visual servoing of robot manipulators is an important and prolific field of

research. Operations such as object recognition, localization and grasping in unstruc-

tured environments have been developed and tested by many research and industrial

groups. In Fig. 1.2 some examples of manipulators controlled through a visual sys-

tem are shown. The significant economic benefits achievable with the introduction

of visual systems in industrial applications have determined a quick development of

this technology. In fact, the introduction of visual servoing in industrial processes

may relax the mechanical constraints supporting the work process of the robot, and

may permit the realization of more complex tasks. Moreover, a multi-camera visual

system may operate at the service of a whole robotic workcell, and thus its cost can
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Figure 1.2. Visual servoing applications: parts mating and object manipulation

be actually shared among many robots.

The fusion of force and visual measurements may represent a powerful so-

lution to perform tasks which require interaction with unknown environments. In

these applications visual servoing can be used to localize the target and to guide the

robot to an appropriate contact configuration; then, the force sensor may provide the

information required for completion of the task.

Mobile robots make use of visual systems to achieve autonomy of motion in

unknown environments. Thanks to the visual system, it is possible to gather and

store information on the local environment that can be used to build a local digital

map for navigation and obstacles avoidance. More sophisticated mobile robots are

endowed with robotic arms, as shown in Fig. 1.3; they are used, e.g., for housekeeping

or post delivering. Imagination is often the sole limitation to the utilization of such

machines.
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Figure 1.3. Visual servoing applications: autonomous mobile robot

Besides the previously mentioned applications, many other common processes

have been the subject of feasibility studies on the employment of visual sensors. Some

of the most successful applications can be found , e.g., in surgery, robotic games,

and virtual reality (see Fig. 1.4). In surgery the use of specific robots equipped

with a visual systems allows incrementing the precision and sensibility of a surgeon

and eventually realizing operations remotely. Robotic pets are some of the recent

commercial products using visual servoing.

1.3 Visual servoing of industrial robots

The main application of visual servoing in industrial robotics concerns with the con-

trol of the end-effector pose with respect to the pose of one or more objects and/or

obstacles fixed or moving in the workspace. Many examples of common industrial

tasks belong to this category, e.g., positioning or moving some objects, assembling
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Figure 1.4. Visual servoing applications: surgery, games, virtual reality, etc

and disassembling mechanical parts, surface treatment (like painting), etc.

For robots supplied with a visual servoing system the control of the pose is

realized using synthetic information extracted from a sequence of images, known as

image features. The images are provided by a visual system, composed of one or more

cameras mounted on the end effector of the robot or in a fixed pose with respect to

the workspace. An image is a two dimensional (2D) projection of the observed scene,

made by the couple lens system/CCD sensor of a camera. The process of reconstruc-

tion of the original three-dimensional (3D) pose of the observed object is known as

pose reconstruction or pose estimation, and it is one of the most important processes

involved in visual control. Often, when the object is moving in the workspace, the

process of pose reconstruction is known as visual tracking to underline the dynamic

context.

However, to realize visual servoing, it is not strictly necessary to explicitly

reconstruct the 3D pose of the target. If a suitable control algorithm based on image

features is available, visual servoing may be realized directly in the image feature
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space without estimating the pose. The schemes of visual servoing based on visual

tracking and image-space visual servoing belong to two of the main categories of

visual servoing systems that will be presented with more details in the next section.

The integration of visual systems with force measurements is a promising field

of research for industrial applications (see [2]). The potential of this solution is really

promising because it ensures the robot capability of interacting with unstructured

and unknown environments. Typically, pure visual servoing is used to guide the

manipulator in a suitable initial pose with respect to the target and the programmed

task. Then, the robot is taken in contact with the target using a suitable force

control low. For some applications, like mechanical parts mating, visual servoing

remains active also during the insertion to control the motion components that are

not interested by the contact constraints in order to realize a specific relative motion

trajectory.

For some industrial applications, budgetary limits may still constitute a prob-

lem for the implementation of a visual servoing system. Even though the cost of this

type of hardware is becoming very competitive, the application tasks are becoming

more and more complex and may require visual processing algorithms with significant

costs. In fact, this control technique is still young and not completely settled; more-

over, the complexity and variety of application tasks does not allow for a complete

standardization of these algorithms.

1.4 Characterization of visual servoing systems

The incredible variety of control structures making use of visual feedback presented in

the scientific literature does not allow a comprehensive presentation of all the aspects

and details of visual servoing. To understand this variety, the main parameters used

to classify and distinguish visual servoing systems are listed and described in the
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Figure 1.5. Visual servoing classification based on the camera(s) configuration. On
the left (right) is shown an example of eyes-in-hand (eyes-out-hand) configuration

following:

• camera(s) configuration,

• observation point,

• control architecture,

• control error,

• model and calibration dependence.

1.4.1 Camera(s) configuration

Visual servoing systems may be classified with respect to its camera(s) configura-

tion. Two main possibilities exist: eye(s)-in-hand configuration and eye(s)-out-hand

configuration.

The first configuration corresponds to the case of one or more cameras mounted

on the robot’s end effector. In this case there exists a fixed relationship between the

pose of the end effector and the poses of the cameras. Moreover, the images of the

target objects depend on the robot pose.
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Figure 1.6. Visual servoing classification based on the control architecture. Left:
indirect visual control scheme; right: direct visual control scheme

The second configuration describes the case of one or more cameras mounted

on fixed or mobile bases in the workspace. In this case the images of the target

objects are independent of the robot pose and the camera(s) may be fixed or moving

with respect to the robot base frame. In Fig. 1.5 two examples of robotic systems

that adopt different cameras configuration are shown. A hybrid configuration is also

possible (but less usual), where one or more cameras are mounted in-hand and other

are out-hand.

1.4.2 Observation point

This classification depends on whether or not the visual system observes the end

effector of the visually guided robot, apart from the target objects. If the visual

system observes only the target objects an endpoint-open-loop type of visual control is

realized; if both the targets and the end effector are observed, then an endpoint-closed-

loop is realized. In the first case, the accuracy in positioning the end effector with

respect to the target object depends on the accuracy of robot kinematic calibration

and camera calibration. In the second case, the positioning accuracy does not depend

on robot and camera calibration.

1.4.3 Control architecture

A visual servoing control loop may be realized using two different architectures (see

Fig. 1.6). In the first one, known as direct visual control, the visual feedback is directly
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used to evaluate the joint control law. For this scheme, very fast visual systems are

required because the rate of the visual system coincides with the control rate. In the

second control architecture, instead, visual feedback is used to provide the set point

of an inner motion controller. This type of control scheme, known as indirect visual

control, can be further divided into two categories: dynamic look-and-move and static

look-and-move. In both cases, the external visual control loop may be slower than

the inner motion control loop. In the dynamic scheme the visual system continuously

evaluates and updates the motion set point, while in the static scheme the visual

system is used only to localize the target position before the motion starts.

1.4.4 Control error

Depending on the type of control error, three different types of visual servoing strate-

gies may be identified: position-based (3D), image-based (2D), and hybrid (21
2
D)

visual servoing. Position-based visual servoing requires the evaluation of the 3D pose

of the target objects through specific pose estimation algorithms. The reconstructed



12 Chapter 1

poses are used by a standard pose controller as any different type of pose measure-

ment. The image-based visual servoing, instead, makes use of the 2D image features

(e.g. the object contours) as feedback measurements and of the desired aspect of these

features directly into a suitable feature-space controller. Finally, in hybrid visual ser-

voing a position-based approach is used only for some pose components, while an

image-based solution is used to reconstruct the remaining components. Figure 1.7

illustrates the three types of visual servoing strategy.

1.4.5 Model and calibration dependence

The last type of classification is based on the dependence of the visual servoing system

on the CAD model of the target objects and/or on the camera calibration.

Typically, the dependence on the models of the target objects is determinate

by the need to reconstruct 3D pose information from the available 2D image mea-

surements. This type of dependence is often present in such visual servoing systems

that employ a single camera systems.

In general, the dependence on the calibration of the camera system is determi-

nate by the request to reconstruct the absolute pose of the target objects with respect

to the base frame. For this reason it is more frequent for the position based visual

servoing schemes and less frequent for the image based visual servoing schemes.

1.5 Proposed visual servoing system

The main research result presented in this thesis is a new visual tracking algorithm

for the simultaneously dynamic estimation of the absolute pose of one or many known

objects, moving in an unstructured environment, using images provided from a multi-

camera system. It represents a very flexible solution to the realization of a generic

visual servoing system. In fact, thanks to its structure based on processing of local
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image areas, the algorithm may use a generic number of cameras, in any configuration,

at no additional in computational cost. Moreover, it is able to simultaneously track

the pose of many known objects.

With respect to previously cited visual servoing schemes, the algorithm pre-

sented here may be used both for an eye(s)-in-hand and for an eye(s)-out-hand con-

figuration. In fact, the cameras may be positioned in any configuration and the algo-

rithm is capable to configure itself in an automatic manner. Being a multi-object algo-

rithm, both the endpoint-open-loop visual control and the endpoint-closed-loop visual

control may be realized. Moreover, considering its high computational efficiency, it

may be used both in a direct-visual-control scheme and in a dynamic-look-and-move

scheme. Finally, it is a position-based and calibration-dependent algorithm, because

the 3D absolute pose is estimated, and it is model-based, since the CAD model of the

target objects is required.

However, the required object knowledge consists in a simple description of the

object surfaces. In the case of polyhedral objects, each surfaces is described as an

ordered sequence of points describing its contour (boundary representation). This

CAD model is further elaborated by the algorithm to achieve a very efficient data

representation based on a binary tree structure known as Binary Space Partitioning

tree (BSP tree).

This data structure is the base to an efficient algorithm for managing the image

features (e.g. corners and holes) which supports the feature extraction process. For

each camera, this algorithm is able to recognize and select an optimal and minimal set

of local image features to be extracted —through a local elaboration on the image—

and used by the pose estimation algorithm.

The core of the pose estimation process is based on a suitable dynamic formu-
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lation of the Kalman Filter, able to estimate the pose of the observed moving object.

Moreover, the filter provides a prediction of the pose of the object, at the next sam-

pling time, that is keenly used by the algorithm for feature selection to increase the

accuracy and computational efficiency of the visual tracking system.



CHAPTER 2

VISUAL SYSTEM

The term visual system has been used, in the literature, to indicate a wide variety of

systems in function of the specific field of application where they are employed. For

the purpose of this work, the term visual system will indicate the set of hardware and

software modules, that makes possible the acquisition of quantitative and qualitative

information about the observed workspace. Without loss of generality, the main

elements composing a visual system are essentially four: the camera with its optical

sub-system, the frame-grabber, the image processing unit (specialized or generic), and

the image processing library. This chapter presents the main elements to understand

the rule and operation of each of these elements.

2.1 Camera

A camera is a passive, remote and distributed device that captures information on a

wide region of the observed space in a non-invasive manner. It is a complex system

composed of heterogenous sub-systems, as shown in Fig. 2.1, summarized as follows:

• solid state photo-sensible sensor,

• optical sub-system,
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Figure 2.1. Scheme of the main elements of a camera

• analogic electronics for signal conditioning.

2.1.1 Solid state photo-sensible sensor

A solid state sensor is composed of a large number of photo-sensible elements, named

pixels, able to transform light energy into electrical energy. Each pixel accumulates

an electrical charge, that is proportional to the incident light intensity, integrated

on the whole period of exposition. The line scan cameras use a single line of pixels

to build up seamless two-dimensional images of moving objects (a fax machine is a

low-end example). They are employed for applications where the linear motion of a

part may be used to reconstruct a two dimensional image during time. The area scan

cameras, instead, use a two-dimensional array of sensible elements and they are the

base for the cameras employed in machine vision1. For this reason, only this type of

sensor will be considered in the following.

The mean and most diffused photo-sensible solid state sensors with superficial

scansion are the CCD and CMOS sensors, which are based on the photo-electrical

effect of semi-conductor materials.

1Term used here to indicate the use of visual information to realize the assigned
task.
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CCD. A Charge Coupled Device sensor is composed of a rectangular matrix of pix-

els. By virtue of the photo-electrical effect, when a photon strikes the surface of

the semi-conductor it creates some free electrons. Therefore, each element ac-

cumulates a charge depending on the time integral of the incident light. At the

end of the exposition period, this charge is passed, via a suitable transporting

mechanism like an analogic shift-register, to an output amplifier. Simultane-

ously, the pixel is discharged. The signal produced by the amplifier is further

elaborated in order to produce a standard video signal.

CMOS. A Complementary Metal Oxide Semi-conductor sensor is composed of a

rectangular matrix of photo-diodes. The junctions of each photo-diode are pre-

charged, and they progressively discharge when are struck by the photons strike.

An amplifier, which is integrated in each element, transforms this charge into a

current or voltage level.

Differently from a CCD sensors, the pixels of a CMOS sensor are not integrating

elements because, after they have been activated, they measure a quantity instead

of a volume. In this way, a saturated pixel can not “overflow” and influence a close

pixel. This property prevents the blurring of the image, that instead distresses the

CCD sensors.

Another important difference between this type of sensor is that the CCD

sensors sample all the pixels simultaneously, when the photo-sensible elements are

transferred through the shift-registers, while in the case of the CMOS sensors the

pixels positioned at the opposite sides of the sensor are characterized by different

exposition time. This delay may cause problems for images of fast moving objects.

In fact, if the motion of an observed object is very fast with respect to the camera, then

the recorded images may be blurred. The pixels are sensible to the time integral of the

light intensity over the exposition period, and thus the observed object may appear
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blurred and lengthened along the motion direction. The use of image sequences with

this characteristics as field measurements may produce coarse errors, especially for

applications like visual servoing.

A conventional camera based on the use of a film makes use of a mechanical

shutter to expose the film for a time period whose duration is small with respect to

the velocity of the motion. For CCD sensors, an electronic shutter may be derived

by discharging the pixels until a time instant just before the beginning of the desired

exposition time. Only the charge integrated in the remaining period, properly called

exposition time, will be transferred via the shift-register. A disadvantage of this

technique is that the accumulated charge decreases with the duration of the exposition

time, and causes a reduction of the signal/noise ratio of the image. However, this

effect may be contained by increasing the aperture of the camera and/or increasing

the illumination of the scene.

The visual information has to be elaborated by a numerical processor, so

that the measurement of the light intensity of each points of the image has to be

transformed into a finite number of digital codes. It is clear that a spatial sampling

has to be adopted, because the image is composed of infinite points, as well as a

temporal sampling, because the image varies with time. By considering the previous

functional description, it is obvious that the CCD and CMOS sensors realize the task

of spatial samplers, while the electrical shutters assume the role of time samplers.

2.1.2 Optical sub-system

The optical sub-system is composed of one or more lenses2, which have the task to

2A lens is a centered dioptric system, that is a portion of transparent material,
with a fixed refraction index, delimited by two spherical surfaces, that may not have
the same curving radius (e.g. one of the two may be a plane). The curving centers of
these surfaces determine a straight line called optical axis.
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focus the light reflected by the observed objects on the sensor plane. To understand

its functioning for the simple case of one thin lens3, the classic pin-hole model will

be used. This model, shown in Fig. 2.2, defines a reference frame Oc-xcyczc fixed

with respect to the camera (camera frame), with the z-axis corresponding to the

optical axis, i.e. the axis orthogonal to the lens plane, which contains the two centers

of curvature of the spherical surfaces delimiting the lens. The center of this frame

corresponds to the optical center, also known as “center of the projections”, that is

the geometric center of the lens for the case of thin lenses. The lens plane corresponds

to the plane (xc, yc) of the camera. The sensor plane is parallel to the lens plane and

it is positioned at a distance fe, i.e. the effective focal length, different with respect

to the nominal focal length f .

Due to the projective effect, as shown in Fig. 2.2, the image projected on the

3A lens is said thin when its thickness (the distance between the two dioptrics of
the lens) is small with respect to the radius of curvature of its two spherical surfaces.
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sensor plane is reversed with respect to the original. To obtain a non-reversed image,

a fictitious plane is considered, named image plane, that is positioned on the other

side of the lens with respect to the optical center, at a distance fe. On the image

plane a new reference frame O′-uv is defined, called image coordinate frame, where O′

corresponds to the intersection of the image plane with the optical axis and is called

principal optical point, while the u-axis and v-axis are chosen parallel to the xc-axis

and yc-axis, respectively.

The relationship between the coordinates (xc, yc, zc) of a generic point P in the

camera frame and the corresponding image coordinates (u, v) in the image frame of

its projection on the image plane4 may be easily derived using the rules of perspective

projection. Exploiting the property of similarity between the triangle individuated by

point P , its normal projection on the optical axis, and the point Oc, and the triangle

defined by the points O′, Oc, and the projection of P on the image plane, the following

relationships can be derived:

u

fe
=
xc

zc
(2.1a)

v

fe
=
yc

zc
(2.1b)

also known as perspective transformation. It is worth remarking that the image co-

ordinates are not the output coordinates of the camera, but they do not take into

account spatial discretization realized by the solid state sensors, that will be consid-

ered in the next chapter. Finally, notice that (2.1) is valid only in theory, because

in reality the lenses and the assembly of the optical system are always affected by

4The projection of a point P on the image plane is the 2D point determined by
the intersection of the image plane with the optical ray (the straight line joining the
point P and the optical center). Notice that the image projection process transforms
a 3D point of the observed space into a 2D point, determining a loss of information.
Therefore, this transformation is not reversible because the image coordinates of a
point determine only a spacial optical ray.
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various imperfections, which worsen the quality of the image.

2.1.3 Analogic electronics for signal conditioning

In the case of a black and white camera5 with a CCD sensor, the output amplifier of

the sensor produces a signal that is elaborated by an analogic electronic circuit, which

is developed to generate one of the standard video signals: the CIRR standard, which

is adopted in Europe and Australia, or the RS170 standard, which is adopted in the

US and in Japan. The video signal has a peak-peak voltage of 1V, that represents

the light intensity in a sequential manner for each scanned line, as shown in Fig. 2.3.

The whole image is divided into a number of lines (625 for the CIRR standard

and 525 for the RS170 standard) which have to be scanned sequentially. The scanning

path proceeds horizontally along each line, from the top to the bottom, considering

first the even lines and then the odd lines. Therefore, the whole image is obtained

as a composition of two successive half-frames. This technique is called interlacing

5The color cameras are supplied with special CCD sensors sensible to the three
fundamental color: red, blue, and green. Some professional models use three different
sensors for each fundamental color.
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as it allows the image to be refreshed at either the frame frequency or the half-frame

frequency. In the first case the refresh frequency is 25Hz for the CIRR standard and

30Hz for the RS170 standard, while in the second case the frequency is doubled, but

with half of the vertical resolution.

The signals are of analogic type (for this reason the corresponding cameras are

known as analogic cameras) and then they cannot be input directly to a numerical

elaboration system. Special A/D converters, known as frame grabbers, are used to

convert the video signal into a digital format. A frame grabber performs sampling

and quantization of the analogic video signal, and then it stores the values in a 2D

array (frame store). These values represent the spatial samples of the image and the

whole array can be refreshed at full or half-frame rate.

In the case of cameras with CMOS sensors, thanks to the CMOS technology

that allows an A/D converter to be integrated directly into each pixel, the output

signal of the camera is directly a 2D digital array. Moreover, the access to each

pixel may be realized in a random manner. With respect to the CCD cameras, this

characteristic allows a substantial increase of the refreshing frequency, provided that

only a limited image area is accessed.

2.2 Frame grabber

The digitized image used by machine vision systems is a representation, sampled with

respect to space, of the continuous function I(u, v), which defines the intensity of the

incident light at the point of coordinates (u, v) of the image plane. The function

I, after sampling and quantization is stored into the frame store. The samples are

known as image elements or pixels, and their amplitude is named grey level or grey

value. Each row of the frame store corresponds to a line interval of the analogic video

signal, as illustrated in Fig. 2.3.
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A scheme of the digitizing process is shown in Fig. 2.4, and it is characterized

by the following elements:

• DC restore and offset,

• signal conditioning,

• sampling and shape ratio,

• quantization.

2.2.1 DC restore and offset

The analogical video signal may accumulate an offset on the DC component during

the transmission and the amplification. The “DC restore” process eliminates this

offset that, otherwise, may produce an alteration of the lightness level of the image

and of the perception of the contrast level.

2.2.2 Signal conditioning

Before digitization, the video signal has to be filtered to reduce the aliasing effects and,
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in the case of color cameras, to extract the chrominance signal from the composed

video signal. This type of filtering has some negative effects like the reduction of

contrast and sharpness, and above all the introduction of a delay due to the phase lag

of the filter. Also, the conditioning stage of the signal has to introduce a gain, before

the digitization, to improve the signal/noise ratio for dark scenes. For this type of

image, in fact, the voltage levels of the video signal are very low.

2.2.3 Sampling and shape ratio

Whenever available to the sampler, the portions of the video signal corresponding

to the photo-sensible elements of the camera should be constant. Instead, they turn

out to be distorted due to the limited band of transmission line and the analogic

supporting circuits. This signal has to be sampled to generate the corresponding

value If (r, c) of the frame-store pixel, where r and c are the row and column indices,

respectively. Notice that the pixels of the frame store are not necessarily mapped

as the pixels of the camera sensor. As illustrated in a schematic way in Fig. 2.4, to

realize in a correct way the sampling of the signal and its storing into the frame store,

a synchronization information of the video signal is required.

A digitizer samples the video signal at a frequency fd, that is typically chosen

equal to an integer multiple of the frequency of the synchronization impulse fh. The

sampling does not necessary align the samples to the output of the closest photo-

sensible elements. In fact, if the frame store has a dimension of 512 × 512 pixels6,

then the digitizer has to sample the video signal, so that each line should have 512

samples, regardless of the number of photo-sensible elements of the sensor lines. In

this case, the digitized pixels are not accurate samples independent of the entity of the

6This format is very popular, especially for low cost applications. Unfortu-
nately, the CIRR signal is composed of 575 active lines for each image and then the
last 63 lines (11%) are typically wasted. New digitizers and frame stores are able to
capture the whole CIRR images.
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incident light; this situation may determine serious problems for some machine vision

algorithms, e.g. edge detectors, which operate under the assumption of independence

between the pixels.

This “double” sampling, due to the sensor and the frame grabber, modifies the

shape ratio (the ratio between the vertical and horizontal dimension) of the memorized

image. This effect depends on the dimension of the elements of the photo-sensible

sensor as well as on the sampling ratio β, defined as follows:

β =
Number of sensor pixels for line

Number of frame-store pixels for line
.

This quantity is very important for the definition of a mathematical model of the

camera, that will be presented in the next chapter.

2.2.4 Quantization

The last step of the digitizing process is the quantization of the analogic video signal.

Each sample is quantized into a n-bit integer with a value between 0 to 2n− 1. Typi-

cally the black reference corresponds to 0, while the highest level of white corresponds

to 2n − 1.

The quantized signal xq(t) may be expressed as a function of the original signal

x(t) as follows:

xq(t) = x(t) + eq(t)

where eq(t) is the quantization noise, assumed with an uniform distribution in the

interval [−1
2
, 1

2
] and squared mean e2 = 1

12
. The corresponding signal/noise ratio will

be SNR = e2.

2.3 Image processing unit

The dimensioning of the image processing unit is certainly one of the most important
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issues for real-time application. The elaboration of the image sequences provided

by one or more cameras via the corresponding frame grabbers may require a large

processing capability, depending on the kind of image elaborations that has to be

realized. In fact, for a low resolution black and white camera with 512 × 512 pixels,

the dimension of the data to elaborate is about 2,09 Megabits; for a camera with

782 × 582 pixels the dimension grows to about 3,64 Megabits, and so on. If the

whole image has to be elaborated with complex algorithms, then the required image

processing unit has to be properly dimensioned and designed to respect the real-time

constraints.

For some application, a personal computer, supplied a frame grabber board

for PCI slots, may be used as an image processing unit. The processing capability of

modern processors may be often sufficient, especially for mono-camera applications

when the time constraints are not severe. This solution is especially suitable for those

applications where only a limited area of the image has to be processed or when simple

image features have to be extracted. In all these cases, a PC-based solution offers

many advantages, apart from the limited cost, as the possibility of using a unique PC

platform to implement the whole visual servoing system.

If the simultaneous elaboration of the whole images provided by many cameras

is required, or whether the image features are very complex, then a specialized image

processing unit may be necessary. At the moment, the cost of specialized units has

become more competitive, but they still remain too expensive for many types of

application. This specialized hardware is often integrated directly into the frame

grabber and is also available on a common PCI board. Typically, it is composed

of an external interface for the connection to many types of cameras and to one or

more monitors, of one or more specific memory areas, and of one or more dedicated

processing nodes such as DSPs and/or common PC processors. In many cases it is
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possible to connect two or more cameras to one single image processing unit, which

is able to manage them simultaneously. These devices may be programmed to realize

a generic image processing algorithm, both for low-level processing and for complex

image feature extraction. However, especially in the case of more cameras, a further

central processing unit, like a host PC, may be necessary to realize some indispensable

centralized operations on the image data provided by each processing unit. A typical

case may be the pose reconstruction, where the features extracted from each camera

have to be suitably composed and elaborated to estimate the pose of the observed

object.

2.4 Image processing library

The image processing library is the collection of the algorithms for low and high-level

image processing. The low-level processes are used to realize elementary image pro-

cessing, such as the evaluation of the histogram of the grey levels, the transformation

of the image into a binary format, the image filtering, and so on. The high-level pro-

cesses are used to realize the image segmentation, the centroid evaluation, the corner

detection, the edge detection, and, in general, the feature extraction.

In conjunction with much specialized hardware and the associated drivers, so-

phisticate image processing libraries are often available. The cost of these algorithms

may be very high, and strongly depends on the complexity of the elaboration capabil-

ity. However, these commercial libraries may be insufficient and limitative for sophis-

ticated use, and often the corresponding source codes are not provided. Therefore, a

custom library has to be realized to satisfy the necessity of specific applications.
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MODELLING

The mathematical models are a fundamental instrument for the development, simu-

lation, realization, and management of experimental and innovative systems. This

chapter is devoted to the presentation of the mathematical models of the camera and

of the 3D object geometry. In particular, the model of the camera is based on the

pin-hole model and includes some distortion effects, while the model of the 3D object

geometry is based on a specific and efficient data structure, known as BSP tree, which

is very popular for applications of 3D animation.

3.1 Camera

The types of cameras used for robotic and industrial applications with respect to high

precision cameras, have the following characteristics: a) the image resolution depends

on the spatial digitalization and is generally low; b) the employed lenses are non-

metric standard lenses and present important geometric distortion, especially “wide

angle” lenses; c) the assembly is characterized by significative internal mismatch7. For

7The mechanical assembly of industrial cameras is realized with low tolerances,
and thus the image plane may not be orthogonal to the optical axis, the center of the
sensor may not correspond to the principal optical point, and so on.
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these reasons the camera model has to consider both the geometrical distortions and

the mechanical mismatch of the optical structures, in order to allow for an effective

compensation of the corresponding errors.

The parameters characterizing a generic model of a camera may be divided

into three main categories: internal parameters, external parameters, and distortion

parameters. The internal parameters characterize the relationship between the image

coordinates of a point and the corresponding spatial coordinates, expressed with

respect to the camera frame. The external parameters characterize the geometric

relationship between the camera(s) frame and the base frame. Finally, the distortion

parameters characterize the model of geometric distortions.

In this section, two different models are considered. The first one is a classic

pin-hole model without distortion. The second model, that may be considered as an

extension of the first one, considers also the main distortion effects. In the following, a

short introduction to geometric distortion and the corresponding models is presented.

3.1.1 Model without distortion

A simple mathematical model representing a generic camera in an ideal condition of

absence of any type of distortion will be derived in this section. The classical pin-hole

camera model is considered. Consider the camera frame Oc-xcyczc fixed with respect

to the camera, as shown in the pin-hole model of Fig. 3.1. The (fictitious) image

plane (u, v) is parallel to the camera’s plane (xc, yc), and is placed at a distance fe

(effective focal length) from the origin of the camera frame along the zc-axis in the

opposite direction with respect to the sensor.

Consider the vectors p and pC , which represent the position of a generic ob-

served point P with respect to the base frame and the camera frame, respectively. It

is known that the coordinate transformation (rotation and translation) between these
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Figure 3.1. Reference frames for the camera using the pin-hole model

two vectors may be represented as follows:

pC = oC + RCp (3.1)

where oC and RC = {ri,j}, with i, j = 1, 2, 3, are the translation vector and the (3×3)

rotation matrix defining the position and orientation of the base frame with respect

to the camera frame, respectively.

On the image plane, consider the image coordinate frame O′-uv, as shown in

Fig. 3.1, where O′ corresponds to the principal optical point and the axes u and v are

parallel to the corresponding axes xc and yc. The image coordinates of the generic

observed point P can be computed using the perspective transformation, in (2.1) that

can be rewritten in a compact form as follows:









u

v









= fe









xC

zC

yC

zC









. (3.2)

Finally, the address of the pixel on the frame grabber, corresponding to the
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digitized image of the projection of point P on the sensor, can be computed as

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
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r

c




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

=


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





+
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


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0 sv












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







(3.3)

where (ro, co) indicates the address of the principal optical point O′, and su and sv

are the row and column scale factors, respectively. These latter quantities define the

theoretical shape ratio and their values depend (see Section 2.1) on the dimension

of the photo-sensible elements as well as on the sampling ratio β of the digitizer,

according to the following relationships:

su =
1

βa

sv =
1

b

where a and b are the dimensions of the photo-sensible elements along the u-axis and

the v-axis, respectively. The dimensions of both su and sv are pixel/m. Therefore,

an object with size U × V on the sensor will have a corresponding size ‖su‖U ×

‖sv‖V expressed in pixel. Notice that, due to the adopted conventions, the quantity

su is negative, while the quantity sv will be positive. Further, r and c correspond

respectively to the row and column address of the pixel of the digitized image plane

hit by the projection ray of point P , because the axes xc and yc (and so u and v)

have been chosen parallel to the row and column directions, respectively.

In view of (3.2) and (3.3), it is possible to derive the following relationship:

u =
u

fe
=
r − ro
fu

=
xC

zC
(3.4a)

v =
v

fe
=
c− co
fv

=
yC

zC
(3.4b)

where (u, v) define the normalized image coordinates in the so-called normalized image

plane8 and the new quantities fu = sufe and fv = svfe are known as row focal length

8The normalized image plane is a special fictitious image plane placed at a
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and column focal length, respectively. The normalization of the image plane allows

employing the two quantities fu and fv in the place of the three quantities fe, su,

and sv, which always appear as products. Further, it is also possible to derive the

relationship between the normalized image coordinates and the spatial coordinates of

the observed point expressed in the base frame, using Eq. (3.1).

If the ratio between the row-row and column-column distances must be equal

to q, then the ratio |fu/fv| = |su/sv| must be equal to q−1. Many of the conventional

cameras provide a rectangular image with a ratio of 4/3 between the horizontal and

the vertical size.

3.1.2 Geometric distortion

The geometric distortion regards the position of the image point (i.e., the projection

of the observed point on the image/sensor plane) on the image plane. Because of

different imperfections of the shape and of the assembly of the lenses composing the

optical sub-system, the expressions (3.4) are no longer valid and have to be replaced

with the expressions:

u′ = u+ δu(u, v) (3.5a)

v′ = v + δv(u, v) (3.5b)

where u and v are the image coordinates without distortion, that are not observable,

while u′ and v′ are the corresponding distorted coordinates; the position errors δu and

δv depend on the position of the point itself.

To correct the distortion effects in an efficient manner it is necessary to analyze

the different causes of distortion and model their effects on the image plane. Three

distance zC = 1, instead of zC = fe, from OC . Another definition of normalized
image plane may be obtained by performing the normalization with respect to the
optical center so that the row-row (column-column) distance in pixel is equal to 1. In
this case it is su = 1 (sv = 1) and fu = fe (fv = fe).
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Figure 3.2. Radial and tangential distortion

types of distortion have been considered. The first type depends on the imperfections

of the shape of the lenses, which cause a radial error of the image position; the second

and third type of distortion depend on the erroneous assembly of the optical sub-

system, which generate both a radial and a tangential error of the image position.

Figure 3.2 shows both the effects of the radial and of the tangential distortion on the

image point.

Radial distortion. The radial distortion causes a shift of the ideal image point

towards an internal (negative) or an external (positive) direction, with respect to the

principal optical point. Typically, this effect is caused by an imperfect curvature of

the shape of the lens. A negative radial shifting is called cylindric distortion. It

determines the thickening of most external pixels, toward the principal optical point,

and a reduction of the scale factors (see Fig. 3.3). A positive radial shifting of the

image point is called pincushion distortion. It determines the stretching of the most

external pixels and an increment of the scale factors.
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negative

positive

Figure 3.3. Radial distortion. The dotted lines show the effects of a positive and a
negative radial distortion

The radial distortion for a centered lens may be modelled as

δρr = k1ρ
3 + k2ρ

5 + k3ρ
7 + . . .

where ρ is the radial distance from the principal image point, and k1, k3, k4, . . . are

the coefficients of the radial distortion. To each image point of polar coordinates

(ρ, ϕ), it corresponds a radial distortion along each direction that depends only on

the radial distance ρ. Therefore, by taking in account the equalities:

u = ρ cos(ϕ)

v = ρ sin(ϕ),

the radial distortion may be directly expressed with respect to the image coordinates

as follows:

δur = k1u
(

u2 + v2
)

+O
[

(u, v)5
]

(3.6a)

δvr = k1v
(

u2 + v2
)

+O
[

(u, v)5
]

, (3.6b)

where O(·) represents the order of infinite.

Decentralizing distortion. The optical sub-systems are subject to erroneous align-

ment of the optical center of the assembled lenses. These defects determine the
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Figure 3.4. Tangential distortion. The dotted lines show the effects of the tangential
distortion

so-called decentralizing distortion. This type of distortion presents both radial and

tangential components, which may be computed as:

δρd = 3
(

j1ρ
2 + j2 + ρ4 + . . .

)

sin(ϕ− ϕod) (3.7a)

δtd =
(

j1ρ
2 + j2 + ρ4 + . . .

)

cos(ϕ− ϕod) (3.7b)

where ϕod is the angle between the positive axis u and the maximal tangential dis-

tortion line, as shown in Fig. 3.4.

The resulting distortion along the u-axis and v-axis may be expressed in terms

of δρd and δtd as follows:
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. (3.8)

Considering that cos(ϕ) = u/ρ, sin(ϕ) = v/ρ, from (3.7) and (3.8) the following
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expression can be obtained:

δud = ξ1
(

3u2 + v2
)

+ 2ξ2uv +O
[

(u, v, )4
]

(3.9a)

δvd = 2ξ1uv + ξ2
(

u2 + 3v2
)

+O
[

(u, v, )4
]

(3.9b)

where ξ1 = −j1 sin(ϕod) and ξ2 = −j1 sin(ϕod).

Prismatic distortion. The prismatic distortion depends on the imperfections of the

shape of the lenses as well as on the camera assembly, e.g. the inclination of the planes

of the lenses or of the sensor. This type of distortion may be suitably modelled as the

presence of a thin prism into the optical sub-system, that determines an increment

of the radial and tangential distortion. The mathematical model is the following:

δρp = 3
(

i1ρ
2 + i2 + ρ4 + . . .

)

sin(ϕ− ϕop) (3.10a)

δtp =
(

i1ρ
2 + i2 + ρ4 + . . .

)

cos(ϕ− ϕop) (3.10b)

where ϕop is the angle between the positive axis u and the maximum tangential

distortion axis, as shown in Fig. 3.4. Defining σ1 = −i1 sin(ϕop) and σ2 = i2 cos(ϕop),

and using a similar assignment as before the model of the distortion along the u and

v axes may be evaluated as

δup = σ1

(

u2 + v2
)

+O
[

(u, v, )4
]

(3.11a)

δvp = σ2

(

u2 + v2
)

+O
[

(u, v, )4
]

. (3.11b)

Complete distortion model. The effects of three types of distortion have been con-

sidered. It is important to notice that even though the decentralizing and prismatic

distortion have similar mathematical models, these correspond to different distortion

effects having different maximum distortion axes. When all the distortion effects are

present simultaneously, the global distortion may be computed as the sum of the el-

ementary effects. Combining (3.6), (3.9), and (3.11) and ignoring the terms of order
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greater than three, the complete distortion model is achieved:

δu(u, v) = (g1 + g2)u
2 + g4uv + g1v

2 + k1u
(

u2 + v2
)

(3.12a)

δv(u, v) = g2u
2 + g3uv + (g2 + g4)v

2 + k1v
(

u2 + v2
)

(3.12b)

where g1 = σ1 + ξ1, g2 = σ2 + ξ2, g3 = 2ξ1, and g4 = 2ξ2.

3.1.3 Complete model of the camera

Considering the distortion along the u-axis and v-axis according to (3.5), the rela-

tionship between the ideal image point (u, v) and its effective pixel position is given

by

u+ δu(u, v) =
r − ro
su

(3.13a)

v + δv(u, v) =
c− co
sv

. (3.13b)

By considering the quantities

û =
r − ro
fu

(3.14a)

v̂ =
c− co
fv

, (3.14b)

which represent the image normalized coordinates with distortion, equations (3.13)

can be rewritten in the form

u =
u

fe
= û−

δu(u, v)

fe
(3.15a)

v =
v

fe
= v̂ −

δv(u, v)

fe
. (3.15b)

Notice that the true values of u and v cannot be obtained from the captured points,

because they are corrupted by noise and distortion. Therefore, the arguments of the

distortion functions are replaced with û and v̂, i.e.

u

fe
∼= û−

δ̂u(û, v̂)

fe
(3.16a)



Modelling 39

v

fe
∼= v̂ −

δ̂v(û, v̂)

fe
. (3.16b)

These approximations are reasonable because the distortion corresponding to the true

image projection is about equal to the distortion corresponding to the measured image

projection.

By defining the normalized distortion coefficients g1, g2, g3, g4 and k1 (obtained

by dividing the corresponding quantities by fe), and replacing them into (3.4), (3.12),

and (3.16), the following camera model is obtained:

u =
xc
zc

= û+ (g1 + g2)û
2 + g4ûv̂ + g1v̂

2 + k1û
(

û2 + v̂2
)

(3.17a)

v =
yc
zc

= v̂ + g2û
2 + g3ûv̂ + (g2 + g4)v̂

2 + k1v̂
(

û2 + v̂2
)

. (3.17b)

Notice that those equations are linear with respect to the distortion coefficients and

this property may be used to derive a camera calibration procedure (see [43] and [41]).

This model may be used to compensate for the distortion effects, e.g. to es-

timate the optical ray of each observed point. The pixel coordinates r and c of an

observed point determine the coordinates û and v̂ by virtue of (3.14). These values

are then used into (3.17) to compute the compensated normalized image coordinates

and, finally, the optical ray.

The described distortion model considers only some types of distortion but

this does not mean that it is not able to represent any type of distortion. In fact, this

model, that has been derived considering the most important type of distortion, has

been formulated in a polynomial form. Therefore, the distortion parameters computed

during camera calibration will represent not only the distortion effects considered in

the model but, through its interpolation capability, they will capture also other types

of distortion, if at all present.
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3.2 Three-dimensional object

Modelling the geometry of the objects is a crucial step involved into an object-oriented

machine vision process. The realization of a task requiring tracking of target objects

requires the knowledge of the geometry of the objects and their relative poses in the

observed workspace. If such information has to be provided by a visual system, then

a model of the geometry of the target objects, suitably defined for the kind of involved

image elaboration process, is required. Unfortunately, in most cases a Cartesian CAD

model (boundary representation or B-reps) of the objects is available (or derivable),

but it cannot be directly employed by sophisticated real-time image processing al-

gorithms, while a more efficient representation of the object geometry is necessary

to reduce computational complexity. As a matter of fact, two different requirements

have to be satisfied: it is important to have an easily derivable representation that

allows a manual description of the geometry of the object; also, it is necessary to have

an efficient representation that allows the implementation of real-time visual servoing

algorithms.

A good trade-off between these demands may be obtained using a simple

boundary representation to describe the object geometry, and a more complex and

computationally efficient object representation that may be automatically derived

from the previous one. In the next sections, a possible boundary representation of

manmade9 objects and a specific data structure representing a recursive and hier-

archical partition of an n-dimensional space into convex subspaces, known as BSP

tree, are presented. In particular, the chosen boundary representation is very simple

9The so called manmade objects belong to an object class that contains all
objects which may be represented (or approximated) as a union of planar surfaces,
e.g. polyhedral objects. Further, the contours of each surface of these objects have
to be representable (or approximable) with a polygonal determined by an ordered
sequence of points. This means that a curved contour has to be approximated as a
polygonal contour via a suitable spatial sampling.
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and accessible for a manual geometric description of the object; the BSP tree data

structure is presented, both in a general version and in a custom version, that may

be automatically derived from boundary representation.

3.2.1 Boundary representation

This section is not aimed at presenting in general the Cartesian CAD modelling of

three-dimensional objects, also known as boundary representations or B-reps, but is

focused on the presentation of a specific model used to implement the visual tracking

algorithm, proposed in this work. In particular, the considered boundary representa-

tion has three specific properties:

• it is suitable for representing manmade objects;

• it has to be easily constructed manually;

• it has to describe the object with two hierarchical levels of representation: the

top level describes the set of the feature points of the object, while the bottom

level describes the object surfaces using the information of the first level.

In this work, the so-called feature points are all the points which allow the contours

of the object to be fully described. Generally, they are found by the discontinuities

in the direction of the contours and by the intersection of multiple contours. In the

case of curved contours, a suitable spatial sampling is required to approximate the

contour with a polygonal line.

The considered B-reps may be constructed in two steps. During the first step

all the feature points of the object are individuated and measured with respect to a

chosen object frame OO-xOyOzO, fixed with the object. During the second step an

easy description of the object surfaces is achieved by choosing the sequences of feature

points delimiting the considered surface. The sequences of feature points are ordered
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Figure 3.5. Example of Cartesian CAD model of a 3D manmade object. Left: object;
center: object feature points (top level of representation); right: object surfaces
(bottom level of representation)

in anticlockwise direction with respect to the outgoing unit vector orthogonal to the

object surface. With this choice, it will be possible to recognize the external side of

a surface.

In Fig. 3.5 an example of manmade object is shown, along with its feature

points and its surfaces. In the first level of representation, 16 feature points have

been found, which are sufficient to represent all the contours of the object. Each

point (fi, with i = 1, . . . , 16) is represented by its position with respect to the object

frame. In the second level of representation 10 surfaces are found and described using

the previous feature points. Table 3.1 reports the representation of the surfaces with

the corresponding ordered sequences of feature points, as described above. Notice

that it is not important which is the first point of the sequence but only its order.

3.2.2 Binary space partitioning trees

In machine vision and in most applications involving computation of 3D geometric

models, the task of generating images of objects, depending on their geometry, their

relative pose, and the selected point of view, is of fundamental importance. Perform-

ing this task requires determining, for each image of a video sequence, the spatial
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Surface Feature points

S1 {f1f4f6f7f9f12f16f13}

S2 {f1f2f3f4}

S3 {f2f14f15f11f10f8f5f3}

S4 {f16f15f14f13}

S5 {f1f13f14f2}

S6 {f12f11f15f16}

S7 {f9f10f11f12}

S8 {f9f7f5f10}

S9 {f6f5f8f7}

S10 {f6f4f3f5}

Table 3.1. Boundary representation. Ordered sequences of feature points correspond-
ing to the surfaces of the object of Fig. 3.5

relations between objects: how they might intersect each other, and how they may

occlude each other. The manmade objects, rather than being one piece, are often

composed by many pieces (or they may be so “represented”), e.g. by many polygons

forming the faces of polyhedra. The number of pieces depends on the number and the

complexity of the target objects. Computing spatial relations between n polygons by

brute force entails comparing every pair of polygons, and then it would require O(n2)

operations. For the case of 1,000 polygons, this would mean 106 operations, which is

much more than necessary.

The number of operations can be substantially reduced to anything from

O(n log2(n)) when the objects interpenetrate (in the previous example this corre-

sponds to less than 104), to as little as constant time, O(1), when they are somewhat

separated from each other. This can be accomplished by using binary space parti-

tioning trees, also called BSP Trees or partitioning trees (see [40]). They constitute a

computational representation of space that simultaneously provides a search structure

and a representation of geometry. The reduction in number of operations occurs be-

cause BSP Trees provide a kind of “spatial sorting”. In fact, they are a generalization
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Figure 3.6. BSP tree representation of inter-object spatial relations for a 2D case.
Left: spatial partitioning; right: binary tree

to dimensions grater than unity of binary search trees, which have been widely used

for representing sorted lists.

Figure 3.7 gives an introductory example showing how a binary tree of lines,

instead of points, can be used to “sort” five geometric objects, as opposed to sorting

symbolic objects such as names.

Constructing a BSP tree representation of one or more manmade objects in-

volves computing the spatial relations between polygonal faces once and encoding

these relations in a binary tree (see Fig. 3.6). This tree can then be transformed and

merged with other trees to quickly compute the spatial relations (for visibility and

intersections) between the polygons of two moving objects.

BSP Trees achieve an elegant solution to a number of important problems in

geometric computation by exploiting two very simple properties occurring whenever

a single plane separates (lies between) two or more objects:

1. any object on one side of the plane cannot intersect any object on the other

side,

2. given a viewing position, objects on the same side as the viewer can have their

images drawn on top of the images of objects on the opposite side (Painter’s

Algorithm).
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Figure 3.7. BSP tree representation of intra-object spatial relations for a 2D case.
Left: original boundary representation; center: spatial partitioning; right: binary
tree

These properties can be made independent of dimension if we use the term hyperplane

to refer to planes in 3D, lines in 2D, and in general for n-space, to an (n − 1)-

dimensional subspace defined by a single linear equation. An example of the second

property is showed in Fig. 3.8.

To determine visibility, all that is required is choosing at each tree node which

one of the two branches to draw first based solely on which branch contains the

viewer. No other single representation of geometry inherently answers questions of

intersection and visibility for a scene of 3D moving objects. And this is accomplished

in a computationally efficient and parallelizable manner.

A partitioning tree is also a program for performing intersections between the

hyperplane half-spaces and any other geometric entity. Since subdivision generates

increasingly smaller regions of space, the order of the hyperplanes is chosen so that

following a path deeper into the tree corresponds to adding more detail, yielding a

multi-resolution representation. This leads to efficient intersection computations.

BSP tree data structures have been used for many other different applications

earning significant success [3]. In this work their capacity to make visibility orderings
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in an efficient manner is exploited, but they also may be advantageously employed

for the following applications:

• hidden surfaces removal,

• analytic visibility computing,

• ray tracing accelerating,

• boolean operations performing on polytopes,

• collision detection performing,

• dynamic scenes performing,

• shadows computing,

• connectivity information extraction,

• robot motion planning.

Notice that as long as the relations encoded by a tree remain valid, which

for a rigid body is forever, one can exploit the benefits of having generated this

tree structure every time the tree is used in subsequent operations. The return on

investment leads to substantially faster algorithms for computing intersections and
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visibility orderings. And for applications of image sequences processing in real-time,

this savings is greater than hundreds of thousands of frames.

Moreover, affine and perspective transformations can be applied without hav-

ing to modify the structure of the tree itself, but rather by modifying the linear

equations representing each hyperplane (with a vector-matrix product as one does

with points).

Building partitioning trees

BSP Trees exploit the properties of separating planes by using one very simple but

powerful technique to represent any object or collection of objects: recursive subdivi-

sion by hyperplanes. A partitioning tree is the recording of this process of recursive

subdivision in the form of a binary tree of hyperplanes [36]. The only operation

necessary for constructing BSP Trees is the partitioning of a convex region by a sin-

gle hyperplane into two child regions, both of which are also convex as a result (see

Fig. 3.9).

Given a set of polygons in 3D space, which define the target objects, the goal

is to build a BSP tree tree which contains all of the polygons. For now, the question
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of how the resulting tree is going to be used is ignored. The algorithm to build a BSP

tree is very simple:

1. select a partition plane,

2. partition the set of polygons with the plane,

3. recurse with each of the two new sets.

The choice of partition plane depends on how the tree will be used, and what

sort of efficiency criteria is adopted for the construction. For the purpose of this work,

it is appropriate to choose the partition plane from the input set of polygons (called

an auto-partition). Other applications may benefit more from axis-aligned orthogonal

partitions.

Partitioning a set of polygons with a plane is done by classifying each member

of the set with respect to the plane. If a polygon lies entirely into one side or the other

of the plane, then it is not modified, and is added to the partition set for the side to

which it belongs. If a polygon spans the plane, it is split into two or more pieces and

the resulting parts are added to the sets associated with either side as appropriate.

The decision to terminate tree construction is, again, a matter of the specific

application. Some methods terminate when the number of polygons in a leaf node

is below a maximum value. Other methods, like that used in this work, continue

until every polygon is placed in an internal node. Another criteria is a maximum tree

depth.

Here is an example of pseudo C++ code for the construction of a partitioning

tree:

struct BSP_tree {
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plane partition;

list polygons;

BSP_tree *front,

*back;

};

This structure definition will be used for all subsequent example code. It stores

pointers to its children, the partitioning plane for the node, and a list of polygons

coincident with the partition plane (see Fig. 3.10). For this example, there will

always be at least one polygon in the coincident list: the polygon used to determine

the partition plane (auto-partition). A constructor method for this structure should

initialize the child pointers to NULL.

void Build_BSP_Tree (BSP_tree *tree, list polygons) {

polygon *root = polygons.Get_From_List ();

tree->partition = root->Get_Plane ();

tree->polygons.Add_To_List (root);
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list front_list,

back_list;

polygon *poly;

while ((poly = polygons.Get_From_List ()) != 0) {

int result = tree->partition.Classify_Polygon (poly);

switch (result) {

case COINCIDENT:

tree->polygons.Add_To_List (poly);

break;

case IN_BACK_OF:

back_list.Add_To_List (poly);

break;

case IN_FRONT_OF:

front_list.Add_To_List (poly);

break;

case SPANNING:

polygon *front_piece, *back_piece;

Split_Polygon (poly, tree->partition,

front_piece, back_piece);

back_list.Add_To_List (back_piece);

front_list.Add_To_List (front_piece);

break;

}

}

if ( ! front_list.Is_Empty_List ()) {

tree->front = new BSP_tree;

Build_BSP_Tree (tree->front, front_list);
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}

if ( ! back_list.Is_Empty_List ()) {

tree->back = new BSP_tree;

Build_BSP_Tree (tree->back, back_list);

}

}

A detailed description on how to split a polygon with a plane may be found in Ap-

pendix A. This routine recursively constructs a BSP tree using the above definition.

It takes the first polygon from the input list which is then used to partition the re-

mainder of the set. The routine then calls itself recursively with each of the two

partitions. This implementation assumes that all the input polygons are convex. No-

tice that an iterative formulation may be realized in lieu of the previous recursive

algorithm, using an explicit stack.

Converting boundary representation to partitioning tree

Since humans do not see physical objects in terms of binary trees, it is important to

know how such a tree be constructed from something which is more intuitive. The

most common method is to convert a boundary representation, which corresponds

more closely to how humans see the world, into a tree [32]. In order for a BSP tree to

represent a solid object, each cell of the tree must be classified as being either entirely

inside or outside of the object; thus, each leaf node corresponds to either an in-cell

or an out-cell. The boundary of the set then lies between in-cells and out-cells; since

the cells are bounded by the partitioning hyperplanes, it is necessary for all of the

boundaries to lie in the partitioning hyperplanes.

Therefore, it can convert from a boundary representation to a tree simply by

using all the face hyperplanes as partitioning hyperplanes (auto-partition), as shown
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in Fig. 3.7 [33]. The face hyperplanes can be chosen in any order and the resulting

tree will always generate a convex decomposition of the internal side and the external

side. If the hyperplane normals to the boundary representation faces are consistently

oriented to point to the external side, then all back leaves will be in-cells and all front

leaves will be out-cells.

However, the choice of partition plane will strongly affect the results. For some

applications, e.g. multi-dimensional searching, it is desirable to have a balanced tree,

where each leaf contains roughly the same number of polygons. However, there is

some cost in achieving this. If a polygon happens to span the partition plane, it will

be split into two or more pieces. A poor choice of the partition plane can result in

many such splits, and a marked increase in the number of polygons. Usually there

will be some trade off between a well-balanced tree and a large number of splits.

Tree balancing is important when performing spatial classification of points,

lines, and surfaces. This includes ray tracing and solid modelling. Tree balancing

is important for these applications because the time complexity for classification is

based on the depth of the tree. Unbalanced trees have deeper subtrees, and therefore

have a worse worst case. For the application of this work, instead, the balancing of

the treeis not so crucial, while it is more important to reduce the number of resulting

polygons. In fact, for the hidden surface problem balancing does not significantly

affect runtime. This is because the expected time complexity for tree traversal is

linear with respect to the number of polygons in the tree, rather than the depth of

the tree.

The problem is that polygons get split during the construction phase, which

may give rise to a larger number of polygons. Larger numbers of polygons translate

into larger storage requirements and longer tree traversal times. This is undesirable

in all applications of BSP Trees, and thus some scheme for minimizing splitting will
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improve tree performance. If should be considered that minimization of splitting

requires pre-existing knowledge about all the polygons that will be inserted into the

tree. This knowledge may not be available for interactive use such as solid modelling,

but it is available for the application considered in this work. The easiest strategy

to minimize splitting is to choose a partition plane, if it may be extracted from the

list of the remaining polygons, that does not intersect with any other polygon. This

strategy has a visibility on the recursive steps of only one step, and thus it does not

assure that the obtained tree contains the minimal number of polygons. However,

some other more sophisticated strategy may be applied to impact this problem.

Whenever balancing is also of concern for the application of interest, it will

be necessary to trade off some balance for reduced splitting. So, if the hyperplanes

are chosen from the polygon candidates, then one way to optimize these two factors

is to randomly select a small number of candidates. These new candidates are tested

against the full list for splitting and balancing efficiency. A linear combination of the

two efficiencies is used to rank the candidates, and the best one is chosen.

Boundary representations and BSP Trees can be thought of as competing al-

ternatives or as complementary representations expressing difference aspects of geom-

etry, the former being topological, the latter expressing hierarchical set membership.

B-reps are well suited for interactive specification of geometry, expressing topological

deformations, and scan conversion. BSP Trees are well suited for intersection and

visibility calculations.

The most often asked question on this argument is what is the size of a BSP

tree representation of a polyhedron vs. the size of its boundary representation. This,

of course, ignores the fact that expected cost, measured over the suite of operations

for which the representation will be used, is the appropriate metric. Also, boundary

representations must be supplemented with other devices, such as octrees, bounding
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Figure 3.11. Visibility ordering using a single hyperplane. Top: left side has priority
over right side; bottom: right side has priority over right side

volume hierarchies, and z-buffers, in order to achieve an efficient system; and then the

cost of creating and maintaining these structures should be brought into the picture.

Visibility orderings

Visibility orderings are used in image synthesis for visible surface determination (hid-

den surface removal), shadow computations, ray tracing, beam tracing, and radiosity.

For a given center of projection, such as the position of a viewer or a light source,

they provide an ordering of geometric entities, such as objects or faces of objects,

consistent with the order in which any ray originating at the center might intersect

the entities. Loosely speaking, a visibility ordering assigns a priority to each object or

face so that closer objects have priority over objects further away. Any ray emanating

from the center or projection that intersects two objects or faces, will always intersect

the surface with higher priority first. The simplest use of visibility orderings is with

the Painter’s Algorithm for solving the hidden surface problem [11]. Faces are drawn

into a frame buffer in far-to-near order (low-to-high priority), so that the image of

closer objects/polygons over writes those of more distant ones.
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A visibility ordering can be generated using a single hyperplane; however, each

geometric entity or “object” (polyhedron, polygon, line, point) must lie completely on

one side of the hyperplane, i.e. no objects are allowed to cross the hyperplane. This

requirement can always be induced by partitioning objects by the desired hyperplane

into two “halves”. The objects on the side containing the viewer are said to have

visibility priority over objects on the opposite side; that is, any ray emanating from

the viewer that intersects two objects on opposite sides of the hyperplane will always

intersect the near-side object before it intersects the far-side object (see Fig. 3.11).

However a single hyperplane cannot order objects lying on the same side, and

thus it cannot provide a total visibility ordering. Consequently, in order to exploit

this idea, it must be extended somehow so that a visibility ordering for the entire

set of objects can be generated. One way to do this would be to create a unique

separating hyperplane for every pair of objects. However, for n objects this would

require n2 hyperplanes, which is too many.

The required number of separating hyperplanes can be reduced to as little as n

by using the geometric version of recursive subdivision (divide and conquer). Whether

the subdivision is performed using hyperplanes whose position and orientation is

unrestricted, then the result is a BSP tree. The objects are first separated into two

groups by some appropriately chosen hyperplane (as above). Then each of the two

groups are independently partitioned into two sub-groups. The recursive subdivision

continues in a similar fashion until each object, or piece of an object, is in a separate

cell of the partitioning, as shown in Fig. 3.6. This process of partitioning space by

hyperplanes is naturally represented as a binary tree.

BSP Trees may be efficiently used to generate a visibility ordering on the

collection of objects [36]. For any given viewing position, it is first necessary to

determine on which side of the root hyperplane the viewer lies. From this, all objects
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Figure 3.12. Visibility ordering on a collection of objects

in the near-side subtree have higher priority than all objects in the far-side subtree;

and this determination can be made with only a constant amount of computation

(in fact, only a dot product). At this point the near-side objects have to be ordered,

followed by an ordering of the far-side objects. Since the structure bas been recursively

defined, any subtree has the same computational form as that of the whole tree.

Therefore, this technique can be simply applied for ordering subtrees recursively, going

back or front first at each node, depending upon which side of the node hyperplane

the viewer lies. This corresponds to a traversal of the entire tree, in near-to-far order,

using only O(n) operations, which is optimal (this analysis is correct only if no objects

have been split; otherwise it is > n), as shown in Fig. 3.12.

The scheme described above can be adopted only for inter-object visibility,

i.e. between individual objects. Moreover, only when the objects are both convex

and separable by a hyperplane, the scheme is a complete method for determining

visibility. To address the general unrestricted case, it is required to solve intra-object
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Figure 3.13. Visibility ordering on intra-objects. Left: spatial partitioning; right:
binary tree (b=back, f=front)

visibility, i.e. correctly ordering the faces of a single object. BSP Trees can solve this

problem as well. To accomplish this, it is required to change the focus from convex

cells containing objects to the idea of hyperplanes containing faces and to consider

again the analysis of visibility with respect to the hyperplane. If instead of ordering

objects, it is wished to order faces, it can exploit the fact that not only can faces lie

on each side of a hyperplane as objects do, but they can also lie on the hyperplane

itself. This gives a 3-way ordering as: in front of the face, coincident with the face,

and in back of the face.

Whether hyperplanes by which to partition space that always contain a face of

an object are chosen, then a BSP tree can be built by applying this scheme recursively

as above, until every face lies in some partitioning hyperplane contained in the tree.

An example of intra-object BSP tree is shown in Fig. 3.13. To generate a visibility

ordering of the faces in this intra-object tree, the method above may be used with

one extension: faces lying on hyperplanes are included in the ordering, i.e. at each

node, so as to generate the visibility ordering of front-subtree ⇒ on-faces ⇒

back-subtree.

The idea behind the Painter’s Algorithm in the case of inter-object visibility
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is to draw polygons far away from the viewer first, followed by drawing those that are

close to the viewer. Hidden surfaces will be written over in the image as the surfaces

obscuring them are drawn. One condition for a successful painter’s algorithm is that

there is a single plane which separates any two objects. This means that it might be

necessary to split polygons in certain configurations. One reason that BSP Trees are

so elegant for the painter’s algorithm is that the splitting of difficult polygons is an

automatic part of tree construction. Notice that only one of these two polygons needs

to be split in order to solve the problem. To draw the contents of the tree, a back

to front tree traversal has to be performed. One has to begin at the root node and

classify the viewer with respect to its partition plane. The subtree is drawn at the

far child from the eye, then the polygons in this node, then the near subtree. This

procedure shall be repeated recursively for each subtree.

When building a BSP tree specifically for visibility ordering (sometimes called

hidden surface removal), the partition planes are usually chosen from the input poly-

gon set. However, any arbitrary plane can be used if there are no intersecting or

concave polygons. Using the BSP tree structure defined in the previous section, here

is a simple pseudo C++ code of a back to front tree traversal:

void Draw_BSP_Tree (BSP_tree *tree, point eye) {

real result = tree->partition.Classify_Point (eye);

if (result > 0) {

Draw_BSP_Tree (tree->back, eye);

tree->polygons.Draw_Polygon_List ();

Draw_BSP_Tree (tree->front, eye);

}

else if (result < 0) {

Draw_BSP_Tree (tree->front, eye);
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tree->polygons.Draw_Polygon_List ();

Draw_BSP_Tree (tree->back, eye);

}

else // result is 0 {

// the eye point is on the partition plane...

Draw_BSP_Tree (tree->front, eye);

Draw_BSP_Tree (tree->back, eye);

}

}

If the viewer is classified as being on the partition plane, the drawing order is unclear.

This is not a problem if the Draw Polygon List routine is smart enough not to draw

polygons that are not within the viewing frustum. The coincident polygon list does

not need to be drawn in this case, because those polygons will not be visible to the

user.

It is possible to substantially improve the quality of this example by including

the viewing direction vector in the computation. You can determine that entire

subtrees are behind the viewer by comparing the view vector to the partition plane

normal vector. This test can also make a better decision about tree drawing when

the eye point lies on the partition plane.

Using visibility orderings provides an alternative to z-buffer based algorithms.

They obviate the need for computing and comparing z-values, which is very sus-

ceptible to numerical error because of the perspective projection. In addition, they

eliminate the need for z-buffer memory itself, which can be substantial if used at a

sub-pixel resolution of 4 × 4 to provide anti-aliasing. More importantly, visibility

orderings permit unlimited use of (non-refractive) transparency with no additional

computational effort, since the visibility ordering gives the correct order for compos-



60 Chapter 3

ing faces using alpha blending.

Finally, noting that it is just as easy to traverse the BSP tree in front to back

order as it is for back to front, this can be conveniently used in a scan-line method

by using a write mask which will prevent pixels from being written more than once.

This will represent significant speedups if a complex lighting model is evaluated for

each pixel, because the painter’s algorithm will blindly evaluate the same pixel many

times. The trick to making a scan-line approach successful is to have an efficient

method for masking pixels. One way to do this is to maintain a list of pixel spans

which have not yet been written for each scan line. For each converted polygon scan,

only pixels in the available spans are written, and the spans are updated accordingly.

The scan-line spans can be represented as binary trees, which are just one dimensional

BSP trees. This technique can be expanded to a 2D screen coverage algorithm using

a 2D BSP tree to represent the masked regions. Any convex partitioning scheme,

such as a quad-tree, can be used with similar effect.
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IMAGE PROCESSING

The image information, differently from the standard information provided by the

sensors which are typically employed in automation, may be very rich and various,

but it needs of complex and computationally expensive elaboration. The image elab-

oration and the image interpretation are two of the most important areas of computer

vision, that is the application of computational system to the elaboration of visual

information. The target of image elaboration is the manipulation of the visual infor-

mation to obtain data formats and structures to be converted into synthetic numerical

information (called image features), while the image interpretation consists in the ex-

traction of a few number of specific image features from the scene, that are of some

interest for the specific application. In this chapter an introduction to the most dif-

fused techniques of image elaboration and interpretation will be presented, with a

particular attention to those that will be used in the proposed visual tracking algo-

rithm. Further, the so-called windowing technique, for reduction of the image region

to elaborate, will be discussed.

4.1 Image elaboration

The image interpretation consists in the description of the main interesting charac-
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teristics of the observed structures and objects present in the scene. Typically, this

description is made using numerical characteristics (features), which measure the vi-

sual attributes of concern for the task execution or for the evaluation of the task

quality. Unfortunately, the complexity of the image information and the time con-

straints for the real-time applications do not allow the direct extraction of the image

features from the image frame provided by the camera. In this condition the image

elaboration becomes fundamental, which is aimed at transforming the image frame

into suitable and efficient structures, for the extraction of the desired features.

The main operation realized during image elaboration is the image segmenta-

tion. It is the process of image subdivision into homogenous segments with respect to

some characteristics. In the literature many kind of techniques have been presented

to achieve a robust image segmentation. Unfortunately, not all those techniques may

be applied in real-time applications, because they are computational very expensive.

So, a trade-off between robustness and computational efficiency is often necessary.

In Fig. 4.1 the main elaboration steps involved in the image elaboration process

are shown:

1. windowing,

2. image segmentation
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• pixel classification

• presentation,

3. description.

The windowing step extracts a small number of windows from the image frame, cen-

tered around the desired features, to reduce the dimension of the total elaboration

area (more details on this optional step will be presented in the next section). The

image segmentation can be divided into two sub-steps: pixel classification and pre-

sentation. During the first sub-step the pixel of the image windows (or of the whole

image, if the windowing step is absent) are classified into spatial subsets according to

the low level characteristics of the pixels. During the second sub-step these subsets

are transformed into data structure, which are more efficient and suitable to the suc-

cessive elaboration. Finally, in the description step these subsets are described using

scalar and/or vectorial values, which are associated to their characteristics.

The values of a pixel may be scalars or vectors, and they can represent the

light luminosity, color, velocity, or a generic measurable property of the scene. The

classification may also consider the proximity of the pixels, global statistics of the

pixels, and temporal variation of the pixel values.

Once the relevant pixels have been found, they may be represented in many

formats which allow determining some characteristics, such as shape and position of

an object in an efficient manner. Two main representations are used for the image

segments: 2D regions and boundary regions. The first representation considers 2D

regions of close pixels having similar characteristics, while the second representation

considers only the edges of the image. The edges are discontinuities of the pixel

characteristics, which often correspond to the boundary regions of the objects of the

scene.
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These representations are “equivalent” and can be converted one into the other,

even though the two data structures are very different. The advantage of the boundary

regions is the reduced requirement of memory, but the 2D regions turn out to be

more flexible and efficient for a wide class of feature extraction algorithms. Moreover,

the edge detection may begin after that the whole image frame is available in the

elaboration memory, requiring random access to the memory, and four memory access

on average to establish the location of the next pixel of the edge. On the other hand,

the boundary regions are very efficient and suitable for the extraction of boundary

features, e.g. contours, lines, and corners.

In the next section the most used kinds of segmentation, i.e. binary segmen-

tation and edge detection, will be presented. In particular, the general concepts at

the base of the edge detection will be described and the Canny edge detector will be

presented.

4.1.1 Binary segmentation

The simplest segmentation technique is binary segmentation, that considers only two

regions. Typically, the segmentation process consists in a comparison of the pixels

with a threshold T . Suppose that Pij is the value of the pixel with coordinates (i, j)

and SB and SF are the sets of the background and foreground pixels, respectively.

The binary segmentation process may be represented as follows:

Pij =















SB if Iij < T

SF if Iij ≥ T

.

This technique is widely employed for laboratory applications, where it is possible

to control the illumination and the environment, e.g. using a black object against a

white background, to increment the contrast and accurately isolate the image region

corresponding to the object. The most important advantage of this technique is the
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Figure 4.2. Binary segmentation. An example of gray level histogram of the image
of an object. The threshold T = 132 has been automatic evaluated exploiting the
presence of a concavity in the histogram

reduced computational complexity, that makes it suitable for real-time applications.

The crucial step of this approach is the choice of a suitable threshold. In the

literature many approaches to the automatic threshold selection have been presented.

Some adaptive techniques have also been proposed, but they still have problems with

the determination of effective quality indexes of the binary segmentation. The most

employed solution is that based on the image histogram, also called histogram of the

grey levels, that provides the number of pixels for each possible pixel’s values. In a

controlled environments, e.g. in a laboratory, the histogram should present two peaks,

corresponding to the object background and foreground, which are separated by a

concavity. The threshold may be automatically chosen in the middle of this concavity,

but this situation is purely ideal. In Fig. 4.2 an example of grey level histogram of a

real image is shown, for which the threshold T = 132 has been evaluated by exploiting

the presence of a concavity.

For scenes with 3D objects the operating conditions are more complicated,

especially because of image noise. This is experienced in various manners, but in

particular it modifies the grey levels of each pixel in a different way. Some other

problems are caused by the illumination and by the light reflection of the object.
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Figure 4.3. Image intensity shape and its first and second derivative of an image edge
in one-dimensional case

Finally, different dimensions between the region of the object and the background

may generate problems, e.g. the peak corresponding to the smallest region may be

confused with the noisily base of the largest peak.

4.1.2 Edge detection

Edge detection is a problem of fundamental importance in image analysis. In typical

images, edges characterize object boundaries and are therefore useful for segmenta-

tion, registration, and identification of objects in a scene. Further, detecting the edge

of an image significantly reduces the amount of data and filters out useless informa-

tion, while preserving the important structural properties of an image.

There are many ways to perform edge detection. However, the majority of the

methods may be grouped into two categories, gradient and Laplacian. The gradient

method detects the edges by looking for the maximum and minimum in the first

derivative of the image. The Laplacian method searches for zero crossings in the

second derivative of the image to find edges.
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An edge has the one-dimensional shape of a ramp and calculating the derivative

of the image can highlight its location. Suppose that the intensity signal is that shown

in Fig. 4.3, with an edge shown by the jump in intensity below. By taking the gradient

of this signal (which, in one dimension, is just the first derivative) the signal marked

as “1st derivative” is achieved. Clearly, the derivative shows a maximum located at

the center of the edge in the original signal. This method of locating an edge is

characteristic of the gradient filter family of edge detection filters and includes the

Sobel and the Roberts method. A pixel location is declared an edge location if the

value of the gradient exceeds some threshold. As mentioned before, edges will have

higher pixel intensity values than those surrounding it. Therefore, once a threshold

is set, the gradient value can be compared to the threshold value and an edge can be

detected whenever the threshold is exceeded.

Furthermore, when the first derivative is at a maximum, the second derivative

is zero. As a result, another alternative to finding the location of an edge is to locate

the zeros in the second derivative. This method is known as the Laplacian (or zero-

crossing edge detectors) and the second derivative of the signal is shown if Fig. 4.3

and it is marked as “2nd derivative”. Notice that the zero crossings are independent

of the steepness of the transition, while the gradient magnitude is directly related to

the edge slope.

As it has been said, an edge is a jump in intensity of the image and the cross

section of an edge has the shape of a ramp (an ideal edge is a discontinuity, i.e. a

ramp with an infinite slope), and the first derivative of the image assumes a local

maximum at an edge. For a continuous image I(r, c), where r and c are the row and

column coordinates respectively, the two directional derivatives ∂rI(r, c) and ∂cI(r, c)

are considered. Of particular interest in edge detection are two functions that can be

expressed in terms of these directional derivatives: the gradient magnitude and the
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gradient orientation. The gradient magnitude is defined as

|∇I(r, c)| =
√

(∂rI(r, c))2 + (∂cI(r, c))2,

and the gradient orientation is given by

/∇I(r, c) = arctan

(

∂rI(r, c)

∂cI(r, c)

)

.

Local maxima of the gradient magnitude identify edges in I(r, c). When the first

derivative achieves a maximum, the second derivative is zero. For this reason, an

alternative edge-detection strategy is to locate zeros of the second derivatives of I(r, c).

The differential operator used in these so-called zero-crossing edge detectors is the

Laplacian

∇I(r, c) = ∂{r,2}I(r, c) + ∂{c,2}I(r, c).

In practice, finite difference approximations of first-order directional deriva-

tives are used. These are represented by a pair of masks, say hr and hc. Formally

these are linear-phase FIR filters. A convolution of the image with hr and hc gives

two directional derivative images gr and gc respectively. The gradient image is tra-

ditionally calculated as ∇I =
√

g2
r + g2

c , or alternatively using ∇I = |gr| + |gc|. A

pixel location is declared an edge location if the value of this gradient (at point r,

c) exceeds some threshold. The locations of all edge points constitute an edge map

(it is similar to the binary segmentation described in the previous section). Hence,

to recover the edges, the gradient image must be segmented using a global or lo-

cal (i.e., adaptive) threshold operator. The choice of a threshold value determines

the resulting segmentation and, therefore, the perceived quality of the edge detector.

The selection of a threshold value is an important design decision that depends on a

number of factors, such as image brightness, contrast, level of noise, and even edge

direction. It is useful to consider the cumulative histogram of the gradient image in

selecting an appropriate threshold value.
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In the remainder of the section the Sobel, Prewitt, Roberts, and Laplacian

edge detectors will be briefly presented, with particular reference to the masks used

for the convolution operator, while in the last subsection a more sophisticated edge

detector, due to Canny [4], will be presented.

4.1.2.1 Sobel operator

The Sobel operator performs a 2D spatial gradient measurement with built-in smooth-

ing on the image. In Fig. 4.4 is shown an example of edge detection with the Sobel

operator. Typically it is used to find the approximate absolute gradient magnitude

at each point in an input gray-scale image. The Sobel edge detector uses a pair of

(3 × 3) convolution masks, one estimating the gradient in the r-direction (rows) and

the other estimating the gradient in the c-direction (columns). A convolution mask

is usually much smaller than the actual image. As a result, the mask is slid over the

image, manipulating a square of pixels at a time. The actual Sobel masks are shown

below:

hr =

−0.25 −0.50 −0.25

0 0 0

+0.25 +0.50 +0.25

hc =

−0.25 0 +0.25

−0.50 0 +0.50

−0.25 0 +0.25

The mask is slid over an area of the input image, changes that pixel value and

then shifts one pixel to the right and continues to the right until it reaches the end

of a row. It then starts at the beginning of the next row. The example below shows

how a (3× 3) mask slides over the input image frame. Considering the (s× h) image

frame

a1,1 a1,2 a1,3 · · · a1,h

a2,1 a2,2 a2,3 · · · a2,h

a3,1 a3,2 a3,3 · · · a3,h

...
...

...
. . .

...

as,1 as,2 as,3 · · · as,h

where ai,j represents the value of the pixel of coordinates (i, j), with 1 ≤ i ≤ s and
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Figure 4.4. Examples of edge detection. From the left the original image and the
results of the Sobel, Laplacian, and Canny edge detector are shown

1 ≤ j ≤ h, and the convolution (3 × 3) mask

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

then the frame result of their convolution assumes the following shape

b1,1 b1,2 b1,3 · · · b1,h

b2,1 b2,2 b2,3 · · · b2,h

b3,1 b3,2 b3,3 · · · b3,h
...

...
...

. . .
...

bs,1 bs,2 bs,3 · · · bs,h

where the pixel of coordinates (i, j) is evaluated as follows

bi,j = ai−1,j−1m1,1 + ai−1,jm1,2 + ai−1,j+1m1,3

+ ai,j−1m2,1 + ai,jm2,2 + ai,j+1m2,3

+ ai+1,j−1m3,1 + ai+1,jm3,2 + ai+1,j+1m3,3,

for i = 2, . . . , s − 1 and j = 2, . . . , h − 1. The center of the mask is placed over the

pixel being manipulated in the image, and the i and j values are used to move the file

pointer so that, for example, pixel a2,2 can be multiplied by the corresponding mask
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value m2,2. It is important to notice that pixels in the first and last rows, as well as

the first and last columns, cannot be manipulated by a (3× 3) mask. This is because

when placing the center of the mask over a pixel, say in the first row, the mask will

be outside the image boundaries.

The gc mask highlights the edges in the horizontal direction while the gr mask

highlights the edges in the vertical direction. After taking the magnitude of both, the

resulting output detects edges in both directions.

4.1.2.2 Prewitt operator

The Prewitt operator performs a 2D spatial gradient measurement on the image in

a similar manner to that of the Sobel operator. The Prewitt edge detector also uses

a pair of (3 × 3) convolution masks, one estimating the gradient in the r-direction

(rows) and the other estimating the gradient in the c-direction (columns). The actual

Prewitt masks are shown below:

hr =

−1 −1 −1

0 0 0

+1 +1 +1

hc =

−1 0 +1

−1 0 +1

−1 0 +1

4.1.2.3 Roberts operator

The Roberts operator performs a 2D cross difference on the image. Differently from

the previous operators, the Roberts edge detector uses a pair of (2 × 2) convolution

masks, one estimating the gradient in the r-direction (rows) and the other estimating

the gradient in the c-direction (columns). The actual Roberts masks are shown below:

hr =
1 0

0 −1
hc =

0 1

−1 0

4.1.2.4 Laplacian

The commonly used (5×5) Laplacian is a convoluted mask to approximate the second
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derivative, unlike the Sobel method which approximates the gradient. And instead

of two (3 × 3) Sobel masks, one for the r and c direction, Laplace uses one (5 × 5)

mask for the second derivative in both the r and c directions.

hrc =

−1 −1 −1 −1 −1

−1 −1 −1 −1 −1

−1 −1 24 −1 −1

−1 −1 −1 −1 −1

−1 −1 −1 −1 −1

However, because these simple masks are approximating a second derivative measure-

ment on the image, they are very sensitive to noise.

A zero-crossing edge operator was originally proposed in [29], where it is sug-

gested that in order to effectively detect intensity changes (edges), the operator needs

to have two characteristics. First, it must be a differential operator, taking either a

first or second spatial derivative of the image. Second, it should be capable of being

tuned to act at any desired scale so that large filters can be used to detect blurry

shadow edges, and small ones can be used to detect sharply focused fine details in

the image. This led to the so-called Laplacian-of-Gaussian edge operator. This is a

compound operator that combines a smoothing operation, using a Gaussian-shaped,

linear-phase FIR filter, with a differentiation operation, using a discrete Laplacian.

The edges are identified by the location of zero crossings (recall that the second deriva-

tive changes sign in the vicinity of maxima of the first derivative). In fact, in order to

mitigate the increase in pixel noise due to differentiation, the image may be filtered

with a low-pass filter, which is accomplished by a Gaussian-shaped, linear-phase FIR

filter.

Since convolution is associative and commutative, the two-step sequence can

be reduced to one step by constructing a compound operator. In the following three
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common (3 × 3) FIR filter approximations to the Laplacian operator are shown:

hα=0
rc =

0 −1 0

−1 4 −1

0 −1 0

hα=0.5
rc =

0.333 0.333 0.333

0.333 −2.67 0.333

0.333 0.333 0.333

hα=2
rc =

0.667 −0.333 0.667

−0.333 −1.33 −0.333

0.667 −0.333 0.667

where the parameter α determines the effectiveness of the smoothing operation (α =

0, when no smoothing is realized). The value (α = 2) returns the minimum-variance

discrete Laplacian subject to the conditions that pixel noise is uncorrelated and

has uniform variance. Notice that the Laplacian is the lowest-order isotropic (i.e.,

orientation-independent) operator. In Fig. 4.4 an example of edge detection with the

Laplacian operator is shown.

4.1.2.5 Canny edge detection

The Canny edge detection algorithm is known to many as the optimal edge detector.

Canny’s intentions were to enhance the many edge detectors already available at the

time he started his work (see Fig. 4.4). He was very successful in achieving his goal

and his ideas and methods can be found in his work [4], where he followed a list of

criteria to improve current methods of edge detection. The first and most obvious is

low error rate. It is important that edges occurring in images should not be missed

and that there be no responses to non-edges. The second criterion is that the edge

points be well localized. In other words, the distance between the edge pixels as found

by the detector and the actual edge is to be at a minimum. A third criterion is

to have only one response to a single edge. This was implemented because the first
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two criteria were not substantial enough to completely eliminate the possibility of

multiple responses to an edge.

Based on these criteria, the Canny edge detector first smoothes the image to

eliminate the noise. It then finds the image gradient to highlight regions with high

spatial derivatives. The algorithm then tracks along these regions and suppresses any

pixel that is not at the maximum (non-maximum suppression). The gradient array is

now further reduced by hysteresis to track along the remaining pixels that have not

been suppressed. Hysteresis uses two thresholds and if the magnitude is below the

low threshold, it is set to zero (made a non-edge). If the magnitude is above the high

threshold, it is made an edge. And if the magnitude is between the two thresholds,

then it is set to zero unless there is a path from this pixel to a pixel with a gradient

above the high threshold.

In order to implement the Canny edge detector algorithm, a series of steps

must be followed.

Step 1. The first step is to filter out any noise in the original image before trying

to locate and detect any edges. And because the Gaussian filter can be computed

using a simple mask, it is used exclusively in the Canny algorithm. Once a suitable

mask has been calculated, the Gaussian smoothing can be performed using standard

convolution methods. A convolution mask is usually much smaller than the actual

image. As a result, the mask is slid over the image, manipulating a square of pixels at

a time. The larger the width of the Gaussian mask, the lower the detector sensitivity

to noise. The localization error in the detected edges also increases slightly as the

Gaussian width is increased. A mask approximating a Gaussian function with a
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standard deviation equal to 1.4 is shown below.

1

115

2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2

Step 2. After smoothing the image and eliminating the noise, the next step is to find

the edge strength by taking the gradient of the image. The Sobel operator performs

a 2D spatial gradient measurement on an image. Then, the approximate absolute

gradient magnitude (edge strength) at each point can be found. The Sobel operator

uses a pair of (3×3) convolution masks, one estimating the gradient in the c-direction

(columns) and the other estimating the gradient in the r-direction (rows). They are

shown below:

hr =

+1 +2 +1

0 0 0

−1 −2 −1

hc =

−1 0 +1

−2 0 +2

−1 0 +1

The magnitude, or edge strength, of the gradient is then approximated using the

formula:

|∇I| = |gr| + |gc|.

Step 3. Finding the edge direction is trivial once the gradient in the r and c directions

are known. However, it must generate an error whenever gc(r, c) is equal to zero. In

such a case, the edge direction has to be equal to 90 degrees or 0 degrees, depending

on the value of the gradient in the r-direction. If gr(r, c) has a zero value, the edge

direction will be equal to 0 degrees. Otherwise the edge direction will be equal to 90

degrees. The formula for finding the edge direction when gc(r, c) is not equal to zero

is just

/∇I = arctan

(

gr
gc

)
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90°

45°135°

Figure 4.5. Canny edge detector. Step 4: possible edge direction

Step 4. Once the edge direction is known, the next step is to relate the edge direction

to a direction that can be traced in an image. So if the pixels of a (5 × 5) image are

aligned as follows:

× × × × ×

× × × × ×

× × ℘ × ×

× × × × ×

× × × × ×

then, it can be seen by looking at pixel ℘, there are only four possible directions when

describing the surrounding pixels: 0 degrees (in the horizontal direction), 45 degrees

(along the positive diagonal), 90 degrees (in the vertical direction), or 135 degrees

(along the negative diagonal). So now the edge orientation has to be resolved into

one of these four directions depending on which direction it is closest to (e.g. if the

orientation angle is found to be 3 degrees, it is approximate to zero degrees). To

understand this a semicircle can be considered which is divide into 5 regions, like in

Fig. 4.5. Therefore, any edge direction falling within the range 0 to 22.5 and 157.5

to 180 degrees is set to 0 degrees. Any edge direction falling in the range 22.5 to

67.5 degrees is set to 45 degrees. Any edge direction falling in the range 67.5 to 112.5

degrees is set to 90 degrees. And finally, any edge direction falling within the range

112.5 to 157.5 degrees is set to 135 degrees.

Step 5. After the edge directions are known, non-maximum suppression has to
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be applied. Non-maximum suppression is used to trace along the edge in the edge

direction and suppress any pixel value (set to 0) that is not considered to be an edge.

This will give a thin line in the output image.

Step 6. Finally, hysteresis is used as a means of eliminating streaking. Streaking is

the breaking up of an edge contour caused by the operator output fluctuating above

and below the threshold. If a single threshold T is applied to an image, and an edge

has an average strength equal to T , then due to noise, there will be instances where

the edge dips below the threshold. Equally it will also extend above the threshold

making an edge look like a dashed line. To avoid this, hysteresis uses two thresholds:

one high and one low. Any pixel in the image that has a value greater than TH is

presumed to be an edge pixel, and is marked as such immediately. Then, any pixels

that are connected to this edge pixel and that have a value greater than TL are also

selected as edge pixels. It is like when following an edge, a gradient of TL is needed

to start and then it comes on until a gradient below TH is hit.

4.2 Image interpretation

The image interpretation consists in the determination and extraction of the main

image features, which are of some interest for the specific application. During the

image processing, as explained in the previous sections, the image frame has to be

converted into more efficient structures suitable for the specific image features to

extract.

Actually, the image features of major interest for visual servoing applications

are centroids, corners, and contours. The centroid is the simplest and most compu-

tational efficient image feature actually used. It is particulary indicated for planar

tasks where both the environment and target objects are highly structured. The cor-

ner is a very robust and flexible image feature, that assures a good trade-off between
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computational efficiency, wide usability, and robustness easily for the extraction in

non-structured environments. Moreover, its use is adaptable to applications based

on geometric object models. Finally, the contour is the most sophisticated image

feature actually employed for visual servoing applications. It requires a significant

computational power for the feature extraction process itself and often for the related

algorithm that makes use of this feature.

In the next sections all these image features will be presented, with particulary

attention to the corners, which will be used as main image features by the proposed

visual tracking algorithm. The general definition of an image feature may be given

by the following expression:

f =

∫∫

Image

ℑ (u, v, I(u, v)) dudv (4.1)

where I(u, v) is the light intensity10 of the pixel of coordinates (u, v). The function

ℑ(., ., .) may express a linear a non-linear relation, in function of the specific image

feature.

4.2.1 Centroids

The centroids are a class of image features very popular for planar applications

in highly structured environments. They are easy and fast to evaluate also with

non-dedicated hardware. Typically, they are used to construct numerical quantities,

known as invariants, which allow reconstructing the position and orientation of the

observed object.

10Light intensity is an informal terminology that may refer to two different
attributes: a) the irradiance or image luminosity is referred to the light energy flow
that affects on the image plane (it depends on the quantity of the light); b) the
radiance or scene luminosity is referred to the light flow emitted from a surfaces (it
depends on the light source and on the reflection capacity of the object). In this work
the first definition is always considered.
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The image processing required for the evaluation of the centroid is a simple

binarization, that is used to highlight the target object with respect to the background

of the scene. To reach this purpose it is necessary that the object and the background

are easy distinguishable, e.g. a white object against a black background or viceversa.

For a digitized image, the centroid of order (p+ q) is evaluated as follows:

mpq =
∑

r

∑

c

rpcqI(r, c) (4.2)

where (r, c) are the coordinates of the rows and columns of the pixel into the digitized

image frame.

The physical interpretation of the centroids is very clear if the image function

I as a mass distribution of a planar object is considered. Then m00 represents the

total mass of the object region, while the coordinates of the center of mass are









rc

cc









=











m10

m00

m01

m00











. (4.3)

The so-called principal centroids (or central centroids) are defined around the

center of mass as follows:

µpq =
∑

r

∑

c

(r − rc)
p(c− cc)

qI(r, c), (4.4)

and they are invariant with respect to the translation. They may be evaluated from

the centroids mpq as follows:

µ20 = m20 −
m2

10

m00

µ02 = m02 −
m2

01

m00

µ11 = m11 −
m10m01

m00

.
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Figure 4.6. Centroids. Equivalent ellipse of an image region

A very common measure of the shape of the object region is the so-called

circularity, that is defined by the following expression:

ρ =
4πm00

p2

where ρ is the perimeter of the region. The value of the circularity is less than 1,

while it is equal to π/4 for a square region.

The principal centroids of second order µ20, µ02, and µ11 may be considered

as the inertial moments about the center of mass:

I =









µ20 µ11

µ11 µ02









.

The eigenvalues of this matrix are the principal moments of the region, while the

corresponding eigenvectors are the principal axes of the region (the directions of the

minimum and maximum inertial moment). From the eigenvector corresponding to

the maximum eigenvalue it is possible to evaluate the orientation of the principal axis

by the inversion of the following relation:

tan 2ϑ =
2µ11

µ20 − µ02
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Statistics

Dimension 1280 × 960 pixel

Area 467,518 pixel

Centroid [596.35 520.62]

Bounding box top-left-corner: [24 141]

width: [1114 758]

Major axis length 1079.6 pixel

Minor axis length 576.05 pixel

Circularity 0.8458

Orientation -16.48 deg

Equivalent diameter 771.53 pixel

Table 4.1. Centroids. Principal statistics of the digitized image, with the threshold
T = 132, of the image of Fig. 4.2

where ϑ is the angle indicated in Fig. 4.6. To evaluate the orientation of an asymmetric

object moving on a plane, its axis of asymmetry may be employed. This axis may

be evaluated using the so-called equivalent ellipse of the region (see Fig. 4.6). This

ellipse has an area equal to the area of the corresponding image region, and its minor

and major axes correspond to the principal axes of the region. Table 4.1 collects the

principal statistics of the corresponding digitized image.

4.2.2 Corners

The corner is one of the most used image feature in visual sensing application. It

represents a good trade-off between computational complexity and quality and ro-

bustness of a synthetic image information. Corners have been used in very different

manner for various types of applications, and in particular they are well indicated for

those based on manmade models. Typically they are used to match the corners of a

known model to the corners extracted from the image to determinate the presence or

the pose of target objects in the scene.

The image processing required for the evaluation of the corners depends on
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kind of algorithm employed. For example, the algorithms based on the search for

significant turnings at the boundary require, given a digital image, the segmentation

of the sharp and the extraction of its boundary as chain code11, while other tech-

niques directly process the gray level frame without any further elaboration. Corner

detection algorithms should satisfy a number of important criteria:

• all the true corners should be detected,

• no false corners should be detected,

• corner points should be well localized,

• corner detector should be robust with respect to noise,

• corner detector should be efficient.

The Plessey corner detector. Harris and Stephens [12] proposed what has become

to be known as the Plessey corner detector. The algorithm is based on the following

matrix:

M =









(

∂I
∂u

)2 (

∂I
∂u

) (

∂I
∂v

)

(

∂I
∂u

) (

∂I
∂v

) (

∂I
∂v

)2









where I(u, v) is the grey level intensity. If at a certain point the two eigenvalues of

the matrix M are large, then a small motion in any direction will cause an important

change of grey level. This indicates that the point is a corner. The corner response

function is given by:

ρ = det(M ) − k (trace(M ))2 ,

11The chain code is a particular representation of the edge of an observed object.
It describes the edge with a “chain” of small integers which define the position of the
next pixel of the edge indicating the corresponding discrete direction.
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Nucleus
of mask

Boundary
of mask 

Dark area

Light area

Figure 4.7. SUSAN corner detector. Some circular masks at different places on a
simple image

where k is a parameter set to 0.04 (as per Harris suggestion). Corners are defined as

local maxima of the corner-ness function. Sub-pixel precision is achieved through a

quadratic approximation of the neighborhood of the local maxima. To avoid corners

due to image noise, it can be useful to smooth the images with a Gaussian filter.

This should however not be done on the input images, but on images containing the

squared image derivatives (i.e.
(

∂I
∂u

)2
,

(

∂I
∂v

)2
,

(

∂I
∂u

) (

∂I
∂v

)

). In practice, often far too many

corners are extracted. In this case it is useful to first restrict the numbers of corners

before trying to match. One possibility consists of selecting only the corners with a

value ρ above a certain threshold. This threshold can be tuned to yield the desired

number of features. Since for some scenes most of the strongest corners are located

in the same area, this scheme can be further refined to ensure that in every part of

the image a sufficient number of corners are found.

The SUSAN corner detector. SUSAN (Smallest Univalue Segment Assimilating

Nucleus) is based on an entirely different approach to low-level image processing

compared to all preexisting algorithms [38]. It provides corner detection as well

as edge detection and is more resistant to image noise although no noise reduction

(filtering) is needed.

The concept of each image point associated with a local area of similar bright-
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Section of the mask where the pixels
have different brightness of the nucleus

Section of the mask where the pixels
have same brightness of the nucleus 

Figure 4.8. SUSAN corner detector. Some circular masks with similarity coloring;
USANs are shown as the white parts of the masks

ness is the basis for the SUSAN principle. If the brightness of each pixel within a

mask is compared to the brightness of that mask’s nucleus then an area of the mask

can be defined which has the same (or similar) brightness as such of the nucleus. This

area of the mask shall be known as the “USAN”, an acronym standing for “Univalue

Segment Assimilating Nucleus”.

In Fig. 4.8 each mask from Fig. 4.7 is depicted with its USAN shown in white.

Computing USAN for every pixel in the digital image provides a way to determine

the edges inside it. The value of USAN gets smaller on both sides of an edge and

becomes even smaller on each side of a corner. Hence one can look for the Smallest

USAN (or SUSAN for short). The local minima of the USAN map represents corners

in the image. The reason that this method stays resistant to noise is the lack of

computing spatial derivatives of the image intensity.

The Curvature Scale Space corner detector. The curvature scale space (CSS)

technique is suitable for recovering invariant geometric features (curvature zero-crossing

points and/or extreme) of a planar curve at multiple scales. The CSS corner detector

works as follows [30]:

1. Extract the edge contours from the input image using any good edge detector
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such as Canny.

2. Fill small gaps in edge contours. When the gap forms a T-junction, mark it as

a T-corner.

3. Compute curvature on the edge contours at a high scale.

4. The corner points are defined as the maxima of absolute curvature that are

above a threshold value.

5. Track the corners through multiple lower scales to improve localization.

6. Compare T-corners to the corners found using the CSS procedure and remove

very close corners.

Experimental results show this algorithm spends most of its time (80%) de-

tecting the edges in the image, then faster edge detectors may be used. The local

maxima of absolute curvature are the possible candidates for corner points. A local

maximum is either a corner, the top value of a rounded corner or a peak due to noise.

The latter two should not be detected as corners. The curvature of a real corner point

has a higher value than that of a rounded corner or noise. The corner points are also

compared to the two neighboring local minima. The curvature of a corner should be

twice that of one of the neighboring local minima. This is because when the shape of

the contour is very round, contour curvature can be above the threshold.

It is interesting to see that in this method two types of corners are detected:

T shaped and corners on the curve. Then one has to avoid assigning two corners

to pixels which are close together. Figure 4.9 illustrates when this type of problem

arises. This explains the reason for the last step in the CSS algorithm above.

Although the notion of corner seems to be intuitively clear, no generally ac-

cepted mathematical definition exists, at least for digital curves. In a sense, different
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CSS corner 

T–corner

Figure 4.9. The CSS corner detector. Case where one corner is marked twice

approaches give different —but conceptually related— computational definitions to

a visual phenomenon. Hence the detection of high curvature points in planar curves

cannot be unique. In this section a brief summary of four alternative CSS corner

detection algorithms is proposed. Each algorithm inputs a chain-coded curve that is

converted into a connected sequence of grid points

pi =









ri

ci









with i = 1, 2, . . . , N . A measure of corner strength (cornerity) is assigned to each

point, then corner points are selected based on this measure. For each approach,

these two main steps are summarized and the parameters of the algorithm and their

default (“best” with respect to the specific literature) values are listed.

When processing a point pi, the algorithms consider a number of subsequent

and previous points in the sequence, as candidates for the arms of a potential corner

in pi. For a positive integer k, the forward and backward k-vectors at point pi are

defined as

aik =









ri − ri+k

ci − ci+k









=


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


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i

C+
i


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



(4.5)
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bik =




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
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=


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
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(4.6)

where R+
i , C+

i , and R−
i , C−

i are the components of aik and bik, respectively.

Algorithm#1

Corner strength. The k-cosine of the angle between the k-vectors is used, which is

defined as

γik =
(aik · bik)

|aik||bik|
(4.7)

Selection procedure. Starting from m = κN , k is decreased until γik stops to

increase: γim < γi,m−1 < · · · < γin ≥ γi,n−1; k = n is then selected as the best

value for the point i. A corner is indicated in i if γin > γjp for all j such that

|i− j| ≤ n/2, where p is the best value of k for the point j.

Parameter. The single parameter κ specifies the maximum considered value of k as

a fraction of the total number of curve points N . This limits the length of an

arm at κN . The default value is κ = 0.05.

Algorithm#2

Corner strength. The averaged k-cosine of the angle between the k-vectors is used,

which is defined as

γik =















2
k+2

∑k
f=k/2 if k is even

2
k+3

∑k
f=(k−1)/2 if k is odd

where γif are given by (4.7).
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Selection procedure. Same as in Algorithm #1, but for γik.

Parameter. Same as in Algorithm #1, with the same default k = 0.05.

Algorithm#3

Corner strength. At a point i, the angle between the r-axis and the backward

k-vector defined in (4.6) is given as

θik =















tan−1
(

C−

ik

R−

ik

)

if |R−
ik| > |C−

ik|

coth−1
(

R−

ik

C−

ik

)

otherwise.

The incremental curvature is then defined as

δik = θi+1,k − θi−1,k. (4.8)

Finally, the k-strength in i is computed as

Sik = ln(t1) ln(t2)
i+k
∑

j=i

δjk, (4.9)

where t1 = max{t : δi−ν,k ∈ (−∆,∆),∀1 ≤ ν ≤ t} and t2 = max{t : δi+k+ν,k ∈

(−∆,∆),∀1 ≤ ν ≤ t} account for the effect of the forward and backward arms as

the maximum spacings (numbers of steps from i) that still keep the incremental

curvature δik within the limit ±∆. The latter is set as

∆ = arctan

(

1

k − 1

)

. (4.10)

Selection procedure. A point i is selected as a corner if Sik exceeds a given thresh-

old S and individual corners are separated by a spacing of at least k + 1 steps.

Parameter. The two parameters are the spacing k and the corner strength threshold

S. The default values are k = 5 and S = 1500.
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Algorithm#4

Corner strength. Similar to Algorithm #3, with the following modifications. The

arm cutoff parameter τ is introduced to specify the upper limit for t1 and t2 as

a fraction of N : t1 = max{t : δi−ν,k ∈ (−∆,∆),∀1 ≤ ν ≤ tandt < τN} and

t2 = max{t : δi+k+ν,k ∈ (−∆,∆),∀1 ≤ ν ≤ tandt < τN}, where δik and ∆

are given by (4.8) and (4.10), respectively. The corner strength is obtained by

averaging (4.9) between two values k1 and k2:

Si =
1

k2 − k1 + 1

k2
∑

k=k1

Sik.

Selection procedure. Same as in Algorithm #3.

Parameter. The four parameters are the averaging limits k1 and k2, the arm cutoff

parameter τ , and the corner strength threshold S. The default values are k1 = 4,

k2 = 7, τ = 0.05, and S = 1500.

4.2.3 Contours

Lines and curves are important features in the field of computer vision because they

define the contour or shape of objects and hence enable computer recognition. The

area of shape representation is concerned with finding ways of describing shape that

are sufficiently general to be useful for a range of objects, whilst at the same time

allowing their computation from image data, and facilitating comparisons of similar

shapes. While line and curve fitting can be directly done using templates, these

methods usually run into problems because of the requirement of a large number of

data sets.

The algorithms that are used for detecting binary points lying on the same line

and simple curves are the Hough transform, robust fitting method, Euclidean fitting
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Figure 4.10. Snake. Left: initial snake position (dotted) interactively defined near
the true contour; center and right: interaction steps of snake energy minimization
(the snake is pulled toward the true contour)

and the algebraic distance fitting. The algorithm usually employed for deformable

contours (which do not have a fixed shape) is the energy functional also called the

Greedy algorithm or the Snake12. For reasons of brevity, the Greedy algorithm (also

called active contour model) is the unique technique that will be presented in this

section [21], [44].

The snake is defined as an energy minimizing spline: the snake energy depends

on its shape and location within the image. Local minima of this energy then cor-

respond to desired image properties. Snakes may be understood as a special case of

a more general technique of matching a deformable model to an image by means of

energy minimization. However, the snakes do not solve the entire problem of finding

contours in images, but rather they depend on other mechanisms like interaction with

a user, interaction with some higher level image understanding process, or informa-

tion from image data adjacent in time or space. This interaction must specify an

approximate shape and starting position for the snake somewhere near the desired

contour. A-priori information is then used to push the snake toward an appropriate

solution (see Fig. 4.10).

12Snake is a set of points where the energy is defined.
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The energy functional which is minimized is a weighted combination of internal

and external forces. The internal forces emanate from the shape of the snake, while

the external forces come from the image and/or from higher level image understanding

processes. The snake is parametrically defined as

ν(s) =









r(s)

c(s)









where r(s), c(s) are coordinates along the contour and s is from [0,1]. The energy

functional to be minimized is

E∗
Snake =

1
∫

0

ESnake(ν(s))ds =

1
∫

0

[Eint(ν(s)) + Eimage(ν(s)) + Econ(ν(s))] ds. (4.11)

where Eint is the internal spline energy caused by stretching and bending, Eimage is

the measure of the attraction of image features such as contours, and Econ is the

measure of external constraints either from higher level shape information or user

applied energy.

The internal spline energy can be written as

Eint = α(s)

∣

∣

∣

∣

dν

ds

∣

∣

∣

∣

2

+ β(s)

∣

∣

∣

∣

d2ν

ds2

∣

∣

∣

∣

, (4.12)

where α(s) and β(s) specify the elasticity and stiffness of the snake. The first-order

term makes the snake act like a membrane; the constant α(s) controls the tension

along the spine (stretching a balloon or elastic band). The second order term makes

the snake act like a thin plate; the constant β(s) controls the rigidity of the spine

(bending a thin plate or wire). If β(s) = 0 then the function is discontinuous in its

tangent, i.e. it may develop a corner at that point. If α(s) = β(s) = 0, then this also

allows a break in the contour, i.e. a positional discontinuity.

The second term of the energy integral is derived from the image data over

which the snake lies. As an example, a weighted combination of three different func-
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tionals is presented which attracts the snake to lines, edges, and terminations

Eimage = wlineEline + wedgeEedge + wtermEterm, (4.13)

where the weights wline, wedge, and wterm control the corresponding influence of each

energy term in the functional and varies along the path of the curve.

The line-based functional may be very simple

Eline = I(r, c),

where I(r, c) denotes image gray levels at image location (r, c). As a consequence, if

wline is largely positive, then the spline is attracted to light lines (or areas); on the

other hand, if it is largely negative, then it is attracted to dark lines (or areas).

The edge-based functional attracts the snake to contours with large image

gradients

Eedge = −|∇I(r, c)|2,

where the gradient represents the intensity gradient along the curve computed at each

snake point. Clearly Eedge becomes very small (negative) whenever the norm of the

spatial gradient is large (which it would be if the contour are an edge).

Finally, the termination functional allows terminations (i.e. free ends of lines)

or corners to attract the snake.

The constraint energy Econ comes from external constraints imposed either by

a user, e.g. in the form of a spring attached to the snake in a specific position, or some

other higher level process which may force the snake toward or away from particular

features.

The Greedy algorithm is based on the minimization of the energy functional

by varying the values of wline, wedge, and wterm which in turn vary the values of the
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terms in the energy functional. The algorithm makes a series of choices at the local

level so that an optimum solution can be found at a global level. The core part of

the detection of a deformable contour can be explained in two steps. First, at each

iteration each point of the contour is moved in a small neighborhood and a local

minimum is found; the contour point is then moved to this minimum position to

achieve energy functional minimization. Secondly, the corners or edge points on the

contour are found out and a variance in the wedge coefficients of the Eedge term is

made correspondingly. These steps in detail are as follows.

1. Greedy minimization: The neighborhood chosen for a particular contour

point is small, typically (3 × 3) or a (5 × 5) region in order to keep the com-

putational intensity small. The complexity varies linearly with the increase in

size of the neighborhood. The local minimization is then performed by keeping

the energy functional minimum at each location.

2. Corner elimination: The second step involves the detection of the curvature

maximum along the contour. The aim of the stiffness term is to avoid oscillations

of the deformable contour. Thus, if the gradient is very high, then β(sk) is made

zero so as to encourage equally spaced points on the contour.

The iterations stop when a predefined fraction of all the contour points reach there

local minimum. However the Greedy algorithm does not guarantee that the local

minimum will be same as the global minimum.

The Greedy algorithm takes an initial snake and iteratively refines the location

of each of its points by looking at a “neighborhood” of pixels surrounding each pixel

and selecting the location in that neighborhood where error is minimized. Larger

neighborhoods should naturally be expected to result in fewer iterations before con-

vergence and less likelihood to fall into small local minima, at the expense of becoming
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Figure 4.11. Snake growing. Left: lengthening in tangent direction; right: energy
minimization after a growing step

linearly more time-consuming with neighborhood size.

Since this algorithm does not calculate actual gradients over the error surface

but only takes the Greedy approach of minimizing over a relatively small neighbor-

hood, it is easily prone to falling into local minima which may be caused by noise or

small, non-salient image features. One work-around for this drawback is to blur out

noise and small features, allowing the snake to more easily detect more substantial

features, then refine its estimation as the blur is reduced. This implementation in-

cludes a multi-scale blurring approach, in which the user specifies how many times

the initial image be blurred; the algorithm is run on the most blurred copy, then re-

peated on each “blurring scale” until it is run on the original image with a (hopefully)

reasonable initial estimate.

Originally, a resolution minimization method was proposed; partial derivatives

in s and t were estimated by the finite differences method. Later, a dynamic pro-

gramming approach was proposed which allows “hard” constraints to be added to the

snake. Further, a requirement that the internal snake energy must be a continuous

function may thus be eliminated and some snake configurations may be prohibited

(that is, having infinite energy) allowing more a-priori knowledge to be incorporated.

Difficulties with the numerical instability of the original method were overcome

by incorporating an idea of snake growing. A single primary snake may begin which
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later divides itself into pieces. The pieces of very low energy are allowed to grow

in directions of their tangents while higher energy pieces are eliminated, as shown

in Fig. 4.11. After each growing step, the energy of each snake piece is minimized

(the ends are pulled to the true contour and the snake growing process is repeated).

Further, the snake growing method may overcome the initialization problem. The

primary snake may fall into an unlikely local minimum but parts of the snake may still

lie on salient features. The very low energy parts (the probable pieces) of the primary

snake are used to initialize the snake growing in later steps. This iterative snake

growing always converges and the numerical solution is therefore stable. However,

the robustness of the method is paid for by an increase in the processing cost of

the algorithm. In the remainder of the section the main steps of the snake growing

algorithm are described.

1. Based on a priori knowledge, estimate the desired contour position and shape

as a curve S0.

2. Use this curve S0 to initialize the conventional snake algorithm. This yields a

contour C0.

3. Segment the contour C0 to eliminate high-energy segments, resulting in a num-

ber of initial shorter low-energy contour segments Ci
0, where i is a segment

identifier.

4. Repeat steps 5 and 6 while lengthening is needed.

5. Each contour segment Ci
k is allowed to grow in the direction of tangents (see

Fig. 4.11). This yields a new estimate Sik+1 for each contour segments Ci
k.

6. For each contour segment Ci
k, run the conventional snake algorithm using Sik+1

as an initial estimate to get a new (longer) contour segment Ci
k+1.
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A different approach to the energy integral minimization is based on a Galerkin

solution of the finite-element method and has the advantage of greater numerical

stability and better efficiency. This approach is especially useful in the case of closed

or nearly closed contours. In particular, an additional pressure force is added to the

contour interior by considering the curve as a balloon which is inflated. This allows

the snake to overcome isolated energy valleys resulting from spurious edge points

giving better results.

It should be pointed out that with active contour models, in general, the re-

sults of this error minimization are highly prone to the placement of the initial snake.

By design, this is a mechanism to refine awareness of an object border, which is being

attended to, good results are achieved by placing the initial snake near the object

of interest. Conversely, the blurring approach could be taken to the extreme and

the initial snake placed arbitrarily, but the result will have no particular significance

beyond being an arbitrarily discovered contour in the image with certain continuity

properties. In many implementations, the initial contour is a closed circle with loca-

tion and radius specified by the user; closure is maintained by treating the first and

last points in the snake as adjoining.

4.3 Windowing

The artificial vision in unstructured environments is typically realized by the de-

termination of the variation lines of the contrast of the observed geometric shapes,

e.g. angles and contours. The elaboration of the whole image in real time to extract

this kind of features may require the use of sophisticated and powerful hardware, if

the complete elaboration of the camera image sequence has to be realized. In fact,

the use of software algorithms in place of dedicate hardware increases processing time

of one or two orders of magnitude, and this may not be in accordance to the real-time
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constraints.

However, not all the pixels of the image are necessary for the extraction of

a chosen set of feature. Then, the computational time may be significantly reduced

if only little image windows of the image frame are processed. Positioning of these

windows into the frame have to be “predicted” via suitable dynamic filters to avoid

that significant portion of the image may be lost. This strategy is called window-based

tracking technique, or more easily windowing. This family of techniques present many

advantages: computational efficiency, flexibility, and hardware and task indepen-

dency. However, the advantages provided by the adoption of a windowing technique

are directly proportional to the ratio between the total area of the elaborated image

windows and the area of the whole image. So the best results may be reached for

local feature based algorithms, e.g. corners and hole.

When feature searching has to be limited to very little image windows because

of time constraints, then the prediction of the positioning of these windows become a

crucial question. This problem is known as feature following, and it requires a filtering

process to generate an estimation and a prediction of the actual and future positions,

respectively, on the basis of noisy measurements of a suitable objects representation,

as well as of the model of the objects motion.

4.3.1 Image window addressing

The pixels of the image frame are addressed by a 2D image coordinate frame. The

notation used to indicate the value of the pixel at the coordinates

x =









r

c









of an image captured at time t is I(x, t). An image window is a 2D set of pixels

subject to an invertible function that relates the coordinates of a point of the window
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Figure 4.12. Windowing. Coordinate frames of the digitized image plane and of an
image window

to the coordinates of the same point into the original image frame. In particular, this

function is a rigid transformation, that is established by the translation vector

pw =









rw

cw









and the rotation angle ϑw. Hence, the value of a pixel with coordinates

xw =









rw

cw









,

with respect to the window frame, is expressed as follows

W (xw, t,pw, ϑw) = W (pw + R(ϑw)xw, t),

with respect to the image frame, where R is a 2D rotation matrix (see Fig. 4.12). In

this work it will be assumed that xw = 0 is the center of the window, and Ψw is the

set of all possible values of xw internal to the window.

The feature following algorithms generally operate in two steps. With the first

step, all the current target windows are extracted from the image frame using the
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nominal parameters of each window {pw1, θw1, . . . ,pwn, θwn, }. All the pixels of each

window have copied into 2D arrays, that will be treated as normal image frames.

In some applications, when dedicated hardware is available, the window’s coping is

not realized and the rigid transformations are used to address directly the relative

portion of the image frame as well as distinct windows. During the second step

the windows are elaborated to localize the searched features and to predict the next

window parameters, using suitably filters. In the literature different filters have been

proposed to cope with the feature following for visual applications. Among the most

employed there are the α−β filter, the Kalman filter, the auto-regressive filter (AR),

and the auto-regressive filter with heterogeneous inputs (ARX).

4.3.2 Local feature extraction

The windowing technique is particulary suitable to work together with a local image

feature extraction, e.g. corners and holes. In fact, the small dimension of the image

portion needed to extract an image feature like a corner or little holes allows setting

up very small windows. Further, the sizing and placing of the windows may be

realized so as to contain only one corner/hole for each window, and thus very simple

algorithms for the corner/hole extraction may be used. Finally, another important

goal of windowing is to check the feasibility of the target feature(s) for windowing

and to automatically select windows that can be robustly tracked on the image plane

in order to provide robust visual servoing.

If each window has to contain only one feature, the windows have to be cen-

tered on the “predicted” positions of the feature points on the image plane, so as

predicted by one of the dynamic filters cited in the previous subsection. Further,

considering that both the corner and the hole are image features developing around

the respectively centers, the rotation angle ϑw may be always set to zero, leaving the

window sizing with the task to contain an adequate portion of the image frame.
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Figure 4.13. Window sizing. Left: window around a hole feature; right: window
around a corner feature

The size of selected windows around the feature(s) should be between the max-

imum and minimum allowable window sizes, the windows must have enough clearance

from the image plane boundaries, and they should not overlap other windows or por-

tions of other features.

Given a polygonal approximation of a hole feature ε (see the left side of

Fig. 4.13), the window will be centered at

rw =
1

2

(

max
k

(rε)k + min
k

(rε)k

)

cw =
1

2

(

max
k

(cε)k + min
k

(cε)k

)

with

Wr = max
k

(rε)k − min
k

(rε)k + 2δr

Wc = max
k

(cε)k − min
k

(cε)k + 2δc

where Wr and Wc are the sizes of window in the r and c directions, respectively,

rw and cw denote the image coordinates of its center, (rε)k and (cε)k are the image

coordinates of the k-th vertex of the feature ε in image frame, and δr, and δc are

clearance factors in the r and c directions of the image frame, respectively. It should
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Figure 4.14. Windowing. Significant examples of windowing with corner features

be noted that the window for a hole feature, due to its geometry and feature extraction

process, will hardly overlap other windows or portions of other features.

For a corner feature, however, the closest feature to the target feature in

the image plane has to be determined. The image distance of the closest feature

from the target feature εk is denoted by do (see the right side of Fig. 4.13), i.e.,

do = minj ‖εk − εj‖2 ∀εj ∈ Υ and k 6= j, where Υ is the set of candidate features.

First, a secure distance is calculated by Lf = do/Cf , where Cf > 1 is a clearance

factor. If a window is bounded by this distance, it will not interfere with other

features. Let A, B be the points on the image plane along two edges of the corner C

with distance Lf from the corner. Then, ∆ can be defined as

∆ = max (|rC − rA|, |cC − cA|, |rC − rB|, |cC − cB|)

In addition, to provide clearance from image frame boundaries, dr and dc are defined
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as

dr =
Dr

2
− |rC |

dc =
Dc

2
− |cC |

where Dr and Dc are the dimension of the image frame along the r and c direction,

respectively.

Finally, the window will be centered at the corner with

Wr = min (2∆, 2dr,W
max
r )

Wc = min (2∆, 2dc,W
max
c )

where Wmax
r and Wmax

c are the maximum allowable window sizes along r and c

directions, respectively. In Fig. 4.14 some significant cases for the sizing and placing

of windows for corner features are shown.

Notice that a more sophisticated windowing approach may be implemented if

the limit of using only one window for each feature is removed. Using two or more

windows to cover the portion of the image frame of interest represents the evolution of

the windowing technique described before. With more windows, in fact, the dimension

of the image area to elaborate may be further reduced with the consequent reduction

of computational time.
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POSE RECONSTRUCTION

The problem of pose reconstruction of known moving objects using image measure-

ments is the issue of this chapter. The geometric formulation of the pose reconstruc-

tion problem is first presented for the case of a fixed mono-camera system using local

image features, e.g. corners and holes, as image measurements. Then, the problem is

extended to the general case of a fixed multi-camera system.

An important problem to consider is that the visual measurements are usually

affected by significant noise and disturbances due to temporal and spatial sampling

and quantization of the image signal, lens distortion, etc.. Hence, the use of visual

measurements requires the adoption of suitable algorithms with good disturbance

rejection capability.

The proposed solutions make use of the Extended Kalman Filter to solve the

complex and nonlinear equations resulting from the geometric formulation, both in

the case of a mono and of a multi-camera system fixed in the workspace. Further, to

reduce computational complexity, an iterative formulation of the filter is proposed.

Finally, an adaptive formulation of the Extended Kalman filter is introduced to en-

hance robustness with respect to light conditions.
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Figure 5.1. Fixed mono-camera system. Reference frames for the camera and the
object using the pinhole model

5.1 Pose reconstruction from image measurements

In this section the geometric formulation of the problem of the pose reconstruction

of an object of known geometry will be presented. The reconstruction is based on

image measurements of the object feature points, i.e. the corners.

Two cases will be studied in depth: the case of a fixed mono-camera system

and the case of a fixed multi-camera system.

5.1.1 Fixed mono-camera system

The geometry of a system with a single video camera fixed in the workspace can

be characterized, as described in the Section 3.1, using the classical pin-hole model

shown in Fig. 5.1.

A frame Oc–xcyczc attached to the camera (camera frame), with the zc-axis

aligned to the optical axis and the origin in the optical center, is considered. The

sensor plane is parallel to the xcyc-plane at a distance −fe along the zc-axis, where fe
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is the effective focal length of the camera lens, which may be different from the focal

length f . The image plane is parallel to the xcyc-plane at a distance fe along the

zc-axis. The intersection of the optical axis with the image plane defines the principal

optic point O′
c. It is the origin of the image frame O′

c–ucvc whose axes uc and vc are

taken parallel to the axes xc and yc, respectively.

The perspective transformation of the j-th object feature point13 Pj, whose

position components are described by the vector

pOj =



















xOj

yOj

zOj



















with respect to the object frame (a frame attached to the object), onto the image plane

is defined by (3.2). The corresponding projection geometry is showm in Fig. 5.1. The

positions of all the feature points with respect to the object frame are assumed to be

known, i.e. they are provided by a boundary representation of the object, by direct

measurements, or by a generic CAD model.

The pose of the object frame with respect to the base frame O-xyz is described

by the translation vector

oO =



















xO

yO

zO



















13The object feature points considered in this section are local features, e.g. cor-
ners and holes.
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and a minimal representation of the orientation

φO =



















ϕO

ϑO

ψO



















based, for example, on the roll, pitch, and yaw angle [37]. These quantities are the

unknown variables of the pose reconstruction problem. Notice that, for simplicity of

notation, the indication of the superscript for the vectors referred to the base frame

is omitted. Then, the corresponding coordinate transformation of the j-th feature

point from the object frame to the base frame is defined as follows:

pj = oO + R(φO)pOj , (5.1)

where the matrix R(φO) is the rotation matrix depending from the roll, pitch, and

yaw angle via the following expression:

R(φO) =



















cϕO
cϑO

cϕO
sϑO

sψO
− sϕO

cψO
cϕO

sϑO
cψO

+ sϕO
sψO

sϕO
cϑO

sϕO
sϑO

sψO
+ cϕO

cψO
sϕO

sϑO
cψO

− cϕO
sψO

−sϕO
cϑO

sψO
cϑO

cψO



















.

Notice that the compact notations cϕO
, sϕO

, ... have been used to indicate cos(ϕO),

sin(ϕO), ..., respectively.

Consider the translation vector oC and the rotation matrix RC of the base

frame with respect to the camera frame. Then, the coordinates of the j-th object

point with respect to camera frame may be evaluated with the following expression:

pCj = oC + RCpj. (5.2)

Notice that both the vector oC and the matrix RC are constant because the camera

is fixed with respect to the base frame. These quantities, known as extrinsic camera

parameters, may be evaluated via a suitable calibration procedure of the camera.
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Starting from (3.2), the coordinates of the j-th feature points with respect to

the normalized image frame can be computed as follows:









uj

vj









=











xCj
zCj

yC

zC











, (5.3)

where

pCj =



















xCj

yCj

zCj



















.

These quantities may also be derived directly from the corresponding measured pixel

coordinates, according to (3.4). The pixel coordinates of the feature points, the

position of the corresponding object points with respect to the object frame, and

the camera calibration parameters are the known variables of the pose reconstruction

problem. Notice that using the expressions (3.17) it is possible to compensate the

distortion effects on the image measurements of the feature points.

Consider an object with m feature points. Substituting (5.1) into (5.2), for

j = 1, . . . ,m, the expression of the coordinates of the m feature points with respect

to the camera frame are obtained depending on the camera (known) pose and on the

object (unknown) pose, as well as on the position of the feature points with respect

to the object frame

pCj = oC + RC(oO + R(φO)pOj ). (5.4)

These quantities may be substituted into the m equations (5.3), which depend only

on the digitized image coordinates (the image measurements), i.e.:









rj

cj









=









ro

co









+









fu 0

0 fv



















xCj
zCj

yC

zC











, (5.5)
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where the quantities {ro, co, fu, fv} are the so called intrinsic camera parameters, they

are constant and may be evaluated via a suitable calibration procedure of the camera.

Therefore, a system of 2m nonlinear scalar equations is achieved, which depend

on the measurements of the m feature points in the image plane of the camera,

whereas the six components of the vectors oO and φO, expressed in the base frame,

are the unknown variables. To solve these equation at least six independent equations

are required, which can be achieved with the measurement of at least three non-

colinear feature points, although additional feature points may enhance the accuracy

of the estimate in the presence of noise. Notice that the computation of the solution

is nontrivial and, for visual servoing applications, it has to be repeated at a high

sampling rate.

5.1.2 Fixed multi-camera system

The geometric formulation of the pose reconstruction problem presented in the pre-

vious section may be naturally extended to the general case of a fixed multi-camera

system. The geometry of a system of n video cameras can still be characterized using

the pinhole model. In Fig. 5.2 the corresponding referring frames have represented.

Consider the translation vector pCi and the rotation matrix RCi of the base

frame with respect to the i-th camera frame (the frame attached to the i-th camera).

Then the coordinate transformation for the j-th feature points from the base frame

to the i-th camera frame is described by the following equation:

pCij = oCi + RCipj, (5.6)

where the quantities pCi and RCi, for i = 1, . . . , n, are the extrinsic calibration

parameters od the n cameras.

The normalized image coordinates of the i-th camera corresponding to the
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Figure 5.2. Fixed multi-camera system. Reference frames for the i-th camera and the
object using the pinhole model

j-th feature points:








uij

vij









=











xCij
zCij

yCi

zCi











, (5.7)

where

pCij =



















xCij

yCij

zCij



















.

These quantities may also be derived directly from the corresponding measured pixel

coordinates, via (3.4).

Assuming that the object has m feature points and substituting (5.1) into

the corresponding n equations (5.6), the expression of the coordinates of the feature
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points with respect to the n camera frames is achieved

pCij = oCi + RCi(oO + R(φO)pOj ), (5.8)

where

pCij =



















xCij

yCij

zCij



















.

Substituting (5.8) for each of the n cameras into the m equations (5.3), a

system of 2nm nonlinear scalar equations may be achieved, which depend on the

measurements of the m feature points in the n image planes of the cameras, whereas

the six components of the vectors oO and φO, expressed in the base frame, are the

unknown variables. The corresponding system of equations may be described as

follows:








rij

cij









=









rio

cio









+









f iu 0

0 f iv



















xCij
zCij

yCi

zCi











, (5.9)

for j = 1, . . . ,m and i = 1, . . . , n, where the quantities {rio, c
i
o, f

i
u, f

i
v} are the intrinsic

camera parameters of the n cameras.

To find a solution, at least six independent equations are required, which

can be achieved with the measurement of at least three non-colinear feature points,

anyhow distributed between the n cameras. The effects of triangulation, due to the

presence of a stereo camera system, should reduce and make of the same order of

magnitude the components of the estimation errors of the pose. However, additional

feature points may still enhance accuracy in the presence of noise.

Notice that, both a the case of a mono and a multi-camera system, the solution

of the corresponding system of equations provides the pose of the object directly with
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respect to the base frame, without the necessity of further coordinate transformations.

5.2 Extended Kalman Filter

The iterative Extended Kalman Filter formulation described in the following sections

provides a computationally tractable solution to the previous system of equations,

which can also incorporate redundant measurement information [24], [27]. Actually,

Kalman filtering offers many advantages over other pose estimation methods [1], [7],

[46], [15], [47], e.g., implicit solution of photogrammetric equations with iterative

implementation, temporal filtering, ability to change the measurement set during the

operation. Moreover, the statistical properties of Kalman Filter may be tuned to those

of the image measurements noise of the particular vision system. Last but not least,

the prediction capability of the filter allows setting up a dynamic windowing technique

of the image plane which may sensibly reduce image processing time. Applications

of Kalman Filter in machine vision range from visual tracking of objects with many

internal degrees of freedom [34], to automatic grasp planning [19] and [14] as well as

pose and size parameters estimation of objects with partially known geometry [22].

The accuracy of the provided solution depends on the accuracy of the model of

the dynamic system representing the object motion (discrete-time state space model

of the filter), on the accuracy of the model of the image projections (output equa-

tions of the filter), and on the validity of the assumption that the disturbance and

measurement noises are well represented by a Gaussian noise, with zero mean and

fixed covariances14 (statistics of the filer) [35], [45], [19]. If this hypothesis is satisfied,

the provided solution is the optimal solution; otherwise the solution represents an

approximation to the optimal solution.

14In the case of the proposed Adaptive Extended Kalman filter the statistics of
the filter (means and covariances) will be self-tuning.
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5.2.1 Iterative formulation

In order to estimate the pose of the object using the image measurements of the

object feature points, a discrete-time state space model of the object motion has to

be considered [23], [42]. The state vector of the model is chosen as the (12×1) vector

w =

[

xo ẋo yo ẏo zo żo ϕo ϕ̇o ϑo ϑ̇o ψo ψ̇o

]T

. (5.10)

For simplicity, the object velocity is assumed to be constant over a sample period

T . This approximation is reasonable in under the assumption that T is sufficiently

small with respect to the variation of the object pose. The corresponding dynamic

modelling error can be considered as an input disturbance γk. The discrete-time

dynamic model can be written as

wk = Awk−1 + γk (5.11)

where the state transition matrix A is a constant (12× 12) block diagonal matrix of

the form

A =





































1 T

0 1

0

. . .

0
1 T

0 1





































.

Without loss of generality, suppose that all the m feature points of the object

are visible from each camera15. The outputs of the Kalman Filter are chosen as the

two vectors of the normalized coordinates of the feature points in the image plane of

15This hypothesis is not necessary and it will be removed in the next sections,
when the issue of dynamic loss of the visible feature points will be discussed.
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the n cameras

ζu,k =

[

(

ζ1
u,k

)T
· · ·

(

ζnu,k
)T

]T

k

(5.12a)

ζv,k =

[

(

ζ1
v,k

)T
· · ·

(

ζnv,k
)T

]T

k

, (5.12b)

where the vectors ζiu,k and ζiv,k, for i = 1, . . . , n, represent the normalized coordinates

of the feature points for the i-th camera

ζiu,k =

[

ui1
f ie

· · ·
uim
f ie

]T

k

(5.13a)

ζiv,k =

[

vi1
f ie

· · ·
vim
f ie

]T

k

. (5.13b)

In view of (5.7), the corresponding output model can be written in the form

ζu,k = gu(wk) + νu,k (5.14a)

ζv,k = gv(wk) + νv,k (5.14b)

where νu,k and νv,k are the observation noise vectors for the u and v components

of the normalized image planes of each camera, whereas the vector functions gu(wk)

and gv(wk) are defined as

gu(wk) =

[

g1
u(wk)

T · · · gnu(wk)
T

]T

k

(5.15a)

gv(wk) =

[

g1
v(wk)

T · · · gnv (wk)
T

]T

k

, (5.15b)

where the i-th vectors giu(wk) and giv(wk), for i = 1, . . . , n, are defined as follows:

giu(wk) =

[

xCi1

zCi1

· · ·
xCim
zCim

]T

k

(5.16a)

giv(wk) =

[

yCi1

zCi1

· · ·
yCim
zCim

]T

k

. (5.16b)

The coordinates xCij , yCij , and zCij of the j-th feature points with respect to the i-th

camera in equations (5.15) are computed from the state vector wk via equation (5.6).
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The components of the disturbance quantities γk, νu,k and νv,k are considered

as independent, non-stationary, Gaussian, white noise sequences with the statistical

properties

E[γk] = qk (5.17a)

E[νu,k] = ru,k (5.17b)

E[νv,k] = rv,k (5.17c)

E[(γk − qk)(γ l − ql)
T] = Qkδkl (5.17d)

E[(νu,k − ru,k)(νu,l − ru,l)] = Ru,kδkl (5.17e)

E[(νv,k − rv,k)(νv,l − rv,l)] = Rv,kδkl (5.17f)

where E[·] indicates the statistical mean operator applied to the components of a

vector or matrix, and δ is the Kroneker symbol. Notice that the two matrixes Ru,k

and Rv,k become block diagonal matrices if the measurements of the n cameras are

independent, where the i-th block represents the observation covariance matrix of the

i-th camera.

Since the output model is nonlinear in the system state, it is required to

linearize the output equations about the current state estimate at each sample time.

This leads to the so-called Extended Kalman Filter (EKF).

The following iterative algorithm provides the best linear, minimum variance,

unbiased estimate of the state vector for the system defined by (5.11) and (5.14).

The update step improves the previous estimate by using the input measure-

ments according to the equations

wk,k = wk,k−1 +

[

Ku,k Kv,k

]









ζu,k − gu(wk,k−1) − ru,k

ζv,k − gv(wk,k−1) − rv,k









(5.18a)
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P k,k = P k,k−1 −

[

Ku,k Kv,k

]









Hu,k

Hv,k









P k,k−1, (5.18b)

where wk,k−1 is the propagated state vector, P k,k−1 is the (12×12) covariance matrix

conditioned on observations prior to time k, and Ku,k and Kv,k are the (12 × nm)

Kalman matrix gains

Ku,k = P k,k−1Hu,k
T(Ru,k + Γu,k)

−1 (5.19a)

Kv,k = P k,k−1Hv,k
T(Rv,k + Γv,k)

−1, (5.19b)

being Hu,k and Hv,k the (nm× 12) Jacobian matrices of the output vector functions

Hu,k =
∂gu(w)

∂w

∣

∣

∣

∣

w=wk,k−1

(5.20a)

Hv,k =
∂gv(w)

∂w

∣

∣

∣

∣

w=wk,k−1

. (5.20b)

The analytic expressions of Hu,k and Hv,k can be found in Appendix B, while Γu,k

and Γv,k are defined as

Γu,k = Hu,kP k,k−1Hu,k
T (5.21a)

Γv,k = Hv,kP k,k−1Hv,k
T. (5.21b)

The prediction step of the algorithm provides an optimal estimate of the state

at the next sample time according to the iterative equations

wk+1,k = Awk,k + qk (5.22a)

P k+1,k = AP k,kA
T + Qk. (5.22b)

Notice that a-priori estimate of the state w0 and of the state covariance P 0

and a-priori statistical information represented by (5.17) are required. Further, the
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covariance matrix Qk of the state noise and the covariance matrixes Ru,k and Rv,k

of the observation noise have to be set. Typically, they are fixed to constant values,

which are achieved by some special measurements and empirical experiments. In

particular, matrices Ru,k and Rv,k may be measured during the calibration procedure

of the cameras via a suitable statistical analysis of the residuals of the calibration

errors. The choice of the matrix Qk is more difficult, because it strongly depends on

the motion parameters of the object, and in particular from the velocity. Typically,

it is the result of empirical experiments.

5.2.2 Scalar iterative formulation

The computational complexity of the proposed formulation of the Kalman filter may

represent a crucial issue for real time applications, e.g. visual servoing. The itera-

tive structure already offers good performance in terms of computational complexity;

nevertheless, it may be further enhanced if a scalar update algorithm is used to eval-

uate the Kalman gains, the state covariance matrix, and the state vector, during the

upgrade step. This algorithm may be used when the observation noise matrixes may

be approximated by diagonal matrices16. In this case, the computationally expensive

evaluation of the inverse matrixes (Ru,k +Γu,k)
−1 and (Rv,k +Γv,k)

−1 may be substi-

tuted with a scalar iterative algorithm. In this case, Equations (5.18) and (5.19) are

replaced with the following equations:

P
0

k = P k,k−1 (5.23a)

for j = 1 to nm,

kuk,j = P
j−1

k huk,j
T(Ru,k(j, j) + huk,jP

j−1

k hT
uk,j)

−1 (5.23b)

16The hypothesis that the covariance matrices of the observation noise are di-
agonal is very reasonable because the correlation from the measurements of different
feature points may depend only on the position in the image plane, which depends
on the illumination condition, and not much on the intrinsic correlation between each
pair of feature points.
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kvk,j = P
j−1

k hvk,j
T(Rv,k(j, j) + hvk,jP

j−1

k hT
vk,j)

−1 (5.23c)

P
j

k = P
j−1

k −

[

kuk,j kvk,j

]









huk,j

hvk,j









P
j−1

k (5.23d)

end

P k,k = P
mk

k (5.23e)

wk,k = wk,k−1 + P k,k

[

HT
u,k HT

v,k

]









R−1
u,k

R−1
v,k

















ζu,k − gu(wk,k−1) − ru,k

ζv,k − gv(wk,k−1) − rv,k









(5.23f)

where Ru,k(j, j) and Rv,k(j, j) are the j-th elements of the diagonals of the corre-

sponding matrices, and huk,j and hvk,j are the j-th rows of the matrixes Hu,k and

Hv,k, respectively.

The same algorithm, with few modifications, may have a parallel formulation

to be executed by a multi-processor system [16].

5.2.3 Copying with dynamic loss of image features

In this section the non-realistic hypothesis that all the object feature points must be

always visible and extractable from the image frame of each camera will be removed

and the general case of dynamic loss of the available feature points will be considered.

The loss of a feature point may have two main causes: occlusion and extraction failure.

The occlusion is the loss of visibility of a feature point from the current ob-

servation point, and it may be of two kinds: auto-occlusion and self-occlusion. The

former occurs when the feature point is hidden by the observable surfaces of the ob-

ject, while the laster is caused by the alignment of other objects, obstacles, or parts

of the environment between the camera and the feature points.

The extraction failure may have many reasons. Typically, the two most fre-
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quent causes are the uncertain extraction and the windowing mismatch. The former

occurs when the processed piece of the image is very noisy, because of a poor illumi-

nation condition. In this case, during the feature extraction, it may not be possible

to identify the feature point, or the standard deviation of the distance between the

predicted feature point position and its real position may be too high with respect to

the mean value achieved in the extraction of the other points17.

The windowing mismatch happens when the predicted position and size of the

window of the windowing algorithm does not allow the feature extraction. Typically,

this situation occurs when the object has a strong acceleration or when, for reasons of

computational limits of the employed hardware, very small windows have to be used.

To cope with the dynamic loss of available feature points, the case of variable

and dynamic subsets of feature points provided by each camera has to be considered.

Consider the whole set of the object feature points Ω = {P1, . . . , Pm} and its subset

Ωi
k = {Pji

1,k
, . . . , Pji

mi
k

,k

}k, for i = 1, . . . , n, where jih,k is the h-th feature points of the

subset of the effectively available feature points of the i-th camera, and mi
k is the

number of points of Ωi
k, at the time k, with mi

k ≤ m. The total number of visible

points at time k from all the n cameras is mk =
∑n

i=1m
i
k, with mk ≤ nm.

The outputs of the Kalman Filter have to be dynamically composed, at each

sampling time, using the effectively available feature points. Therefore the component

vectors ζiu,k and ζiv,k of (5.13) have to be dynamically defined for each camera as

follows:

ζiu,k =

[

ui
ji
1,k

f ie
· · ·

ui
ji

mi
k

,k

f ie

]T

k

(5.24a)

17This is only one of the possible statistical checks that may be used to verify
the reliability of the results of the extraction process.
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ζiv,k =

[

vi
ji
1,k

f ie
· · ·

vi
ji

mi
k

,k

f ie

]T

k

. (5.24b)

Analogously, the component vectors giu(wk) and giv(wk) of the corresponding

output model, described by (5.16), have to be dynamically defined for each camera

as follows:

giu(wk) =





xCi
ji
1,k

zCi
ji
1,k

· · ·

xCi
ji

mi
k

,k

zCi
ji

mi
k

,k





T

k

(5.25a)

giv(wk) =





yCi
ji
1,k

zCi
ji
1,k

· · ·

yCi
ji

mi
k

,k

zCi
ji

mi
k

,k





T

k

. (5.25b)

Finally, also the corresponding observation covariance matrixes Ru,k and Ru,k

have to be dynamically composed, with the right statistics corresponding to the ef-

fective available feature points. The effective dimension of these matrices will depend

on the number of extracted points and is equal to (mk×mk) at the time k. In partic-

ular, under the reasonable assumption of independence of the image measurements

between the n cameras, each matrix will be a block diagonal matrix. The i-th block,

corresponding to the i-th camera, will be a (mi
k ×mi

k) matrix at time k.

An alternative approach to the treatment of the dynamic loss of the object

feature points exists, but is less efficient. The idea is to consider always all the object

feature points in the equation of the Extended Kalman Filter, and to act only on

the observation covariance matrices. When a feature point is lost, the corresponding

values of the matrices Ru,k and Ru,k are increased to very large values. In this way,

the effects of these measurements on the pose reconstruction will not be influenced.

To consider again the measurements of this point, it will be sufficient to assign the

original values to the corresponding elements of the covariance matrixes. It is clear

that this method is very simple to implement but is not computationally efficient

because it requires also unused measurements to be processed.
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5.3 Adaptive Extended Kalman Filter

If a high-quality camera sensor is used, the illumination of the scene is stable, and the

velocity of the tracked object is nearly constant; then it is possible to use constant

statistical parameters with optimal results. On the other hand, if these conditions are

not satisfied, it may be convenient to update in real time the statistical parameters

{qh,Qh, ru,h, rv,h,Ru,h,Rv,h}. This leads to the Adaptive Extended Kalman Filter

(AEKF).

It is known that an optimal estimator of the statistical parameters does not

exist, but many sub-optimal schemes can be derived. In this section the intuitive

approach proposed in [31], and reviewed in [10] and [20], is first redefined for a visual

tracking problem based on local features, e.g. corners and holes. Then, the adaptive

algorithm is formulated in an iterative, limited memory format.

5.3.1 Adaptive algorithm

The basic hypothesis of the proposed approach is the constant value of the statistical

parameters over N sample times.

Since not all the visual features are always available during the motion and

their location into the scene is strongly variable, it may be reasonable to assume the

statistics of the observation noise to be equal for all the measurements of the feature

points in the scene of each camera. Hence the quantities {ru,h, rv,h,Ru,h,Rv,h} are

replaced with the quantities

ru,h =

[

r1
u,hım1

k
· · · rnu,hımn

k

]T

(5.26a)

rv,h =

[

r1
v,hım1

k
· · · rnv,hımn

k

]T

(5.26b)

Ru,h = diag
{

(σ1
u,h)

2Im1

k
, . . . , (σnu,h)

2Imn
k

}

(5.26c)
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Rv,h = diag
{

(σ1
v,h)

2Im1

k
, . . . , (σnv,h)

2Imn
k

}

, (5.26d)

where ıs indicates a (s× 1) vector of components equal to 1, Is indicates the (s× s)

identity matrix, and the notation diag(·, . . . , ·) indicates a (block) diagonal matrix

defined by its arguments. Moreover, considering the i-th camera, the samples of

the observation noise sequences νiu,h and νiv,h are independent for h = 1, . . . , N and

have a Gaussian distribution with means riuımi
h

and rivımi
h
, and variance (σiu)

2Imi
h

and

(σiv)
2Imi

h
, respectively, where the parameters riu, r

i
v, σ

i
u and σiv are constant over N

sample times, for i = 1, . . . , n.

In view of the nonlinear relation (5.14), an intuitive approximation of the

observation noise sample vectors at time h is given by the quantities

ρu,h =

[

ρ1
u,h · · · ρnu,h

]T

= ζu,h − gu(wh,h−1) (5.27a)

ρv,h =

[

ρ1
v,h · · · ρnv,h

]T

= ζv,h − gv(wh,h−1) (5.27b)

which can be considered as independent and identically distributed over N samples.

It can be shown that an unbiased estimator for riu and riv can be taken as

r̂iu =
1

N

N
∑

h=1

ρiu,h (5.28a)

r̂iv =
1

N

N
∑

h=1

ρiv,h, (5.28b)

where ρiu,h and ρiv,h are scalar quantities equal to the mean values of the components

of the vectors ρiu,h and ρiv,h, respectively, for i = 1, . . . , n. Moreover, an unbiased

estimator for (σiu)
2 and (σiv)

2 may be obtained as

(σ̂iu)
2 =

1

N − 1

N
∑

h=1

1

mi
h

(

‖ρiu,h − r̂iuım‖
2 −

N − 1

N
tr
(

Γi
u,h

)

)

(5.29a)

(σ̂iv)
2 =

1

N − 1

N
∑

h=1

1

mi
h

(

‖ρiv,h − r̂ivım‖
2 −

N − 1

N
tr
(

Γi
v,h

)

)

. (5.29b)
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where the function tr(·) is the trace of the input matrix, and the matrixes Γi
u,h and

Γi
v,h are the diagonal block of the matrixes Γi

u,h and Γv,h corresponding to the i-th

camera, respectively.

For the state noise statistics, in view of the linear dynamic state relation at

time h given by (5.11), an intuitive approximation for the state noise vector at time

h is

̺h = wh − Awh,h−1, (5.30)

which may be considered independent and identically distributed over N samples. As

before, it can be shown that an unbiased estimator for the mean value q of the state

noise may be obtained as

q̂ =
1

N

N
∑

i=1

̺i, (5.31)

while an unbiased estimator for the covariance matrix Q is given by

Q̂ =
1

N − 1

N
∑

i=1

(

(̺i − q̂)(̺i − q̂)T −
N − 1

N
∆i

)

, (5.32)

where ∆i = AP i,i−1A
T − P i,i.

In sum, Equations (5.27)–(5.32) provide a heuristic unbiased estimator for the

statistical parameters of an EKF used for visual tracking, on the assumption that the

last N samples are statistically independent and identically distributed.

5.3.2 Iterative formulation

Using the previous results, an iterative limited memory formulation of the AEKF

may be designed. The required prior knowledge information is represented by an

initial estimate of the quantities w1,0, P 1,0, q̂0, Q̂0, and of r̂iu,0, r̂
i
v,0, σ̂

i
u,0 and σ̂iv,0, for

i = 1, . . . , n.

Without loss of generality, it is assumed that the observation noise statisti-

cal parameters are constant over Nr time samples while the state noise statistical
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parameters are constant over Nq time samples.

The first step of the iterative algorithm is the linearization of the output

Kalman model around the last predicted value of the state wk,k−1, according to (5.20),

and the computation of the matrices Γu,k and Γv,k in (5.21).

Starting from time Nr, the second step is the evaluation of the current noise

vector as follows

ρu,k = ζu,k − gu(wk,k−1) (5.33a)

ρv,k = ζv,k − gv(wk,k−1), (5.33b)

and the computation of the estimated observation noise statistics for each camera in

the following manner:

r̂iu,k = r̂iu,k−1 +
1

Nr

(ρiu,k − ρiu,k−Nr
) (5.34a)

r̂iv,k = r̂iv,k−1 +
1

Nr

(ρiv,k − ρiv,k−Nr
) (5.34b)

(σ̂iu,k)
2 = (σ̂iu,k−1)

2 +
1

mi
k(Nr − 1)

(

‖ρiu,k − r̂iu,kım‖
2 − ‖ρiu,k−Nr

− r̂iu,kım‖
2+

+
1

Nr

‖ρiu,k − ρiu,k−Nr
‖2 +

Nr − 1

Nr

tr(Γi
u,k−Nr

− Γi
u,k)

)

(5.34c)

(σ̂iv,k)
2 = (σ̂iv,k−1)

2 +
1

mi
k(Nr − 1)

(

‖ρiv,k − r̂iv,kım‖
2 − ‖ρiv,k−Nr

− r̂iv,kım‖
2+

+
1

Nr

‖ρiv,k − ρiv,k−Nr
‖2 +

Nr − 1

Nr

tr(Γi
v,k−Nr

− Γi
v,k)

)

, (5.34d)

for i = 1, . . . , n.

The third step consists in the evaluation of the Kalman gains

Ku,k = P k,k−1Hu,k
T(Γu,k + R̂u,k)

−1 (5.35a)

Kv,k = P k,k−1Hv,k
T(Γv,k + R̂v,k)

−1, (5.35b)

while the fourth step is the state correction on the basis of the current measurements
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wk,k = wk,k−1 +

[

Ku,k Kv,k

]









ρu,k − r̂u,k

ρv,k − r̂v,k









(5.36a)

P k,k = P k,k−1 −

[

Ku,k Kv,k

]









Hu,k

Hv,k









P k,k−1. (5.36b)

Starting from time Nq, the fifth step is the evaluation of the current state noise

vector and the computation of the estimated state noise statistics as follows

̺k = wk,k − Awk,k−1 (5.37a)

∆k = AP k,k−1A
T − P k,k (5.37b)

q̂k = q̂k−1 +
1

Nq

(̺k − ̺k−Nq
) (5.37c)

Q̂k = Q̂k−1 +
1

Nq − 1

{

(̺k − q̂k)(̺k − q̂k)
T − (̺k−Nq

− q̂k)(̺k−Nq
− q̂k)

T+

+
1

Nq

(̺k − ̺k−Nq
)(̺k − ̺k−Nq

)T +
Nq − 1

Nq

(∆k−Nq
− ∆k)

}

. (5.37d)

The sixth and last step consists in the evaluation of the predicted state for the

next sample time

wk+1,k = Awk,k + q̂k (5.38a)

P k+1,k = AP k,kA
T + Q̂k. (5.38b)

Notice that the update of the noise statistics starts from time Nr for the

observation noise and from time Nq for the state noise. Before such times, those

quantities are constant and equal to the initial values.
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REDUNDANCY MANAGEMENT

For many kind of applications the use of a system of two or more fixed cameras,

suitably located with respect to the robot workspace, is the unique solution which

can be practised to guarantee an optimal and robust extraction of visual information.

However, the use of a multiple-camera system requires the adoption of intelligent and

efficient strategies for the management of the available highly redundant information.

In this chapter, an automatic selection algorithm for managing redundant vi-

sual information is presented, which is based on a pre-selection algorithm and an

optimal selection algorithm.

6.1 Automatic selection algorithm

A vision system for robotic applications is based on eye-in-hand cameras, i.e., one

or two cameras mounted on the robot end-effector, and/or a system of multiple

fixed cameras. In some cases, the use of eye-in-hand cameras may become prob-

lematic and inefficient, e.g., in the presence of occlusions, for the execution of assem-

bly/disassembly tasks in restricted space, or when a very long tool is used. In this

case the use of a system of two or more fixed cameras, suitably located with respect

to the robot workspace, may guarantee an optimal and robust extraction of visual
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information.

On the other hand, the use of a multiple-camera system requires the adop-

tion of intelligent and efficient strategies for the management of highly redundant

information. This task has to be realized in real time and thus the extraction and

interpretation of all the available visual information is not possible. Efficient algo-

rithms must be devised which are able to improve the accuracy and robustness of the

visual system by exploiting a minimal set of significant information suitably selected

from the initial redundant set.

The accuracy of the pose reconstruction process provided by the presented

Kalman Filter depends on the number and on the quality of the available feature

points. Inclusion of extra points can improve the estimation accuracy but will in-

crease the computational cost of Kalman filtering and especially that of the feature

extraction process. On the other hand, it has been shown that a number of five or

six feature points, with suitable properties depending on the geometry of the feature

points projections on the image plane of each camera, can ensure the best achiev-

able accuracy for a given camera system [43], [45]. To guarantee the existence of

such points for any object pose with respect the cameras, the feature points of the

object should be numerous and uniformly distributed or the cameras should be well

positioned.

To save computational time, automatic selection algorithms should be devised

to find the optimal subset of image feature points, which is able to guarantee a pose

reconstruction close to the optimal one [8], [9], [18]. It should be pointed out, however,

that the complexity of the selection algorithms grows at factorial rate. Hence, in case

of objects with a large number of feature points, it is crucial to perform a pre-selection

of the points, e.g., by eliminating all the points that are occluded with respect to the

camera or that are not extracted with good probability of success [39], [13], [6].
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Figure 6.1. Redundancy management. Closed-loop algorithm for the selection of the
optimal subset of feature points to consider in the extraction process

In this thesis, an optimal technique for managing redundant visual information

is presented, which is based on a pre-selection algorithm and an optimal selection

algorithm [25], [26], and [28]. In particular, in order to reduce computational time, a

new pre-selection algorithm of the feature points is proposed, based on the selection of

all the points that are visible to each camera and well localizable in the corresponding

image plane at a given sample time. This algorithm exhibits a complexity which grows

linearly, thanks to the use of the BSP tree for object geometric representation. In

detail, shown in Fig. 6.1, the prediction of the object pose provided by the Kalman

Filter is used to drive a visit algorithm of the BSP tree which allows identifying all

the feature points that are visible at the next sample time for each camera. Moreover,

for each visible point, a dynamic windowing algorithm is used to verify the feasibility

of the extraction of the image feature (well-localizable points), and eventually to

choose the corresponding optimal extraction window. After the pre-selection, an

optimal selection algorithm is adopted to find an optimal subset of feature points to

be processed and input to the Kalman Filter. In particular, the selection algorithm

exploits the redundancy of the vision system to achieve the best tracking accuracy.

This two-step procedure allows a sensible reduction of the time spent for the

whole selection process. In fact, using this approach, the image area to be elaborated

may be limited to a constant value, independently at the number of employed cameras,

providing an efficient and flexible structure for real-time applications based on multi-
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camera systems.

6.2 Pre-selection algorithm

The pre-selection technique is aimed at selecting all the feature points that are visible

from each camera, using a geometric model of the observed objects based on BSP

tree structures. This technique has to be applied independently to each camera.

When a BSP tree representation of the observed object is available, it is pos-

sible to select the feature points of the object that can be visible from any camera

position and orientation by implementing a suitable visit algorithm of the tree (see

Section 3.2.2).

For this specific application, only the image feature points of the object are of

concern. Then, a simplified BSP tree model, e.g. based on corners, may be developed,

where the data stored into the nodes of the tree are the object surfaces represented by

its corners. In fact, if manmade objects are considered, each object planar surface is

well described by the corner positions of its contour, which may be represented as an

oriented polygonal18. In order to build the tree, each object has to be modelled as a

set of planar polygons; this means that the curved surfaces have to be approximated.

Each polygon is characterized by a set of feature points (the vertices of the polygon)

and by the vector normal to the plane leaving from the object. For each node of the

tree, a partition plane, characterized by its normal vector and by a point, is chosen

according to a specific criterion; the node is defined as the set containing the partition

plane and all the polygons lying on it.

Each node is the root of two subtrees: the front subtree corresponding to the

18An oriented polygonal is a couple composed of a polygonal and a unit vector
orthogonal to the plane of the polygonal and outgoing with respect to the internal
part of the object
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subset of all the polygons lying entirely on the front side of the partition plane (i.e.,

the side corresponding to the half-space containing the normal vector), and the back

subtree corresponding to the subset of all the polygons lying entirely on the back

side of the partition plane. The construction procedure can be applied recursively

to the two subsets by choosing, for each node, a new partition plane among those

corresponding to the polygons contained in that subtree. The construction ends when

all the polygons are placed in a node of the tree. Further details on BSP trees and

an example of construction can be found in the Section 3.2.2.

6.2.1 Recursive visit algorithm

Consider first the case of a single object. The proposed visit algorithm can be applied

recursively to all the nodes of the tree, starting from the root node as shown in Fig. 6.2.

Initially, the feature points of the surfaces represented by the root node are used to

compose the initial set of visible points. After that, the recursive visit algorithm is

applied by updating the current set of visible feature points as follows.

For the current node, during the recursive process, classify the camera position

with respect to the current partition plane: “Front side”, “Back side”, “On the plane”.

Hence, the following operations have to be realized for each specific case:

– Front side: Visit the back subtree; process the node; visit the front subtree.

– Back side: Visit the front subtree; process the node; visit the back subtree.

– On the plane: Visit the front subtree; visit the back subtree.

When the algorithm processes a node, the current set of projections of the visible

feature points on the image plane is updated by adding all the projections of the

feature points of the polygons of the current node and eliminating all the projections

of the feature points that are hidden by the projections of the polygons of the current
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Figure 6.2. Pre-selection algorithm. Block diagram of the recursive visit algorithm

node. If a polygon is hidden from the camera (i.e., the angle between the normal

vector to the polygon and the camera z-axis is not in the interval ]− π/2, π/2[ or the

polygon is behind the camera), the corresponding feature points are not added to the

set.

At the end of the visit, the current set will contain all the projections of the

feature points visible from the camera, while all the hidden feature points will be

discarded. Notice that the visit algorithm updates the set by ordering the polygons

with respect to the camera from the background to the foreground (see Section 3.2.2).

Moreover, the kind of elaboration is very simple and the corresponding data structures

are based only on points, then the computational efficiency is very high.
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Consider now the multi-object case. Two main solutions may be employed to

evaluate the visible feature points. The first one may be used in those cases when

the objects does not have interposing parts, i.e. when it always exists a plane that

divides the two objects without intersections. In all these cases, the object has to

be ordered from the background to the foreground of the scene, with respect to the

distance from the camera point of view. Then, the recursive visit algorithm is applied

to each object of this sequence, always working on the current set of visible feature

points. At the beginning of the visit of a new object of the sequence, the initial set

will contain the visible points of all the previous objects. When the process ends, the

set of all the visible points of each object will be available.

In particular, the object ordering may be realized either via a z-buffering or

making an ordered BSP tree structure. The z-buffering simply orders the sequence of

objects with respect to the distance of a specific point of the object (e.g. the geometric

center) from the camera. Notice that the position of all the objects is provided by

the Kalman Filter and it varies at each simple time. If an ordered BSP tree structure

is built in real time, a first visit algorithm has to be implemented only to order the

object in the right sequence and then the recursive visit algorithm can be applied to

evaluate the visibility.

The second solution may be applied in any condition, without limits on the

type of observed objects. In this case, a unique BSP tree structure has to be evaluated

at each simple time, to represent simultaneously all the objects in the current rela-

tive poses, as predicted by the Kalman filter. Then, the recursive visit algorithm is

applied directly on this structure to evaluate the visible set of feature points of all the

observed objects. This technique is characterized by a greater computational com-

plexity; however, some efficient techniques have been developed to build the unique

BSP tree starting from the single BSP tree structures that can be computed off line.
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6.2.2 Windowing test

The windowing test is performed in order to recognize all the feature points that

are well localizable, i.e., whose positions can be effectively measured with a given

accuracy. The recursive visit algorithm presented above recognizes all the feature

points that are visible from a camera view point. However, this does not ensure that

all the visible points are well localizable. For instance, some points could be out of

the field of view of the camera, or they could be too close each other to guarantee

absence of ambiguity in the localization.

A windowing test can be set up to select all the projections of the feature points

that can be well localized. The measurements of the coordinates of the projections

of the feature points are obtained by considering suitable rectangular windows of the

image plane to be grabbed and processed (see Section 4.3). Each window must contain

one feature point to realize a local feature extraction. The windows are centered on

the positions of the feature points on the image plane so as predicted by the Kalman

Filter, and they are sized as it has been described in Section 4.3.2.

In particular, all the points that are out of the field of view of the camera,

or too close to the boundaries of the image plane, are discarded. This is achieved

by eliminating all the points whose projections, so as predicted by the Kalman filter,

are out of a central window of the image plane. The central window is obtained by

reducing the height (base) of the whole image plane of the quantity Wmin
r (Wmin

c )

from each side, as shown in Fig. 4.14. Then, all the feature points that are too close

to each other are discarded, with respect to the chosen clearance factor. All the

remaining points are defined well localizable. Finally, the effective dimensions of the

corresponding windows are dynamically adapted to the maximum allowable semi-

dimension, so as to guarantee an assigned security distance from the other points and

from the boundaries of the image plane.
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6.3 Optimal selection algorithm

The number of well-localizable feature points after the pre-selection is typically too

high with respect to the minimum number sufficient to achieve the best Kalman filter

precision. It has been demonstrated that an optimal set of five or six feature points

guarantees about the same precision as that of the case when a higher number of

feature points is considered. Therefore an automatic selection algorithm to choose an

optimal subset of feature points is required to reduce the computational complexity.

Moreover, if the number of the selected features is limited, then the area of the

image frame to elaborate is fixed, independently of the number of used cameras. This

results is very important to achieve robust and flexible multi-camera systems with

inexpensive hardware.

6.3.1 Quality indexes

Consider the set of the well-localizable feature points Γo, result of the pre-selection

and windowing processes, and one of the possible subsets of Γo composed by q well-

localizable feature points Γq (dim (Γq) = q). Moreover, let Γiqi be the subset of qi

feature points of the set Γq provided by the i-th camera, for i = 1, . . . , n (dim
(

Γiqi
)

=

qi, and q =
∑n

i=1 qi).

The optimality of a subset Γoptq ⊆ Γq of feature points is valued through the

composition of suitably selected quality indexes into an optimal cost function. The

quality indexes must be able to provide accuracy, robustness and to minimize the

oscillations in the pose estimation variables. To achieve this goal it is necessary to

ensure an optimal spatial distribution of the projections of the feature points on the

image plain, to avoid chattering events between different optimal subsets of feature

points chosen during the object motion, and to avoid image features not robust for

the extraction process. Moreover, in order to exploit the potentialities of a multi-
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Figure 6.3. Optimal selection algorithm. Angular distribution index: the angles αk
around the central gravity point in the case of four image feature points (k =
1, . . . , 4)

camera system, it is important to achieve an optimal distribution of the feature points

among the different cameras. For these reasons, the quality indexes considered in this

chapter are of two categories: the first category is based on the evaluation of some

characteristics of each subset Γiqi , while the second category considers some global

characteristics of the whole current subset Γq.

To achieve accuracy and robustness in both feature extraction and pose esti-

mation, it is convenient to consider separately the features of the subsets Γiqi of Γq

with respect to each camera. The first quality index is a measure of spatial distribu-

tion of the predicted projections on the image planes of a subset of qi selected points

of the target object for the i-th camera, for i = 1, . . . , n:

Qi
s =

1

qi

qi
∑

k=1

min
j∈{1,...,qi}

j 6=k

∥

∥pj − pk
∥

∥ .

where
∥

∥pj − pk
∥

∥ denotes the Euclidean distance between the j-th and the k-th point

of the considered subset. Notice that a lower threshold on Qi
s should be adopted to

avoid combination of points with inadequate spacial distribution.

To minimize the oscillations in the state prediction error covariance matrix

of the extended Kalman filter algorithm and, hence, to improve the quality of pose
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estimation, it is desirable that the qi feature points of Γiqi are distributed about the

centers of qi circular sectors of dimension 2π/qi, for each camera. Therefore, the

second quality index is a measure of angular distribution of the predicted projections

on the image planes of a subset of qi selected points for the i-th camera, for i =

1, . . . , n:

Qi
a = 1 −

qi
∑

k=1

∣

∣

∣

∣

αk
2π

−
1

qi

∣

∣

∣

∣

where αk is the angle between the vector pk+1 − pCi and the vector pk − pCi, being

pCi the central gravity point of the whole subset of feature points. The qi points

of the subset are considered in a counter-clockwise ordered sequence with respect to

pCi, with pqi+1 = p1 (see Fig. 6.3).

To enhance the efficiency of the feature extraction process of the optimal subset

of feature points and, hence, to increase the effective number of available points for

the reconstruction, it is desirable to choose only those points with a good percentage

of right extraction, with respect to each camera. Therefore, the third quality index

measures the current percentage of success for the extraction process of a subset of qi

selected points for the i-th camera, for i = 1, . . . , n:

Qi
p =

qi
∏

k=1

σk

where 0 ≤ σj ≤ 1 is the percentage of success for the extraction of the j-th feature

point. These percentages have to be updated during the reconstruction process. At

each sampling time and for all the feature points involved in the current extraction

process, the percentage of the j-th point, for j = 1, . . . , qi, is updated by increasing

(decreasing) the current value of a quantity 0 < δp < 1 in the case of a good (failed)

extraction. Notice that q =
∑n

i=1 qi may be chosen greater or equal to six to handle

fault cases during feature extraction.

To avoid frequent changing on the feature set during the servoing, which may

cause oscillations in the reconstructed pose, it is desirable to use the same features as
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Figure 6.4. Optimal selection algorithm. The repartition index Qt in the case of six
feature points (q = 6) and three cameras (n = 3), with a minimum value Qtm = 0.2

long as possible, depending on the object trajectory. Therefore, the following quality

index, which introduces an hysteresis effect on the change of the optimal combination

of points, is considered:

Qh =















1 + ǫ if Γq = Γopt

1 otherwise

where ǫ is a positive constant.

In order to exploit the benefits of triangulation and of different camera po-

sitions and resolution, it is desirable to equally distribute the feature points among

the cameras. Two effects have to be considered separately: the triangulation and the

relative image resolution.

To increase the benefits of triangulation it is desirable to equally divide the
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points among the cameras, independently of their resolution or relative position. To

reach this purpose the following repartition index is considered:

Qt = 1 − (1 −Qtm)
n

2q(n− 1)

n
∑

i=1

∣

∣

∣
qi −

q

n

∣

∣

∣

where qi is the number of points assigned to the i-th camera, and Qtm is the minimum

value of the index, for i = 1, . . . , n. In Fig. 6.4 all the possible values ofQt are reported

for a system composed of three cameras, six optimal feature points to be selected,

and a minimum value Qtm = 0.2.

On the other hand, to take into account the relative camera resolution and

the distance of the object from each cameras, a further repartition index has to be

considered, that takes into account the distance of the cameras from the object with

respect to their effective resolution:

Qr =
1

q
max
k=1,...,n

{

dk
(susv)k
fke

} n
∑

i=1

qi
di

f ie
(susv)i

where di is the distance of the i-th camera form the object, and f ie and (susv)i are

the effective focal length and the product of the row and column scale factors of the

i-th camera, respectively, for i = 1, . . . , n. Notice that the values di are evaluated

using the information provided by the Kalman Filter. Using this index, the selection

algorithm becomes capable to manage different resolution zones of different cameras.

Therefore, the selection of feature points will be realized also in dependence of the

effective resolution of each camera, favoring those cameras that are closer to the object

and equipped with the better optical systems and sensors.

The proposed quality indexes represent only some of the possible choices, but

guarantee satisfactory performance when used with the pre-selection method and

the windowing test presented above. Other examples of quality indexes have been

proposed in literature, and some of them can be easily added to the indexes adopted

in this work.
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6.3.2 Optimal cost function

The quality indexes shown above have to be evaluated for all the possible subsets

of q well-localizable feature points, which may be selected from the set Γo,k of all

the available well-localizable feature points provided by the n cameras at time k.

Therefore, consider the set of all these sets at time k:

Ξq,k = {Γq,k : Γq,k ⊆ Γo,k and dim(Γq,k) = q} .

The cost function, corresponding to a subset Γq,k, can be chosen as

QΓq,k
=

1

q
(Qh,kQt,kQr,k)Γq,k

n
∑

i=1

qi
(

Qi
s,kQ

i
a,kQ

i
p,k

)

Γi
qi,k

where the quality indexes Qh,k, Qt,k, and Qr,k are evaluated on the whole subset Γq,k,

while the quality indexes Qi
s,k, Q

i
a,k, and Qi

p,k are evaluated on the subsets Γiqi,k ⊆ Γq,k

corresponding to the qi feature points selected for the i-th camera from the set Γq,k, for

i = 1, . . . , n. The optimal subset Γoptq,k of well-localizable feature points will correspond

to the subset of Ξq with the minimum value of the cost function

Γoptq,k = arg min
Γq,k∈Ξq

QΓq,k
.

The cost function must be evaluated for all the possible combinations of the

visible points of the set on q positions at each sampling time. Then, supposing that

lk is the number of well localizable points of the set Γo,k, the number of subsets of

Ξq,k will be

dim (Ξq,k) =
lk!

q!(lk − q)!
.

The factorial dependence may become a problem for real-time applications when lk

is too high, and thus some suboptimal solution should be considered. In fact, in

some cases, the number of points resulting at the end of the pre-selection step may

be too high to perform the optimal selection in a reasonable time. In such cases, a
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computational cheaper solution, based on the optimal set Γoptq,k−1 at the previous time

step, can be adopted to find a current sub-optimal subset.

The idea proposed here is that of evaluating first off line the initial optimal

combination of feature points from the set Ξq,k. Then, only some suitable combi-

nations Ξsubq,k ⊆ Ξq,k are tested on line, thus achieving a considerable reduction of

processing time (a polynomial complexity instead of a factorial complexity). The

subset Ξsubq,k is the set of combinations that modify at most one point for camera with

respect to the current optimal combination

Ξsubq,k =

{

Γq,k : Γq,k =
n
⋃

i=1

ΓCi

qi,k
⊆ Γo,k and

n
∑

i=1

dim
(

ΓCi

qi,k

⋂

ΓCi

qi,k−1

)

≥ q − n

}

.

When the sampling time is sufficiently small, the sub-optimal solution will be very

close or coincident to the optimal one.

Notice that, due to the extraction fault cases and to the variations in the

visible set of feature points, the previous subset Ξsubq,k may not exist. In fact, for the

cited reasons it may happen that the feature points provided by a camera at times

k − 1 and k may differ in many points, thus making impossible the application of

the described simple strategy. In these cases, more complex solutions have to be

considered. The best may be that of dynamically relaxing the constraint on the

number of acceptable variations in the subset of feature points for these cameras, but

only when it is necessary and only for the minimum number of required changes.
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VISUAL TRACKING SYSTEM

In this chapter the proposed reconstruction technique for simultaneously visual track-

ing of more objects using information provided by a multi-camera system is presented.

It will be shown how to combine the BSP tree modelling structures, the redundancy

management algorithm, the local feature extraction process, and the (adaptive) Ex-

tended Kalman Filter to realize a robust and flexible visual tracking system. The

main features of the developed system are its intrinsic computational efficiency, the

capability to use information provided by a generic number of cameras at a constant

extraction cost, the capability to simultaneously reconstruct the poses of multiple

objects, and its robustness when working in unstructured environments.

7.1 Overview

The performance of a robotic system during the execution of tasks as grasping, as-

sembling, mating mechanical parts, etc., can be significantly enhanced if visual mea-

surements are available. In fact, visual information can be exploited for planning the

end-effector trajectory and, in some cases, can be directly used for visual feedback

control. Therefore, a typical problem in robotic vision is the real-time reconstruction

of the pose of moving objects of known geometry.



142 Chapter 7

Objects

Centralized
elaboration

unit

BUS

Reconstructed
poses

Robot
control unit

C1 C2 C1 C3C3 C2

Visual system

C2

C1 C3

“MOVE”

Figure 7.1. Visual tracking system. Typical visual servoing structure with a fixed
multi-camera system for robotic applications

In Fig. 7.1 a typical visual servoing structure with a multi-camera system for

robotic applications is presented. Depending on the specific application, the visual

system may be composed of one, two, or more cameras (fixed in the workspace or on

the robot end effector), and of a dedicated elaboration hardware. In the simplest case,

only one camera and a frame grabber may be employed to gather visual information

on the environment. In more complex cases, instead, a multi-camera system and a

dedicated hardware are employed to gather stereo (redundant) visual information and

to realize some pre-processing steps on the images, e.g. binarization or edge detection.

In all cases it is necessary to have a centralized elaboration unit to complete the

image processing, to realize the feature extraction process, and to implement the pose

reconstruct algorithm. Usually, a common PC equipped with a frame grabber may be

suitable to the purpose, while in more complex situations, in presence of strong real-

time constraints, dedicated image processing boards and a multi-processor centralized
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Figure 7.2. Visual tracking system. Overview of the entire visual tracking system

elaboration unit may become indispensable.

For robotic applications, once the pose reconstruction is available, it may be

possible to employ this information directly into the robot control unit (see Fig. 7.1)

to realize a real-time motion planning, a grasp task, an assembly/disassembly task,

and so forth. Moreover, if the observed workspace is an entire robotic cell, then the

visual system may be also used to coordinate cooperative tasks, or simply to avoid

collisions.

To present the developed multi-camera and multi-object visual tracking sys-

tem, an overview of the entire system will be summarized here, postponing to the next

sections the task of presenting in depth each functional module of the reconstruction

process, in the light of the material presented in the previous chapters. The block

scheme of the developed visual tracking system is shown in Fig. 7.2. It is composed

of five functional modules:
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1. the system data,

2. the BSP tree management system,

3. the redundancy management system,

4. the feature extraction algorithm,

5. the (adaptive) Extended Kalman Filter algorithm.

The system data holds the prior indispensable knowledge of the system, e.g. the B-

Reps archive and the camera calibration parameters. The BSP tree management

system is devoted to the construction and to the management in real time of the BSP

tree structures used by the pre-selection algorithm. The redundancy management

system is composed of two submodules: one to perform the pre-selection and win-

dowing, and one to perform the selection of the optimal subset of feature point. The

local feature extraction algorithm is the collection of the processes which make pos-

sible the extraction of the image features (corners) from the selected image windows.

Finally, a suitable algorithm implement the (adaptive) Extended Kalman Filter for

reconstructing the poses of the observed objects.

7.2 Functional modules

In the following all the visual tracking system components shown in Fig. 7.2 will be

analyzed in detail with reference to the arguments presented in the previous chapters.

From Fig. 7.2 it is possible to distinguish the functional blocks belonging to

each module. The prior knowledge is held in the two blocks on the top-left corner,

with the labels “B-Reps archive” (the single object models have the labels “Ok”, with

k = 1, . . . , s) and “Camera parameters” (the single camera data have the labels “Ci”,

with i = 1, . . . , n). The blocks belonging to the BSP tree management system are
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those with the labels “Static mode/BSP trees” and “Dynamic mode/BSP tree”. The

redundancy management system has been implemented with the two blocks with the

labels “Pre-selection & Windowing” and “Optimal selection”. The feature extraction

algorithms are executed by the block called “Feature extraction”. Finally, the Kalman

filter blocks are composed in a stack, at the bottom-right of the figure, with the labels

“(A)EKF (1,...,s)” and “Kalman filter equation construction”.

7.2.1 Prior knowledge

The necessary prior knowledge for the proposed visual tracking system regards two

main aspects: the object and the visual system.

All the objects are of known geometry, or their geometric CAD models are

known. This knowledge may be provided using the comfortable boundary represen-

tation structures (see Section 3.2.1), which may used to represent the main object

feature points, e.g. corners and holes. Typically, those models may simply be found

into the data sheets of the objects or via a direct measurement. That information

is used by the BSP tree management system to generate off line or on line, in de-

pendence of the selected operation mode (static mode for convex objects or dynamic

mode for concave objects), the current BSP trees. Moreover, the position of the ob-

ject features with respect to their object frames are used for the on-line construction

of the equations of the Kalman Filter, depending on the effectively extracted feature

points, see (5.8).

The camera calibration parameters are the information on the intrinsic, ex-

trinsic, and distortion camera parameters of each available camera. The intrinsic and

extrinsic calibration parameters are used to define the camera models as indicated

in Section 3.1, while the distortion camera parameters are used to compensate the

distortion effects due to imperfections of the optical system and of the camera as-
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sembling, as described by (3.17). Those parameters may be evaluated via a suitable

camera calibration algorithm, as shown in [43]. Both the pre-selection algorithm and

the Kalman filter make use of these parameters: the former one to estimate the pro-

jection of the object features on the image plane of each camera (see Section 6.2.1),

and the latter to compose the equations of the output model of the Kalman Filter,

see (5.9) and (5.15).

7.2.2 BSP tree management system

The BSP trees used during the pre-selection process may be automatically derived

from the corresponding B-Reps, as explained in Section 3.2.2. For the specific multi-

object based application, the BSP trees building task can be realized in two different

ways. Both the case of object without interposing parts (convex object set) and the

case of object with interposing parts (concave object set) can be treated19. In the

former case, the BSP tree structures may be managed in a static mode, while in

the latter case a more complex dynamic mode has to be employed. In Fig. 7.3 the

functional charts for both these modes are shown, representing the static mode on

the left and the dynamic mode on the right.

Static mode. In the case of a convex object set, a static operation mode may be

employed to perform the pre-selection process. In this modality a BSP tree is built

off-line, before starting the reconstruction process, for each observed object (see the

left-side of Fig. 7.3). These BSP trees are stored and not further modified during

the elaboration. Then, during the pose reconstruction process and for each camera,

these BSP trees are simply ordered in a sequence at each sampling time, according

to the estimated distance of the objects from the camera, from the farthest to the

19A set of objects is convex (concave) when, for any admissible relative poses of
the objects of the set, there exists (does not exist) a plane that divides any couple of
objects chosen from the set, without making intersections.
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nearest, using suitably techniques, e.g. z-buffering or ordering BSP tree structures

(see section 6.2.1). Finally, on this sequence the recursive visit algorithm of the pre-

selection process is realized (see Fig. 6.2) to locate all the object feature points which

will be visible from each camera.

Dynamic mode. In the case of a concave object set, a dynamic operation mode has

to be employed to perform the pre-selection process. In this modality only one BSP

tree is built directly on line, during the reconstruction process, to represent all the

objects of the set according to the current relative poses, as predicted by the Kalman

Filters (see the right-side of Fig. 7.3). This BSP tree simultaneously represents all the

objects of the considered set; therefore, for each camera, the recursive visit algorithm

of the pre-selection process may be directly applied to estimate the visible feature

points of all the objects.

The dynamic mode is the generalization of the static mode, but it requires the

on-line building of a complete BSP tree structure that simultaneously represents all
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the object, and thus a more powerful centralized elaboration unit may be required.

7.2.3 Redundancy management system

The redundancy management system includes two submodules. The first one per-

forms the pre-selection and the windowing test (see Section 6.2), while the second

one performs the optimal subset selection (see Section 6.3).

The pre-selection algorithm makes use of the prediction of the Kalman Fil-

ters of the future poses of the observed object, of the calibration parameters of the

cameras, and of the BSP tree(s) (with static or dynamic mode) to evaluate all the

visible feature points and their projections on the image plane for each camera (see

Section 6.2.1). Then, the windowing test is applied to discard all the non-localizable

feature points and to dynamic tune the parameters of the potential windows for the

image feature extraction process (see Section 6.2.2). The result of these processes, for

each camera, is the set of all the well-localizable feature points, their future projec-

tions on the image plane, and the corresponding parameters of the feature extraction

windows, which will become the input of the optimal feature selection algorithm and

of the feature extraction process.

The last step of the process is the selection of the optimal subset of well-

localizable feature points, as explained in Section 6.3. The result of this algorithm

is the set of the feature extraction windows, for each camera, corresponding to the

projection of the feature points of the chosen optimal subset. These windows will be

successively elaborated by the feature extraction algorithms to extract the searched

image features.

7.2.4 Feature extraction algorithms

The feature extraction algorithms used in the proposed visual tracking system have

to extract only one local image feature (a corner or a hole) from the input set of
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Figure 7.4. Visual tracking system. Example of redundancy management with win-
dowing and feature extraction, in the case of a visual system with three cameras
and eight selected feature points

image windows corresponding to the selected set of object feature points. Therefore,

the hard problem of the association between the extracted feature points and the

object feature points is resolved in an implicit way. In Fig. 7.4 an example of the

redundancy management and of the corresponding extraction process of the object

feature points, for a case of three cameras and eight selected points, is shown.

The algorithms used to extract the object feature points are those presented in

Sections 4.1.2 and 4.2.2. In particular, the Canny edge detector is used to evaluate the

edge into each extraction window, while a simplified curvature scale space corner de-

tector is used to extract the corner closer to the center of the each window. Moreover,

a statistical test is performed to verify the reliability of the extracted feature points

based on a suitable threshold, that is chosen on the base of the standard deviation

of the distances of the extracted feature points from the center of the corresponding

windows.

7.2.5 Kalman Filter

The (adaptive) Extended Kalman Filter is represented in Fig. 7.2 using two blocks in a

stack of s couples (a couple for each tracked object). With reference to a single object,
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a first block dynamically builds the equation of the Kalman Filter corresponding to

the effectively available measurements provided by the feature extraction algorithms,

as explained in Section 5.2.3. The second block, instead, realizes Kalman filtering

using the equations described in Sections 5.2 and 5.3.

The output of these blocks are the reconstructed poses of the tracked object

at the current sample time and the prediction of the future poses at the next sample

time. The latter are used by the BSP tree management system and by the pre-

selection algorithm to estimate the visible feature points at the next time.

7.3 Visual tracking process

In this section a summary of the functioning of the presented visual tracking system is

presented. For the take of clarity, the case of objects whose parts cannot be interposed

(convex object set) and the case of objects with interposing parts (concave object set)

are treated separately.

In the first case (see the left-side of Fig. 7.3), it is assumed that a BSP tree

representation of each object is built off line from the B-Reps models of the available

archive. A different Kalman Filter is required for each object to estimate the corre-

sponding pose with respect to the base frame at the next sample time. The procedure

for redundancy management may be summarized as follows:

• Step 1: For each camera, all the BSP trees corresponding to the tracked objects

are ordered, according to the estimated distance of the objects from the camera,

from the farthest to the nearest.

• Step 2: For each camera, the recursive visit algorithm is applied to each BSP

tree of the sequence to find the set of all the feature points that are visible

from the camera. In particular, for each BSP tree of the sequence, a current
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set of visible points is updated, by discarding the feature points of the previous

objects occluded by the current object and by adding the visible feature points

of the current object.

• Step 3: For each camera, a dynamic windowing algorithm is applied to discard

the feature points not well localizable and to dynamically evaluate the param-

eters of the image windows to be potentially input to the feature extraction

algorithm.

• Step 4: For each object, the resulting set of visible points is input to the

optimal selection algorithm for the selection of the subset Γopt of the optimal

feature points of the object for the n-camera system.

At this point, all the image windows of the optimal selected points are elaborated

using the feature extraction algorithms. The measured coordinates of the points in

the image plane, for each object, are input to the corresponding Kalman filter for

the dynamical composition of the equation of the output model of the filter, which

provides the estimate of the actual object pose and the predicted pose at the next

sample time used in Steps 1-2.

In the case of a concave object set, the above procedure may fail because the

objects cannot be correctly ordered with respect to the distance from the camera.

This problem can be overcome, at expense of computation time, by adopting the

solution represented in the functional chart of the right-side of Fig. 7.3. As before, a

Kalman filter is used for each object to estimate the corresponding pose with respect

to the base frame at the next sample time. Differently form the previous case, a

unique BSP tree representing all the objects in the current relative poses is built on

line, using the B-Reps models and the estimation provided by the Kalman Filters.

Hence, for each camera, the visit algorithm of the tree is applied once to find the set
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of all the visible points. Then, Steps 3 and 4 are applied.

Notice that the procedures described above can be applied also to the case of

objects moving among obstacles of known geometry; in the case of moving obstacles,

the corresponding motion variables can be estimated using Kalman Filters.
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EXPERIMENTAL RESULTS

The proposed visual tracking system has been experimentally tested on a robotic sys-

tem equipped with a stereo visual system. Two fixed cameras, a specialized hardware,

and a common personal computer compose the available visual system. Different ex-

perimental condition have been considered: the case of one moving object observed

by one camera, the case of one moving object observed by two cameras, and the case

of two moving objects observed by two cameras. Moreover, the proposed adaptive

implementation of the Extended Kalman Filter has also been tested and compared

to the non-adaptive implementation. Finally, a visual servoing system has been im-

plemented to realize the visual synchronization of the motion of the two robots: the

reconstructed motion of the master robot has been used to guide the motion of the

slave robot.

8.1 Visual tracking

In the following, the results of the experiments realized with the proposed visual

tracking system will be presented. First, the employed experimental setup will be

described in detail, and then the results of the different case studies will be presented

and discussed. In particular, the case of one and two fixed cameras observing one
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Figure 8.1. Experimental setup composed of two fixed SONY 8500ce cameras,
two MATROX GENESIS PCI boards, a host personal computer, two COMAU
SMART3-S robots, and a personal computer controlling the robotic cell

moving object are considered, as well as the case of two fixed cameras observing two

moving objects.

8.1.1 Experimental setup

The experimental setup composed of a personal computer with Pentium IV 1.7GHz

processor equipped with two MATROX GENESIS PCI boards, two SONY 8500ce

B/W cameras, and a COMAU SMART3-S robot (Fig. 8.1).

The MATROX boards are used only as frame grabbers and for simple partial

image processing (e.g., windows extraction from the image). In fact, the efficiency of

the proposed technique does not require the presence of specialized image elabora-

tion boards. The host personal computer, that corresponds to the visual centralized

elaboration unit, is used to realize the whole BSP tree structure management, the pre-

selection process, the windowing test, the optimal subset selection algorithm, and the
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Camera # 1

ro = 187.96

co = 318.20

fu = −1955.84

fv = 1953.41

oC1
= [ 1.2244 −1.7437 0.8540 ]T m

φC1
= [ −90.234◦ −1.880◦ 88.511◦ ]T

dC1 = [ 0.018 −0.019 −0.024 0.012 0.194 ]T

Camera # 2

ro = 263.76

co = 369.64

fu = −1966.35

fv = 1958.10

oC2
= [ 1.6149 −1.6565 0.8623 ]T m

φC2
= [ −92.188◦ −18.032◦ −89.111◦ ]T

dC2 = [ 0.009 0.0048 −0.0027 −0.0096 0.1393 ]T

Table 8.1. Camera calibration parameters resulting from the calibration procedure

(adaptive) Extended Kalman Filtering. Simple steps of image processing (e.g. win-

dows extraction) have been parallelized on the MATROX boards and on the personal

computer, so as to reduce computational time.

The COMAU robot is merely used to move an object in the visual space of the

camera system; thus the object pose with respect to the base frame of the robot can

be computed from joint position measurements via the direct kinematic equation.

In order to test the accuracy of the estimation provided by the Kalman Filter,

the SONY cameras have been calibrated with respect to the base frame of the robot

using a suitable calibration procedure [42], where the robot is exploited to place a

calibration pattern in some known pose of the visible space of the camera. The

calibration parameters for the two cameras are shown in Table 8.1. The cameras
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Figure 8.2. Real image seen by the first camera with the corresponding selected
windows, which have been used for the feature extraction. Close to the center of
each window, the measured position of the corresponding feature point is marked

resolution is 576 × 763 pixels and the nominal focal length of the lenses is 16 mm.

The vector φCi
contains the Roll, Pitch and Yaw angles of the i-th camera frame

with respect to the base frame corresponding to the matrix Rci, while the vector

dCi = [ gCi

1 gCi

2 gCi

3 gCi

4 dCi

1
]T contains the parameters used for compensating

the distortion effects due to the imperfections of the lens profile and the internal

mismatch of the optical system for the i-th camera, as described by (3.17). The

estimated value of the residual mean triangulation error for the stereo camera system

is 1.53 mm. The two cameras are disposed at a distance of about 150 cm from the

initial position of the observed object with an angle of about π/6 between the zc-axes.

No particular illumination equipment has been used, in order to test the robustness

of the setup in the case of noisy visual measurements. Notice that the sampling time

used for estimation is limited by the camera frame rate, which is about 26 fps.
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All the algorithms for BSP structure management, image processing and pose

estimation have been implemented in ANSI C. The image features are the corners

of the object, which can be extracted with high robustness in various environmental

conditions. The feature extraction algorithm is based on Canny’s method for edge

detection and on a custom implementation of the corner detector. In particular, to

locate the position of a single corner in the corresponding extraction window, all the

straight segments are searched first, using an LSQ interpolator algorithm; then all the

intersection points of these segments into the window are evaluated. The intersection

points closer than a given threshold are considered as a unique average corner, due

to the image noise. In the case of multiple corners detection, all the corners that

are at a distance from the center of the window (which corresponds to the position

of the corner as predicted by the Kalman filter) greater than the current admissible

maximum distance, are considered as fault measurements and are discarded. The

maximum distance corresponds to the product of standard deviation with a safety

factor of the distance between the measured corner positions and those predicted by

the Kalman Filter. In Fig. 8.2 an example of the selected set of extraction windows

during the redundancy management process and the results of the image processing

algorithms are shown.

The object used in the experiment is shown in Fig. 8.2, as seen from the first

camera during the motion, as well as in Fig. 8.1, where the whole experimental setup

is presented. The coordinates of the 40 vertices of the object, used as feature points,

are reported in Table 8.2.

In the following experiments, constant diagonal covariance matrices Q, Ru

and Rv have been chosen. The corresponding values of the statistical parameters
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# xo yo zo # xo yo zo

0 0.100 0.100 0.000 20 0.070 −0.039 0.092

1 0.100 −0.100 0.000 21 0.070 −0.070 0.092

2 −0.100 −0.100 0.000 22 0.029 −0.070 0.092

3 −0.100 0.100 0.000 23 0.029 −0.039 0.092

4 0.100 0.100 0.051 24 −0.029 −0.038 0.051

5 0.100 −0.100 0.051 25 −0.029 −0.069 0.051

6 −0.100 −0.100 0.051 26 −0.070 −0.070 0.051

7 −0.100 0.100 0.051 27 −0.070 −0.039 0.051

8 0.070 0.069 0.051 28 −0.029 −0.038 0.092

9 0.070 0.038 0.051 29 −0.029 −0.069 0.092

10 0.029 0.038 0.051 30 −0.070 −0.070 0.092

11 0.029 0.069 0.051 31 −0.070 −0.039 0.092

12 0.070 0.069 0.092 32 −0.028 0.069 0.051

13 0.070 0.038 0.092 33 −0.028 0.038 0.051

14 0.029 0.038 0.092 34 −0.069 0.039 0.051

15 0.029 0.069 0.092 35 −0.069 0.069 0.051

16 0.070 −0.039 0.051 36 −0.028 0.069 0.092

17 0.070 −0.070 0.051 37 −0.028 0.038 0.092

18 0.029 −0.070 0.051 38 −0.069 0.039 0.092

19 0.029 −0.039 0.051 39 −0.069 0.069 0.092

Table 8.2. Feature points coordinates with respect to the object frame, expressed in
meters, used to define the corresponding B-Reps of the object
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used for the Extended Kalman Filter are set as follow:

r̂1
u,0 = r̂1

v,0 = r̂2
u,0 = r̂2

v,0 = 0

σ̂1
u,0 = σ̂1

v,0 = σ̂2
u,0 = σ̂2

v,0 = 2

q̂0 = 0

Q̂
(1C)

0 = diag
{

0, 10−7, 0, 10−8, 0, 10−7, 0, 10−6, 0, 10−5, 0, 10−6
}

Q̂
(2C)

0 = diag
{

0, 10−7, 0, 10−7, 0, 10−7, 0, 10−5, 0, 10−5, 0, 10−5
}

,

where the physical dimensions are pixel for the mean of the observation noise, and

mm, mm/s, rad and rad/s for the components of the mean of the state noise. The

matrixes Q̂
(1C)

0 and Q̂
(2C)

0 have been used in the case of experiments with one and

two cameras, respectively. In fact, the absence of triangulation benefits in the single

camera system is also reflected on the different initial values chosen for the elements

of the matrix Q̂0. Finally, notice that all the elements of the covariance matrix Q̂0

corresponding to the position components of the state have been considered to be

zero.

8.1.2 One object and one camera

Two different experiments have been realized for this case study, that makes use of

one camera to observe one moving object. The first experiment reflects a favorable

situation where the object moves in the visible space of the camera and most of the

feature points that are visible at the initial time remain visible during all the motion.

The second experiment reflects an unfortunate situation where the set of the visible

points is very variable, and a little portion of the object goes out of the visible space

of the camera during the motion.

The time history of the trajectory used for the first experiment is represented

in Fig. 8.3. The maximum linear velocity is about 3 cm/s and the maximum angular

velocity is about 3 deg/s.
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Figure 8.3. First object trajectory with respect to the base frame. Left: position
trajectory; right: orientation trajectory

The time history of the estimation errors is shown in the left side of Fig. 8.4.

Noticeably, the accuracy of the system reaches the limit allowed by camera’s calibra-

tion, for almost all the components of the motion. In fact, the calibration errors cause

the presence of systematic reconstruction errors, which can be observed by looking at

the initial values of the estimation errors. In fact, initially the object is motionless,

and thus the corresponding reconstruction errors are due to the camera calibration

errors and to the accuracy of the object model. Moreover, as it was expected, the

errors for some motion components are larger than others because only 2D infor-

mation is available in a single camera system and because the reconstructed motion

components that are coincident with the object motion components are more affected

by estimation errors. In particular, the estimation accuracy is lower along the zc-axis

for the position. Since in the experiment the zc-axis is almost aligned and opposed

to the y axis of the base frame, the estimation errors are larger for the y component

of the position. Moreover, the estimation errors for the orientation component about

the xc-axes and the yc-axis, i.e. the roll and yaw components, should be larger, but

this phenomenon does not occur because the projection of the object shape is well
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Figure 8.4. Results in the case of one object and one camera with the first object
trajectory. Left: time history of the estimation errors (top: position errors, bottom:
orientation errors); right: visible points and selected points (for each point, the
bottom line indicates when it is visible, the top line indicates when it is selected
for feature extraction)

distributed on the image. Finally notice how, during the motion, the object velocity

affects the accuracy of the corresponding reconstructed components (e.g. for the x

motion component), because of the approximations made for the object motion model

used in the Kalman Filter.

On the right side of Fig. 8.4 the output of the whole selection algorithm is

reported. For each of the 40 feature points, two horizontal lines are considered: a

point of the bottom line indicates that the feature point was classified as visible by the

pre-selection algorithm at a particular sample time; a point of the top line indicates

that the visible feature point was chosen by the selection algorithm. Notice that 8

feature points are selected at each sample time, in order to guarantee at least five

or six measurements in the case of fault of the extraction algorithm for some of the

points. Also, some feature points are hidden during all the motion, while others are

only visible over some time intervals. Finally, no significant chattering phenomena

are present.



162 Chapter 8

0 20 40 60
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [sec]

[m
]

0 20 40 60
-20

0

20

40

60

80

100

time [sec]
[d

eg
]

x

y

z

roll

pitch

yaw

Figure 8.5. Second object trajectory with respect to the base frame. Left: position
trajectory.; right: orientation trajectory

The time history of the trajectory used for the second experiment is repre-

sented in Fig. 8.5. The maximum linear velocity is about 3 cm/s and the maximum

angular velocity is about 7 deg/s.

The time history of the estimation error is shown in Fig. 8.6. It can be observed

that the error remains low but is greater than the estimation error of the previous

experiment. This is due to the increased velocity of the object motion components

and to the fact that from t = 10 s to t = 60 s the object moves so that it is

partially out of the visible space of the camera. This fact penalizes the estimation

accuracy and explains how the magnitude of the estimation error components is

greater than in the previous experiment, especially for the orientation components

due to the increased rotation velocity of the object. The corresponding output of the

pre-selection and selection algorithms is reported in Fig. 8.6. It should be pointed

out that the pre-selection and selection algorithms are able to provide the optimal

set of points independently of the operating condition, although slight chattering

phenomena appear in some situation where the elements in the set of localizable

points is rapidly changing.
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Figure 8.6. Results in the case of one object and one camera with the second object
trajectory. Left: time history of the estimation errors (top: position errors, bottom:
orientation errors); right: visible points and selected points

8.1.3 One object and two cameras

The trajectory used for the experiment in the case of two cameras is the same repre-

sented in Fig. 8.3. The time history of the corresponding estimation errors is shown

on the left side of the Fig. 8.7. Noticeably, the accuracy of the system reaches the

limit allowed by cameras calibration, for all the components of the motion. As it was

expected, the errors for the motion components are of the same order of magnitude,

thanks to the use of a stereo camera system.

On the right side of the Fig. 8.7 the output of the whole selection algorithm, for

the two cameras, is reported. For each of the 40 feature points, two horizontal lines are

considered: a point of the bottom line indicates that the feature point was classified

as visible by the pre-selection algorithm at a particular sample time; a point of the

top line indicates that the visible feature point was chosen by the selection algorithm.

Notice that 8 feature points are selected at each sample time in order to guarantee

at least five or six measurements in the case of fault of the extraction algorithm for

some of the points. Remarkably, 4 feature points for camera are chosen at each sample
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Figure 8.7. Results in the case of one object and two cameras with the first object
trajectory. Left: time history of the estimation errors (top: position errors, bottom:
orientation errors); right: visible points and selected points for the first (top) and
the second (bottom) camera

time, in accordance with the symmetric disposition of the cameras with respect to

the object.

8.1.4 Two objects and two cameras

To evaluate the capability of the proposed visual tracking system in coping with multi-

object tracking, the object of Fig. 8.1 is moved with the trajectory of the previous

experiments, shown in Fig. 8.3, while a second object, that is shown in Fig. 4.2, is

placed in a fixed known pose to produce mutual occlusion during the motion. The
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Figure 8.8. Results in the case of two objects and two cameras. Time history of the
estimation errors for the motion components of the moving object. Left: position
errors; right: orientation errors

fixed object is placed in the pose

oO =

[

1.102 −0.504 0.794

]T

m

φO =

[

−85.7 59.2 48.7

]T

deg,

where it partially and temporarily occludes the moving object during the motion.

The time histories of the estimation errors, reported in Fig. 8.8 for the posi-

tion and the orientation components, show that the tracking accuracy of the system

remains satisfactory also in the presence of occlusions. The occurrence of occlusions

is evidenced in Fig. 8.9 where the output of the selection algorithm and the total

number of the visible, selected and localized points, for the two cameras, are shown.

Notice that the selected feature points are not always equally distributed among the

two cameras because, when occlusions occurs, the disposition and the number of the

points available for each camera is not always symmetric. Moreover, the light chang-

ing condition of the environment causes the faulty of a significant number of feature

extractions, due to the image noise, but the system shows a good robustness with

respect to both the expected and the unexpected loss of feature points.
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Figure 8.9. Results in the case of two objects and two cameras with the first ob-
ject trajectory, for the first (top) and the second (bottom) camera. Left: visible
points and selected points.; right: the number of visible, localizable and effectively
extracted feature points

8.2 Adaptive visual tracking

In this section, the results obtained with the AEKF are compared to the results

obtained with a simple EKF, for the case of a single camera system with only one

moving object.

In the experiments, a diagonal covariance matrix Q has been chosen, both in

the non-adaptive and in the adaptive case. Since a single camera has been used, it is

expected that the errors for some components should be larger than others, because
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Figure 8.10. Object trajectory with respect to the base frame used for the experi-
ments with the adaptive extended Kalman filter. Left: position trajectory; right:
orientation trajectory

only 2D information is available. In particular, the estimation accuracy should be

lower along the zc-axis for the position, and about the xc-axis and the yc-axis for the

orientation. This asymmetry is also reflected on the different initial values chosen for

the elements of the matrix Q̂0. The values of the statistical parameters used for the

EKF in the previous experiments are set as initial values for the AEKF. Moreover,

the values Nq = 15 and Nr = 15 have been chosen.

The time history of the object trajectory used for the experiments is repre-

sented in Fig. 8.10. The maximum linear velocity and angular velocity for all motion

components for this trajectory are about 3.5 cm/s and 6.5 deg/s, respectively.

To prevent some typical implementation problems of Kalman Filters, some of

the modifications used in [31] have been adopted.

8.2.1 One object and one camera

The time history of the estimation errors for the case of EKF and for the case of AEKF

are shown in Fig. 8.11, while the root-mean-square (RMS) and the standard deviation
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Figure 8.11. Time history of the estimation errors with EKF (left) and AEKF (right)

EKF AEKF Improvement

Component RMS σ RMS σ RMS σ

ex 9.34 9.30 6.92 6.79 25.91% 26.99%

ey 19.36 8.30 20.05 6.59 −3.57% 20.60%

ez 5.30 5.01 4.15 3.63 21.69% 27.54%

eϕ 1.81 1.81 1.49 1.46 17.66% 19.34%

eϑ 1.14 1.03 1.01 0.84 10.99% 18.45%

eψ 1.22 1.18 1.05 0.98 14.08% 16.95%

Table 8.3. Comparison of the estimation errors for EKF and AEKF

(σ) of the error components in the two cases are reported in Table 8.3 (the dimensions

are mm and deg both for the mean square and for the standard deviation). The results

confirm that the adaptive algorithm produces a sensible reduction of the estimation

errors. Remarkably, the maximum improvement occurs for those components of the

estimation error presenting the highest and the most variable velocity.

The time histories of some of the statistical parameters which are updated on

line in the AEKF are also reported in Fig. 8.12. In particular, the time histories of

the elements of the (diagonal) covariance matrix of the state noise are shown on the
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Figure 8.12. Time history of the elements of the state noise covariance matrix (top-
left: position; top-middle: orientation; bottom-left: linear velocity; bottom-middle:
rotational velocity components) and of the observation noise variance (right)

bottom-left, while the time histories of the variances of the observation noise for the

u and v components are shown on the bottom-right. It can be observed that all the

updated parameters keep limited values.

8.3 Visual servoing

The proposed visual tracking system has been also employed to realize a visual servo-

ing experiment. The chosen visual task is to realize a synchronized motion between

the two COMAU robots, using only the visual information provided by the proposed

visual tracking system. In the following, the adopted setup and the corresponding

results will be described in detail.

8.3.1 Experimental setup

The setup employed to realize the experiment of visual synchronization between the

two COMAU robots is shown in Fig. 8.13. A known object is mounted on the “master”

robot, which is guided with a known trajectory during the experiment. As for of the
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Figure 8.13. Setup employed for the visual servoing experiment

previous experiments, the visual system has used to reconstruct in real time the object

pose, i.e. the robot pose.

The main differences with respect to the setup used for the previous visual

tracking experiments is the use of a personal computer, that is equipped with a

modified version of the LINUX REAL TIME OS, which has been interfaced both

with the central elaboration unit of the visual system and with the control unit of

the “slave” robot. The reconstructed pose of the master robot is provided by the

visual system to the robot control PC, which employs this information to planning

the motion of the slave robot in a such way as to realize a synchronized motion

between the two robots.

The communication between the control PC and the visual system has been

realized using a RS232 serial interface. The control unit of the slave robot employed

for the experiment is a COMAU C3G 9000 control unit, which has been modified
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Figure 8.14. Visual servoing experiment. Left: position object trajectory with respect
to the base frame; middle: orientation object trajectory with respect to the base
frame; top-right: position estimation errors for the reconstructed components of
the object pose; bottom-right: orientation estimation errors for the reconstructed
components of the object pose

into an “open version” to allow the control of the robot by an external device. The

control PC and the C3G 9000 are equipped with two BIT3 boards to make possible

the connection between the VME BUS of the C3G 9000 and the AT BUS of the PC.

To increase the observed workspace, the two cameras have been oriented to

observe contiguous but different areas. Each camera configuration is managed in a

complete automatic manner by the redundancy management process. In particular,

the left camera observes the whole object at the start of the experiment, while the

right camera does not.

8.3.2 Visual synchronization

The time history of the trajectory of the master robot is represented on the left side

of Fig. 8.14. The main motion is realized along the x-axis of the base frame and, in

particular, during this motion the object mounted on the master robot goes partially

out of the observed space of the first camera and becomes observable by the second

camera.
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Figure 8.15. Results for the visual servoing experiment, for the first (top) and the
second (bottom) camera. Left: visible points and selected points; right: the number
of visible, localizable and effectively extracted feature points

The time history of the pose estimation errors are shown on the right side of

Fig. 8.14, both for the position and the orientation components, while in Fig. 8.15 the

output of the redundancy management process and the total number of the visible,

selected and localized points, for the two cameras, are shown. From Fig. 8.15 it is

clear that at the start of the motion the right camera does not observe the object.

Only from t = 10 sec to t = 70 sec some parts of the object become observable by

the right camera.

It is significant to notice the strong reduction of the pose reconstruction errors
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Figure 8.16. Image sequence of the master and slave robots during the experiment of
visual synchronization

from t = 30 sec to t = 60 sec, when the object becomes completely visible by both

cameras. In this condition, the benefits of triangulation become important for the

reconstruction process.

Another important consideration regards the distribution between the two

cameras of the eight points selected for the feature extraction process. As can be

observed from Fig. 8.15, the proposed system is able to automatically manage every

camera configuration. In fact, the system is able to correctly choose and distribute

the feature points between the cameras, thanks to its capacity of estimating the

position of each observable feature point on the image plane of each camera. Notice

that the selected feature points are not always equally distributed among the two

cameras because, according to object visibility, the disposition and the number of
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Figure 8.17. Image sequences captured by the two cameras during the experiment of
visual synchronization. The rectangles on the images indicate the current image
windows, which have been selected during the redundancy management process,
while into each window the current extracted corner is marked

the points available for each camera is not always symmetric. Finally, the changing

light condition of the environment causes the faulty of a significant number of feature

extractions, due to image noise, but the system shows good robustness with respect

to both the expected and the unexpected loss of feature points.

In Figs. 8.16 and 8.17 some image shots of the experiment of synchronization

are shown. In Fig. 8.16 the two robots during the motion are illustrated, with the

master robot on the right side of the image and the slave robot on the left side of the
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image. Notice also the orientation and the distances of the cameras with respect to

the object trajectory. In Fig. 8.17, instead, the corresponding image shots captured by

the two cameras are displayed. In each image, the current image windows selected for

the feature extraction process are reported. Moreover, the corresponding extracted

corner for each window has been marked.





CHAPTER 9

CONCLUSIONS

The main results and the open problems of the techniques proposed in this thesis are

the subject of this chapter. Moreover, a window on some possible future extensions

of the approach is presented.

9.1 Main results

The problem of real-time reconstruction of the pose of 3D objects has been considered

in this work. The main research result consists of a new visual tracking algorithm for

simultaneous dynamic estimation of the absolute pose of a single or multiple objects

of known geometry, moving in an unstructured environment, using images provided

by a multi-camera system.

It represents a very flexible solution to the realization of a generical visual

servoing system. In fact, thanks to its structure based on processing of a limited

image area (a set of small image windows selected around an optimal subset of the

well-localizable object corners), the algorithm may use a generic number of cameras,

in any configuration, without additional computational cost. In fact the processed

image area remains limited with respect to the number of employed cameras since it

depends only on the desired number of feature points chosen for the feature extraction
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process.

This result has been reached thanks to the use of an efficient and innovative

redundancy management system of the available image measurements. This system

has been realized combining two different modules: the first module realizes a pre-

selection which is capable of selecting all the well-localizable image features; the

second module realizes a selection of the optimal subset of image features which

ensures the best pose reconstruction accuracy.

The proposed technique is able to simultaneously track the pose of many

known objects. In fact, thanks to its modularity, simultaneous visual tracking of

multiple objects may be realized replicating only the modules devoting to the pose

reconstruction, while sharing the modules devoting to the image feature management

and extraction. The core of the pose reconstruction process has been based on a

suitable dynamic formulation of the Kalman Filter, able to estimate the pose of the

observed moving object. Moreover, the filter provides a prediction of the object pose

at the next sampling time, which is keenly used by the algorithm for feature selection

to increase the accuracy and computational efficiency of the visual tracking system.

In view of its characteristics, this approach may be used both for an eye(s)-in-

hand and for an eye(s)-out-hand configuration. In fact, cameras may be positioned in

any configuration and the module of image feature management is capable to configure

itself in an automatic way. In addition, considering its high computational efficiency,

it may be used both in a direct-visual-control scheme and in a dynamic-look-and-move

scheme. Finally, it should be pointed out that it is a position-based and calibration-

dependent technique, because the estimated 3D absolute pose is model-based, thus

requiring the CAD model of the target objects.

The required object knowledge is provided to the system through a simple
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and intuitive B-Reps description of the object surfaces. This CAD model is further

elaborated by specific modules to achieve a very efficient data representation based

on a BSP tree data structure. This structure is the base to the efficient algorithm

for managing the image features which supports the feature extraction process. For

each camera, this algorithm is able to recognize and select an optimal and minimal

set of local image features to be extracted and used by the pose estimation algorithm.

On the other hand, the required camera system knowledge is based on an advanced

non-linear model, deriving from a standard pin-hole camera model, which considers

some of the most important image distortion effects.

The proposed visual tracking system has been experimentally validated on a

robotic system equipped with a stereo visual system. Different experimental condi-

tions have been successfully tested: the case of one moving object observed by one

camera, the case of one moving object observed by two cameras, and the case of

two moving objects observed by two cameras. Moreover, an adaptive implementation

of the Extended Kalman Filter has been developed, which has also been successfully

tested in a comparison with the non-adaptive implementation. Finally, a visual servo-

ing system has been implemented to realize the visual synchronization of the motion

of two robots.

9.2 Open problems

Some aspects of the presented visual tracking technique might be further extended or

improved. In particular, the addition of different kinds of image features, which are

more robust with respect to the extraction process (e.g. portion of contours and holes),

may improve tracking robustness. Such addition does not require any particular mod-

ification of the proposed technique as long as the area to elaborate for extraction of

these new features is limited, even though under some conditions (e.g. the possibility



180 Chapter 9

of extracting the feature using an image window with a limited extension).

Moreover, the dynamic model of the object motion has been approximated to

a first-order model (object velocity is considered constant over each sampling time);

therefore the adoption of a more sophisticated model may improve the accuracy of

the reconstruction process. Such modification would impact only on the Kalman

Filter module, and thus it would not require structural modifications of the proposed

approach.

Finally, some implementation aspects may be improved with the adoption

of more efficient solutions. For example, the corner extraction algorithm may be

replaced with an implementation of the SUSAN algorithm which does not require the

edge detection process. However, the effectiveness of all these modifications should be

experimentally tested to understand whether or not they represent real improvements.

9.3 Future work

Some aspects of the proposed visual tracking system may be further investigated for

future work and research. In particular, the use of the CMOS technology for the

construction of camera sensors has opened a new and interesting field of research into

the direction of high-rate visual tracking systems. In fact, this kind of technology

allows a random access to the two-dimensional pixel array of the sensor in the same

way as that of a RAM memory. Therefore, with such kind of sensor it is not necessary

to transfer all the images to the frame grabber, but it is possible to transfer only the

desired portions of the current image, thus increasing camera rate. The proposed

approach is particulary suitable to exploit this characteristics in view of its need to

elaborate only a limited portion of the image.

The comparison of the proposed approach with an approach based on the
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image Jacobian is an important issue to look at. The results of such comparison may

provide important information to directly measure the effectiveness of the proposed

approach.

Moreover, the employment of this technique into a visual-force control loop is

a fascinating research field, which may provide significant results for application tasks

where it interaction with an unknown and unstructured environment is of concern.

Finally, the setup of a hybrid camera configuration with one or more cameras

mounted on the robot end-effector and one or more cameras fixed in the workspace

represents an important extension of the proposed visual tracking system. Such

camera configuration can be managed in an automatic way by the proposed system,

providing a significant enhancement of robot task flexibility.
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BSP TREES

Partitioning a polygon with a plane
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Partitioning a polygon with a plane is a matter of determining which side of the plane

the polygon belongs to. This is referred to as a front/back test, and is performed by

testing each point in the polygon against the plane. If all of the points lie on one side

of the plane, then the entire polygon is on that side and does not need to be split. If

some points lie on both sides of the plane, then the polygon is split into two or more

pieces (Fig. A.1).

The basic algorithm is to loop across all the edges of the polygon and find

those for which one vertex (feature point) is on each side of the partition plane. The

intersection points of these edges and the plane are computed, and those points are

used as new vertices for the resulting pieces.

Classifying a point with respect to a plane is done by plugging the (x, y, z)

values of the point into the plane equation, ax + by + cz + d = 0. The result of this

operation is the distance from the plane to the point along the normal vector to the

plane. It will be positive if the point is on the same side of as that of the normal

vector, negative otherwise. If the result is 0, the point is on the plane.

For those not familiar with the plane equation, the values a, b, and c are the

coordinate values of the normal vector. The value d can be calculated by substituting

a point known to be on the plane for x, y, and z.

Convex polygons are generally easier to deal with in BSP Trees construction

than concave ones, because splitting them with a plane always results in exactly two

convex pieces. Furthermore, the algorithm for splitting convex polygons is straight-

forward and robust. Splitting of concave polygons, especially self-intersecting ones,

is a significant problem in its own right.

Here is an example of pseudo C++ code of a very basic function to split a

convex polygon with a plane:



BSP Trees: partitioning a polygon with a plane 185

Partition plane

p:ax+by+cz+d
Back side

Intersection
points

Feature
points

Front side
Polygon

Figure A.1. BSP Trees. Partitioning a polygon with a plane

void Split_Polygon (polygon *poly, plane *part, polygon *&front,

polygon *&back) {

int count = poly->NumVertices (),

out_c = 0, in_c = 0;

point ptA, ptB,

outpts[MAXPTS],

inpts[MAXPTS];

real sideA, sideB;

ptA = poly->Vertex (count - 1);

sideA = part->Classify_Point (ptA);

for (short i = -1; ++i < count;) {

ptB = poly->Vertex (i);

sideB = part->Classify_Point (ptB);

if (sideB > 0) {

if (sideA < 0) {

// compute the intersection point of the line
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// from point A to point B with the partition

// plane. This is a simple ray-plane intersection.

vector v = ptB - ptA;

real sect = - part->Classify_Point (ptA) /

(part->Normal () | v);

outpts[out_c++] = inpts[in_c++] = ptA + (v * sect);

}

outpts[out_c++] = ptB;

}

else if (sideB < 0) {

if (sideA > 0) {

// compute the intersection point of the line

// from point A to point B with the partition

// plane. This is a simple ray-plane intersection.

vector v = ptB - ptA;

real sect = - part->Classify_Point (ptA) /

(part->Normal () | v);

outpts[out_c++] = inpts[in_c++] = ptA + (v * sect);

}

inpts[in_c++] = ptB;

}

else

outpts[out_c++] = inpts[in_c++] = ptB;

ptA = ptB;

sideA = sideB;

}

front = new polygon (outpts, out_c);
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back = new polygon (inpts, in_c);

}

}

A simple extension to this code that is good for BSP Trees is to combine its

functionality with the routine to classify a polygon with respect to a plane. Note that

this code is not robust, since numerical stability may cause errors in the classification

of a point. The standard solution is to make the plane “thick” by use of an epsilon

value.
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Jacobian matrix
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The computation of the (m× 12) Jacobian matrices Hu,k and Hv,k in (5.20) gives

Hu,k =

[

∂gu
∂xO

0
∂gu
∂yO

0
∂gu
∂zO

0
∂gu
∂ϕO

0
∂gu
∂ϑO

0
∂gu
∂ψO

0

]

k

Hv,k =

[

∂gv
∂xO

0
∂gv
∂yO

0
∂gv
∂zO

0
∂gv
∂ϕO

0
∂gv
∂ϑO

0
∂gv
∂ψO

0

]

k

where 0 is a null (m× 1) vector corresponding to the partial derivatives of gu and gv

with respect to the velocity variables, which are null because functions gu and gv do

not depend on the velocity.

Taking into account the expressions of gu and gv in (5.15) and (5.16), the

non-null elements of the Jacobian matrices Hu,k and Hv,k have the form:

∂

∂λ

(

xCij
zCij

)

=

(

∂ xCij
∂λ

zCij − xCij
∂ zCij
∂λ

)

(zCij )−2 (B.1a)

∂

∂λ

(

yCij
zCij

)

=

(

∂ yCij
∂λ

zCij − yCij
∂ zCij
∂λ

)

(zCij )−2, (B.1b)

respectively, where λ = xO, yO, zO, ϕO, ϑO, ψO, and j = 1, . . . ,m and i = 1, . . . , n.

The partial derivatives on the right-hand side of (B.1a) and (B.1b) can be

computed as follows.

In view of (5.8), the partial derivatives with respect to the components of the

vector

oO =



















xO

yO

zO



















are the elements of the Jacobian matrix

∂pCij
∂oO

= RCi.
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In order to express in compact form the partial derivatives with respect to the

components of the vector

φO =



















ϕO

ϑO

ψO



















,

it is useful to consider the following equalities

dRO(φO) = S(dωO)RO(φO) = RO(φO)S(RT
O(φO)dωO) (B.2a)

dωO = TO(φO)dφO (B.2b)

where S(·) is the skew-symmetric matrix operator, ωO is the angular velocity of the

object frame with respect to the base frame, and the matrices RO and TO, in the

case of Roll, Pitch and Yaw angles, have the form

RO(φO) =



















cϕO
cϑO

cϕO
sϑO
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− sϕO
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cϕO
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sϑO
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+ cϕO
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






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


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TO(φO) =


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,

where cα = cosα and sα = sin(α), with α = ϕO, ϑO, ψO. By virtue of (B.2a), (B.2b),

and the properties of the skew-symmetric matrix operator, the following chain of

equalities holds

d(RO(φO)pOj ) = d(RO(φO))pOj = RO(φO)S(RT
O(φO)TO(φO)dφO)pOj

= RO(φO)ST (pOj )RT
O(φO)TO(φO)dφO
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= ST (RO(φO)pOj )TO(φO)dφO,

hence

∂RO(φO)

∂φO

pOj = ST (RO(φO)pOj )TO(φO). (B.3)

At this point, by virtue of (5.8) and (B.3), the following equality holds

∂pCij
∂φO

= RCi∂RO(φO)

∂φO

pOj = RCiST (RO(φO)pOj )TO(φO),

for j = 1, . . . ,m and i = 1, . . . , n.
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