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ABSTRACT
Quantum walks are processes that model dynamics in coherent systems. Their experimental implementations proved to be key to unveiling
novel phenomena in Floquet topological insulators. Here, we realize a photonic quantum walk in the presence of a synthetic gauge field, which
mimics the action of an electric field on a charged particle. By tuning the energy gaps between the two quasi-energy bands, we investigate
intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau–Zener transitions. When both gaps at
quasi-energy values of 0 and π are vanishingly small, the Floquet dynamics follows a ballistic spreading.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0037327., s

I. INTRODUCTION

Quantum walks (QWs) are periodically driven processes
describing the evolution of quantum particles (walkers) on a lat-
tice or a graph.1,2 The walker evolution is determined by the unitary
translation operators that, at each time step, couple the particle to
its neighboring sites in a way that is conditioned by the state of an
internal degree of freedom, referred to as “the coin.” An additional
unitary operator acts on the internal degrees of freedom, therefore
mimics the “coin tossing” of the classical random walk, and is usu-
ally referred to as coin rotation.1 Besides the original interest in QWs
for quantum computation,3–7 these processes have proved to be
powerful tools to investigate topological systems,8–22 disordered sys-
tems and Anderson localization,23–26 and multiparticle interactions
and correlations.27–29 QWs have been implemented in many differ-
ent physical platforms: atoms in optical lattices, 30,31 trapped ions,32

Bose–Einstein condensates,33 superconducting qubits in microwave
cavities,14 and photonic setups.10,19,27,29,34–36 They exhibit peculiar
properties when an external force acts on the walker, mimicking
the effect of an electric field on a charged particle. These processes,
baptized as “Electric Quantum Walks” in Ref. 31, have been studied
theoretically in previous works37,38 and implemented using neutral
atoms in optical lattices,31 photons,39 and transmon qubits in opti-
cal cavities.14 Recently, these concepts have been generalized to 2D
QWs.19,40 In this scenario, the walker dynamics can be remarkably
different with respect to a standard QW evolution. While in the
absence of a force the walker wavefunction spreads ballistically, by
applying a constant force it is possible to observe revivals of the ini-
tial distribution at specific time steps.31 Electric QWs are thus an
ideal platform to investigate spatial localization induced by “irra-
tional forces,”31,38,41 revivals of probability distributions41–45 and can
be used to detect topological invariants.14,19,46–49
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Similar to a quantum particle in a periodic potential, in the
presence of a constant force, the walker trajectory performs Bloch
oscillations (BO) as a consequence of the particle momentum being
a periodic quantity.50–52 In quantum walks, BOs manifest directly
when the input wavepacket approximates one of the system eigen-
states, as first observed in Ref. 53. However, for generic initial condi-
tions, collective BOs of the excited eigenstates may lead to a revival of
the whole probability distribution at periodic intervals of time.39,40,48

Revivals can be observed only in the case of forces that are much
smaller than the relevant energy gap. These effects can be indeed
destroyed by Landau–Zener transitions, occurring when a fraction
of the wavepacket is transferred to a band different from the initial
one.48,54

In the continuous time regime, it is well known that the inter-
play between Landau–Zener transitions and Bloch oscillations man-
ifests itself in processes with two characteristic periods52 that, under
specific circumstances, may lead to breathing phenomena even when
interband transitions are not negligible. In our work, we make use of
a novel platform, which exploits the space of transverse momentum
of a paraxial light beam,19 to generate electric QWs, with the possi-
bility of tuning both the force strength and the energy gap size. With
this setup, we observe revivals due to either Bloch oscillations or
multiple Landau–Zener transitions. Finally, we discuss how the Flo-
quet nature of these systems affects the walker dynamics. In particu-
lar, when the two energy gaps in the spectrum are sufficiently small,
the number of LZ transitions is doubled within a single period. This,
in turn, causes the appearance of multiple trajectories, arranged in
peculiar regular patterns.

This paper is structured as follows: In Sec. II, we describe our
photonic quantum walk, defining the quantum evolutions that we
investigated both numerically and experimentally. In Sec. III, we
discuss the implementation of a synthetic electric field. In Sec. IV,
we illustrate theoretical aspects of BOs, revivals, and LZ transitions
in our quantum walk, accompanied by numerical simulations. In
Sec. V, we show that this QW can be engineered so as to feature two
LZ transitions within a single period, exploiting the spectrum peri-
odicity that is unique to Floquet systems. In Sec. VI, we report the
experimental observation of refocusing effects and their interplay
with LZ transitions. In Sec. VII, we draw our conclusions.

II. QUANTUM WALK IN THE MOMENTUM SPACE
OF LIGHT

To simulate a QW on a one-dimensional lattice, we encode
the walker into the transverse momentum of a paraxial light beam.
In particular, the walker position, which is identified by an integer
coordinate m, is associated with the photonic spatial mode ∣m⟩ given
by

∣m⟩ = A(x, y, z)ei[(Δkm)x+kzz], (1)
where kz is the wavevector component along the z direction, Δk is
a constant such that Δk ≪ kz , and A is a Gaussian spatial envelope
with a beam waist w0. Modes described in Eq. (1) are standard Gaus-
sian beams, propagating along a direction that is slightly tilted with
respect to the z-axis.

At each time step, the evolution is performed by the succes-
sive application of a rotation W of the coin degree of freedom and a
translation T that shifts the walker to the left or to the right depend-
ing on the coin state being ∣L⟩ or ∣R⟩. In our setup, both operators are
implemented by liquid-crystal (LC) birefringent waveplates. Along
these plates, the LC molecular orientation angle α is suitably pat-
terned, 55 as shown in Fig. 1(a). Here, the operator T is obtained
when the local orientation α of the optic axis increases linearly along
x,

α(x, y) = πx/Λ + α0, (2)
where Λ is the spatial periodicity of the angular pattern and α0 is a
constant, thereby forming a regular pattern reminiscent of a diffrac-
tion grating. This device has been originally named g-plate.19 In the
basis of circular polarizations ∣L⟩ = (1, 0)T and ∣R⟩ = (0, 1)T , the
associated operator can be written as

T ≡ ( cos(δ/2) i sin(δ/2)e−2iα0 t̂
i sin(δ/2)e2iα0 t̂† cos(δ/2)

), (3)

where t̂ and t̂† are the (spin-independent) left and right transla-
tion operators along x, acting as t̂∣m,ϕ⟩ = ∣m − 1,ϕ⟩ and t̂†∣m,ϕ⟩
= ∣m + 1,ϕ⟩, respectively, on the spatial modes in Eq. (1). Here, ∣ϕ⟩
is a generic polarization state and δ is the LC optical retardation,
which can be tuned by adjusting the amplitude of an alternating

FIG. 1. Scheme of the experimental setup. (a) Schematic illustration of a g-plate. The ellipsoids show the local orientation of the liquid crystal molecules; the background
pattern corresponds to the intensity of white light transmitted by crossed polarizers when a g-plate is placed between them. (b) Sketch of the experimental apparatus. A
He–Ne laser beam is expanded by using two lenses (L1 and L2). The input polarization is adjusted by using a polarizer (P), a half-waveplate (H), and a quarter-waveplate
(W). The QW is performed by alternating g-plates (T) and quarter waveplates (W). An optical 2D Fourier transform is performed on the final state by a converging lens.
In its focal plane, the light intensity distribution is recorded by a camera. An additional stage (W–H–P) can be inserted before lens L3 to analyze a single polarization/coin
component.
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voltage applied to the cell.56 The coin rotation is realized by uniform
LC plates (α = 0), represented by the operator

L(δ) = ( cos(δ/2) i sin(δ/2)
i sin(δ/2) cos(δ/2) ). (4)

Typically, we set δ = π/2 so as to obtain a standard quarter-
waveplate, W = L(π/2). The quantum walk is realized by applying
repeatedly the single step unitary process

U0(δ,α0) = T(δ,α0) ⋅W, (5)

and the state after t steps is given by ∣ψ(t)⟩ = U t
0∣ψ(0)⟩.

Relying on this approach, we realize our QW in the setup
sketched in Fig. 1(b). A coherent light beam (produced by a He:Ne
laser source, with wavelength λ = 633 nm), whose spatial envelope
is that of a Gaussian mode, is initially expanded to reach a waist
w0 ≃ 5 mm. After preparing the desired beam polarization with a
polarizer (P), a half-waveplate (H), and a quarter-waveplate (W),
we perform the quantum walk by letting the beam pass through
a sequence of g-plates (T) and quarter-waveplates. In the present
experiment, we realized walks containing 14 unit steps. The opti-
cal retardation of the g-plates is controlled by tuning an alternating
voltage, and their spatial period is Λ = w0 = 5 mm. As explained in
detail in Ref. 19, with this choice of parameters, we simulate the evo-
lution of an initial state that is localized in the transverse wavevector
space, corresponding to the spatial mode ∣m⟩ = 0. All the devices
that implement the QW are liquid crystal plates, fabricated in our

laboratories and mounted in a compact setup. The final probabil-
ity distribution is extracted from the intensity distribution in the
focal plane of a converging lens located at the end of the QW.19

This distribution consists of an array of Gaussian spots, centered
on the lattice sites, whose relative power (normalized with respect
to the total power) gives the corresponding walker probabilities. An
additional set of waveplates and a polarizer can be placed before the
lens to analyze specific polarization components. We use these pro-
jections to prove that, when a substantial revival of the probability
distribution is observed, the coin part of the final state corresponds
to the initial one.

III. REALIZING AN ELECTRIC QW
The discrete translational symmetry in the walker space implies

that the unitary single step operator U0 can be block-diagonalized in
the quasi-momentum basis, 8

U0 = ∫

π

−π

dq
2π

U0(q)⊗ ∣q⟩⟨q∣, (6)

where ∣q⟩ = ∑m eiqm∣m⟩, with q varying in the first Brillouin zone
BZ = [−π, π). In the case of a 2D coin space, the operator U0(q) is a
2 × 2 unitary matrix, which may be written as

U0(q) = exp[−iE(q)n(q) ⋅ σ], (7)

where n(q) is a unit vector, σ = (σ1, σ2, σ3) is the vector com-
posed of the three Pauli matrices, and ±E(q) are the quasienergies
of the two bands of the system8 [see Fig. 2(a)]. With the QW being

FIG. 2. Numerical simulations of electric quantum walks. (a) Quasi-energy dispersion E(q) for various optical retardations: δ = π/2 (red), δ = π (green), and δ = 3π/2 (blue).
[(b)–(d)] We simulate the evolution of broad wavepackets prepared in the upper band with a width w = 10 under an external force F = π/50. In panel (b), we plot the probability
that the evolved state is located on the upper band. Panels (c) and (d) show the spatial probability distributions relative to the two bands [P+(m) and P−(m)] as a function of
the time step. (e) Evolutions of initially localized states generated during the QW dynamics under a force F = π/50 for three different values of δ. Localized inputs give rise to
trajectories with multiple revivals. The initial state of these simulations is ∣H⟩∣m = 0⟩ = (∣R⟩ + ∣L⟩)∣0⟩/

√

2.
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a Floquet evolution, this spectrum exhibits two gaps at quasi-
energies values of 0 and π. For practical reasons, we define the
quantity Eg as the minimum value between the two gap sizes (when
varying the quasi-momentum in the BZ). In the following, we will
denote the eigenstates of the quantum walk evolution in the absence
of an external force as ∣u±(q)⟩⊗ ∣q⟩, where ∣u±(q)⟩ is the coin part.
In this work, we implement QWs corresponding to two different
regimes: δ = π and δ = π/2. In the first case, Eg is at its maximum
value, providing the optimal configuration for the observation of
clean Bloch oscillations. In the second case, the gap at E = 0 van-
ishes [see Fig. 2(a)]. In this case, a LZ transition occurs with unit
probability.

As discussed in previous works,19,31 applying an external con-
stant force F is equivalent to shifting linearly in time the quasi-
momentum: q(t) = q(0) + Ft. Hence, the single step operator at the
time step t, labeled U(q, t), satisfies the following equation:

U(q, t) = U0(q + Ft). (8)

In our setup, the walker position is encoded into the optical trans-
verse wavevector. As such, the walker quasi-momentum corre-
sponds to the spatial coordinate x in our laboratory reference frame,
introduced to define spatial modes in Eq. (1). In particular, x and q
are related by the following expression:19

q = −
2πx
Λ

. (9)

Using Eqs. (8) and (9), it is straightforward to see that the effect of a
constant force is simulated if the g-plates corresponding to the time
step t are shifted along x by the amount Δxt = t ΛF/(2π).

IV. REFOCUSING EFFECTS IN ELECTRIC QUANTUM
WALKS

Bloch oscillations have been extensively studied in the con-
tinuous time regime (see Refs. 57 and 58) and have been recently
considered in discrete time settings.42,59 Here, we review the theory
of Bloch oscillations and Landau–Zener transitions and investigate
their phenomenology in our quantum walk protocol.

Consider the evolution of an initial state that approximates
an eigenstate of the system without any force, namely, a Gaussian
wavepacket centered around m = 0,

∣Ψ(q0,w)⟩ = N∑
m

exp[−(m/w)2 + iq0m]∣u±(q0)⟩⊗ ∣m⟩, (10)

where N is a normalization factor and w controls the width of the
wave packet. We consider wavepackets with large values of w so
that these states are sharply peaked in quasi-momentum space. If the
external force F is small with respect to the minimum energy gap, the
adiabatic approximation dictates that (i) the wavepacket remains in
the original quasi-energy band during the whole evolution, (ii) the
coin state rotates as ∣u±(q0)⟩→ ∣u±(q0 + Ft)⟩, and (iii) the center of
mass follows the equation of motion: m(t) = (1/F) ∫

q0+Ft
q0

vg(q)dq,
where vg(q) = ∂qE±(q) is the group velocity. In particular, after a
period τ = 2π/F, the wavepacket gets back to the original state. This
result is illustrated in Figs. 2(b) and 2(c) for the case in which the
initial state is in the upper band. In panel (b), we plot the probability
that the walker is found in the upper energy band, which remains

approximately equal to one across the evolution. In panel (c), we
report in a single plot the probability P±(m, t) that, at the time step
t, the walker is found on the lattice site m in the upper (lower) band.
A different scenario occurs for a closed energy gap (for instance, at
δ = π/2). In this case, the adiabatic approximation breaks up when
the wavepacket reaches the region of the Brillouin zone where Eg

is minimum. The Landau–Zener theory54 predicts that the transi-
tion to the lowest band occurs with unit probability in the case of
zero gap. We clearly observe this phenomenon in our simulations
[see Figs. 2(b) and 2(d)]. After a period τ, the wavepacket is entirely
found in the lowest band as a consequence of a LZ transition. How-
ever, at t = 2τ, a second transition takes place and the input state is
restored. Remarkably, the same dynamics is observed for δ = 3π/2,
where the gap between the two bands vanishes at E(q = 0) = ±π. Such
a situation can only appear in a Floquet system.

Observing the dynamics of Gaussian wavepackets facilitates the
understanding of the evolution of localized input states, which are
not confined to a single band. In this situation, the oscillating behav-
ior of the system eigenstates can lead to a refocusing of the localized
input. To illustrate this result, let us consider a generic initial state,

∣ψ0⟩ = ∫

π

−π

dq
2π
[c+(q)∣u+(q)⟩ + c−(q)∣u−(q)⟩]⊗ ∣q⟩. (11)

The state after τ steps is given by

∣ψτ⟩ =∫
π

−π

dq
2π

τ
∏
t=0

U0(q + Ft)

× [c+(q)∣u+(q)⟩ + c−(q)∣u−(q)⟩]⊗ ∣q⟩, (12)

where the product ∏τ
t=0 U0(q + Ft) must be written in the time

ordered form. In the adiabatic regime where F ≪ Eg , we find (see
Appendix A for details)

∣ψτ⟩ = ∫
π

−π

dq
2π
(c+(q)e−i(γ++γg)∣u+(q)⟩

+c−(q)e−i(γ−+γg)∣u−(q)⟩)⊗ ∣q⟩. (13)

The Zak phase γg60 appears as a global phase and does not play an
important role here. We rather focus our attention to the dynami-
cal phases acquired by the eigenstates when undergoing a complete
Bloch oscillation, which are given by

γ± =
(2π/F−1)
∑
j=0

E±(q + jF). (14)

These phases are independent of q in the limit of small F, and hence,
they can be factored out from the integrals. Therefore, if at t = 0,
only one band is occupied, the final state coincides with the initial
one apart from a global phase factor. When the system is initially
prepared in a state occupying both bands, complete refocusing can
be observed when the difference between the dynamical phases, Δγ
= γ+ − γ−, is a multiple of 2π. In general, the final state will be differ-
ent from the initial one due to the additional relative phase acquired
by the states over the two bands. In particular, for Δγ = π, the final
state is orthogonal to the initial one, even though it is still localized
at the initial lattice site.

At δ = π, the difference Δγ is 2π for F = 2π/2l, with l being an
integer, and π for F = 2π/(2l + 1). In the first case, we can observe
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FIG. 3. Numerical simulations of the refocusing fidelity. Values of the RF calculated
during the evolution for various strengths of the force F. In the left column, the
optical retardation is set to δ = π. The large spectral gap inhibits LZ transitions so
that the system performs clean Bloch oscillations with very large RF. In the right
column, δ is set to π/2 so that the spectral gap is closed. Very weak forces (red
line) induce an almost perfect refocusing at twice the Bloch period τ.

refocusing of the full quantum state after a number of steps that is
a multiple of τ = 2π/F, as shown in Fig. 2(e). For a vanishing gap,
this description breaks down in proximity of the gap-closing point.
However, also in this case, a refocusing of the input state can be
observed at time step multiples of 2τ as a result of the even num-
ber of Landau–Zener transitions occurring for each eigenstate54,61

[see Fig. 2(d)]. This is confirmed by the results of numerical simula-
tions reported in Fig. 2(e) for a QW with δ = π/2. The evolution at
δ = 3π/2 is actually identical to the latter case. Indeed, the two single
step operators are the same, apart from a global phase factor exp(iπ)
and a π shift of the whole BZ.

A quantitative analysis of non-adiabatic effects in QWs with
δ = π and δ = π/2 is provided in Fig. 3, depicting the refocusing
fidelity RF = ∣⟨ψ(nτ)∣ψ(0)⟩∣2. When δ = π, the RF is peaked at t
= nτ, and it is approximatively equal to one for small values of the
force, while the peak value decreases with the increase in F. In the
case δ = π/2, for small values of the force (F = π/50), a good refocus-
ing is observed at t = 2nτ (with n integer). For stronger forces (e.g., F
= π/10 and F = π/7), the behavior at longer times appears more com-
plicated due to the effect of residual Bloch oscillations responsible
for the peaks at odd multiples of τ.

V. DOUBLE LZ TRANSITIONS WITHIN A SINGLE
OSCILLATION PERIOD

Before discussing the experimental results, we illustrate an
additional QW dynamics in the very peculiar case where both energy
gaps at E = 0 and E = π are made small so that LZ can take place
with high probability twice when crossing the Brillouin zone. This is
a unique feature of Floquet systems. We consider a protocol defined
by the single step operator U0(δ) = T(π)L(δ). In Fig. 4(a), we plot the
quasi-energy spectrum for three values of δ. The minimum energy
gaps around E = 0 and E = π are located at quasi-momentum val-
ues q = 0 and q = π, respectively, and have the same amplitude.
Their value can be tuned by adjusting δ. Figure 4(b) depicts the
walker evolution in the case δ = 0.9 π, considering as the input state
a wavepacket entirely localized on the upper band. It is clear that

FIG. 4. Numerical simulations of double LZ transitions within a single oscillating
period. (a) Quasi-energy spectrum of the protocol U0(δ) for three values of δ:
δ = 0.5π (blue), δ = 0.7π (red), and δ = 0.9π (green); (b) Gaussian wavepacket
evolution [F = π/20 and δ = 0.9π]. As in Fig. 2, the wavepacket is prepared with
a width w = 10 and coin corresponding to the upper band eigenstate at q = 0.
The plot shows simultaneously the probability distributions relative to the upper
and lower band. (c) Localized input state [F = π/50 and δ = 0.9π; initial coin state:
∣H⟩]. (d) Total probability distribution at t = 200.

within a single period τ two LZ transitions take place. The frac-
tion of the wavepacket that undergoes two transitions keeps moving
in the same direction, as its group velocity does not change sign.
Figure 4(c) shows the evolution in the case of a localized input state.
Also in this case, at each transition, the wavepacket splits into a com-
ponent that keeps moving in the same direction and another that is
reflected, similarly to a beam splitter. The interplay between these
two mechanisms gives rise to a complex dynamics, where at each
period τ the wavepacket is concentrated on a set of lattice sites that
are equally spaced, as shown in Fig. 4(d).

VI. EXPERIMENTAL RESULTS
We benchmark our platform by first performing experiments

of QWs without an external force. The results are reported in
Fig. 5(a), showing the well-known ballistic propagation that char-
acterizes these processes.62 Experimental probability distributions
|ψE(m)|2 are compared with theoretical simulations |ψT(m)|2, with
their agreement being quantified by the similarity63

S =
√

∑
m
∣ψE(m)∣2∣ψT(m)∣2, (15)

where we are assuming that |ψE(m)|2 and |ψT(m)|2 are normalized.
In Figs. 5 and 6, we report the similarity S averaged over the results
for each step. All the experimental errors were obtained by repeating
each experiment four times.
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FIG. 5. Experimental demonstration of revivals in electric QWs. We plot the walker
probability distributions of electric quantum walks (14 steps) with or without an
applied force. Experimental and theoretical results are reported in the left and
right panels, respectively. A quantitative comparison is provided in terms of the
similarities. (a) δ = π and F = 0. (b) δ = π (energy gap is maximum) and F
= π/7. (c) δ = π/2 (energy gap is vanishing) and F = π/7. The coin input state
is ∣ψ(0)⟩ = ∣H,m = 0⟩ = (∣L⟩ + ∣R⟩)∣0⟩/

√

2. Experimental data are averages
over four repeated measurements.

To confirm experimentally the results discussed in Sec. IV, in
Fig. 5(b) we show an electric quantum walk characterized by a force
F = π/7. Here, a complete refocusing is observable at the time step
t = 14, corresponding to the last step of our evolution. The evolu-
tion corresponds to the case δ = π so that the force is still smaller
than the energy gap, even if interband transitions are not completely
negligible. Besides being mostly localized at m = 0, the final state is
expected to have the same polarization of the input beam, since refo-
cusing happens after an even number of steps. Defining ∣ϕτ⟩ as the
polarization state measured for the optical mode with m = 0 after τ
steps, we calculated the coin refocusing fidelity R = ∣⟨ϕ0∣ϕτ⟩∣2 (not to
be confused with the refocusing fidelity of the whole quantum state
RF considered in Fig. 3) that measures the overlap between the two
coin states. We obtain R > 98% for three different input states, as
shown in Appendix B. This is in agreement with the adiabatic model
we developed earlier, where we showed that, for F = 2π/τ, with τ
being an even number, the initial state is fully reconstructed after τ
steps.

The contribution of Bloch oscillations is completely suppressed
for δ = π/2, where the energy spectrum presents a gap closing point
and the revival of the input state cannot occur. This is shown in

FIG. 6. Nonadiabatic refocusing. We realize 14 steps of an electric quantum walk
with force F = 2π/7 such that the Brillouin Zone is explored twice. At δ = π/2, due to
the gap closing at q = π, Landau–Zener transitions occur with approximately unit
probability. Hence, a double LZ transition should bring the particle to its original
state. This is confirmed by our experiments [panel (a)], which are in good agree-
ment with theoretical simulations [panel (b)]. Plots are shown for an H-polarized
input state. Experimental data are averages over four repeated measurements.

the evolution depicted in Fig. 5(c). After 28 steps, an approximate
refocusing is expected due to double Landau–Zener transitions (see
Sec. IV). To observe this effect in our apparatus, we doubled the
value of the force, that is, F = 2π/7. The results are shown in Fig. 6.
After 14 steps, the wavefunction is again sharply peaked at the origin,
with some broadening in agreement with numerical simulations.
Refocusing in the regime of LZ transitions has been observed in
the continuous time domain in bent waveguide arrays, 52 but not
in Floquet systems like ours.

VII. CONCLUSIONS
In this work, we studied electric QWs in one spatial dimen-

sion, relying on a platform where the walker degree of freedom is
encoded in the transverse wavevector of a paraxial light beam.19

The presence of an external force is mimicked by applying a step-
dependent lateral displacement of the liquid-crystal plates, increas-
ing linearly with the step number. By tuning the energy gap of our
system, we studied experimentally the interplay between Bloch oscil-
lations and Landau–Zener transitions, which influence the emerg-
ing of revival of the input distribution of the walker wave packet.
This allowed us to show experimentally that Landau–Zener oscilla-
tions, i.e., a revival of the probability distribution due to multiple
Landau–Zener tunneling (already demonstrated in the continu-
ous time regime52), can be observed in discrete-time processes.
Moreover, we investigated a regime with two transitions in a sin-
gle Bloch oscillation by tuning the two gaps of our QW at E
= 0, π, which is a possibility unique of Floquet systems. We plan
to extend these studies to the regime of irrational forces and to
study their interplay with static and dynamic disorder. Moreover,
we aim to realize similar experiments in a two dimensional sys-
tem with the same technology.19 Interesting phenomena could be
observed by feeding our system with quantum light, investigating
two photon interference induced by Bloch oscillations64 or bunch-
ing and antibunching effects on NOON states.65,66 Furthermore,
recent theoretical results predict peculiar effects for electric quantum
walks in the non-Hermitian regime,67 where Landau Zener tunnel-
ing can occur irreversibly, contrary to what happens in Hermitian
systems.
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APPENDIX A: DERIVATION OF EQ. (13)
The operators U(q + Ft) can be decomposed as

U0(qt) = eiE(qt)∣u+(qt)⟩⟨u+(qt)∣ + e−iE(qt)∣u−(qt)⟩⟨u−(qt)∣, (A1)

where we have defined qt = q + Ft. In the adiabatic approxi-
mation, we have ⟨u±(qt+1)|u∓(qt)⟩ ≪ 1, i.e., interband transitions
between successive steps happen with low probability. Within this
approximation, the whole unitary evolution can be approximated by
retaining the terms up to the first order in F,

τ
∏
t=0

U0(q + Ft) = (eiE(qτ)∣u+(qτ)⟩⟨u+(qτ)∣ + e−iE(qτ)∣u−(qτ)⟩⟨u−(qτ)∣) × ⋅ ⋅ ⋅

× (eiE(q0)∣u+(q0)⟩⟨u+(q0)∣ + e−iE(q0)∣u−(q0)⟩⟨u−(q0)∣)

≈ ei∑
τ
t=0 E(qt)∣u+(qτ)⟩⟨u+(qτ)∣u+(qτ−1)⟩ ×⋯ × ⟨u+(q1)∣u+(q0)⟩⟨u+(q0)∣

+ e−i∑
τ
t=0 E(qt)∣u−(qτ)⟩⟨u−(qτ)∣u−(qτ−1)⟩ ×⋯ × ⟨u−(q1)∣u−(q0)⟩⟨u−(q0)∣ + ULZ

= ei∑
τ
t=0 E(qt)∣u+(q0)⟩⟨u+(q0)∣(

τ
∏
t=1
⟨u+(qt)∣u+(qt−1)⟩)

+ e−i∑
τ
t=0 E(qt)∣u−(q0)⟩⟨u−(q0)∣(

τ
∏
t=1
⟨u−(qt)∣u−(qt−1)⟩) + ULZ , (A2)

where we used q0 = qτ . In the limit of small F, the contributions (∏τ
t=1⟨u±(qt)∣u±(qt−1)⟩) are equal to exp(iγ±z ), where γ±z are the Zak

phases60,68 associated with the single energy bands. In our QW, γ+
z = γ−z = γz . The term ULZ is an O(F) contribution related to interband

transitions. In the following, we show that its amplitude is negligible for F≪ Eg , where Eg is the energy gap defined in the main text (see also
Ref. 14).

Let us evaluate explicitly ULZ in order to show that it is negligible in the adiabatic approximation. ULZ is given, to order O(F), by a sum
ULZ = ∑

τ
t∗=0 ULZ(t∗), where ULZ(t∗) describes a process where a single Landau–Zener transition happens at q = qt∗ ,

ULZ(t
∗
) = ∣u+(q0)⟩⟨u−(q0)∣(

τ
∏

t=t∗+1
⟨u+(qt+1)∣u+(qt)⟩e−iE(qt))⟨∂qu+(qt∗)∣u−(qt∗)⟩F

⎛

⎝

t∗−1

∏
t=0
⟨u−(qt+1)∣u−(qt)⟩eiE(qt)

⎞

⎠
. (A3)

The O(F) contributions to ULZ are obtained setting ⟨u±(qt+1)|u±(qt)⟩ ≈ 1,

ULZ = ∣u+(q0)⟩⟨u−(q0)∣(
τ
∑
t∗=0

e−iγ+e2i∑t∗
t=0 E(qt)⟨∂qu+(qt∗)∣u−(qt∗)⟩)F + (u+ ↔ u−). (A4)

From this result, it follows that the probability of a Landau–Zener transition is

P+− = F2
∣

τ
∑
t∗=0

e2i∑t∗
t=0 E(qt)⟨∂qu+(qt∗)∣u−(qt∗)⟩∣

2

. (A5)
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This formula corresponds to the one found in Ref. 14. Within the
approximations considered (F ≪ Eg), P+− is negligible (see also
Ref. 14 for split-step quantum walk protocols). In particular, we have
P+− < 0.1 at δ = π for F < π/7. In this regime, we can thus discard the
term ULZ , and substituting Eq. (A2) in Eq. (12), we obtain Eq. (13).

APPENDIX B: EXPERIMENTAL DATA
FOR THE EVALUATION OF REFOCUSING FIDELITY

To show that, for δ = π, the measured central spot of the final
probability distribution has the same polarization as the input state,
we measured the projections on the three mutually unbiased bases:
{∣H⟩, ∣V⟩}, {∣A⟩, ∣D⟩}, and {∣L⟩, ∣R⟩}, which allows us to reconstruct
the full coin state. Here, ∣A,D⟩ = (∣L⟩ ∓ i∣R⟩)/

√
2, and ∣V⟩ = i(∣L⟩

− ∣R⟩)/
√

2. We obtained R = 98% ± 2% for ∣ψ(0)⟩ = ∣H,m = 0⟩,
R = 99% ± 2% for ∣ψ(0)⟩ = (∣L⟩ − i∣R⟩)∣0⟩/

√
2, and R = 99%

± 3% for ∣ψ(0)⟩ = ∣L⟩∣0⟩. Fidelities are calculated by using inten-
sities recorded in a square of 4 × 4 pixels centered on the maximum
of each spot.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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