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Abstract
In two, three and even four spatial dimensions, the transverse responses experienced by a charged
particle on a lattice in a uniform magnetic field are fully controlled by topological invariants called
Chern numbers, which characterize the energy bands of the underlying Hofstadter Hamiltonian.
These remarkable features, solely arising from the magnetic translational symmetry, are captured
by Diophantine equations which relate the fraction of occupied states, the magnetic flux and the
Chern numbers of the system bands. Here we investigate the close analogy between the topological
properties of Hofstadter Hamiltonians and the diffraction figures resulting from optical gratings.
In particular, we show that there is a one-to-one relation between the above mentioned
Diophantine equation and the Bragg condition determining the far-field positions of the optical
diffraction peaks. As an interesting consequence of this mapping, we discuss how the robustness of
diffraction figures to structural disorder in the grating is a direct analogue of the robustness of
transverse conductance in the quantum Hall effect.

Exposing an electronic crystal to a magnetic field radically alters its physical properties. A celebrated
example is the integer quantum Hall effect (IQHE), where a perpendicular magnetic field converts a
two-dimensional (2D) metal into a Chern insulator [1]. This physics is captured by the fractal spectrum (or
‘butterfly’) of the Hofstadter model [2], which features smooth bands characterized by integer topological
invariants named Chern numbers. The transverse conductance in each energy gap, depicted in figure 1(a),
is given by the sum of the Chern numbers of the occupied bands [3, 4], which ensures their robustness
against local perturbations, such as interactions or disorder [5]. The physics becomes notably richer in
higher spatial dimensions. A 3D metal exposed to a magnetic field was shown to exhibit quantized
transverse conductivities in various 2D planes, determined by a triad of total first Chern numbers [6–17].
In 4D, the response of the system to an external electro-magnetic field is governed by a more complex
invariant called second Chern number [18–32].

Currently, very strong synthetic magnetic fields can be engineered in a variety of quantum simulators
[33–35], allowing for the observation of the 2D and 4D IQHE in various atomic [27, 36, 37], photonic
[28, 38–40] and acoustic [31, 41] platforms. On the other hand, the 3D case was recently observed in a
solid-state ZrTe5 crystal [42]. In general, traditional transport measurements in artificial platforms proved
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Figure 1. (a) Energy spectrum of the 2D Hofstadter model, with equal hopping amplitudes tx = tz. The Hall conductivities of
the gaps are encoded in the color scale. (b) The Wannier diagram shows the integrated density of states N below the gaps. The
size of the dots is proportional to the amplitude of the gaps and their color is associated with the value of the Chern number ν.
The slopes of the lines in the diagram are directly given by the Streda–Widom formula, equation (3), and are independent of the
hopping amplitudes. (c) Experimental setup. A spatial light modulator (SLM) generates a grating with characteristic function
χφ(x) = sign[cos(2πφx) + d], whose diffraction figure is collected by a camera placed in the focal plane of a lens.
(d) Experimental diffraction diagram, obtained by stacking a collection of diffraction figures for increasing values of the inverse
spatial period φ.

feasible [43], but not straightforward. As such, strong efforts are presently being undertaken to develop new
methods for the characterization of the underlying topology [37, 38, 44–49].

In this work, we show that the topological features of the 2D, 3D and 4D IQHE can be linked to the
properties of optical diffraction figures. Indeed, the peculiar translational symmetry of the Hofstadter
Hamiltonian can be encoded in periodic phase gratings (diffraction gratings) dynamically generated by a
spatial light modulator (SLM), and the magnetic flux piercing the lattice may be controlled by adjusting
their spatial period. As we will show, the diffraction pattern produced by the grating bears close analogies to
the Wannier diagram resulting from the Hofstadter model [50], and the slopes of the various lines directly
yield the Chern numbers of the corresponding spectral gaps.

1. Lorentz vs density responses

The Chern numbers of the 2D IQHE can be measured through the response of a system to (synthetic)
electromagnetic fields.

One class of such experiments measures the Lorentz-type response to a weak force. This is realized, for
example, by preparing a localized wavefunction and reading out the displacement of its center-of-mass
along the direction perpendicular to the force [25, 36, 40, 51, 52], or by applying dimensional reduction to
obtain an effective 1D time-periodic model and observing the consequent quantized displacement across
the bulk of the system (‘Thouless pumping’) [53–55]. The latter approach has also been adopted for
irrational values of the flux φ, which give rise, through dimensional reduction, to 1D quasi-crystals [56], i.e.
crystalline structures which are not periodic, but nonetheless exhibit long-range order [38, 57–60]. In
particular, the Chern number of a 1D quasi-crystal has been measured in a diffraction experiment through
a Lorentz-type measurement in reference [58].

In a second line of experiments, which is the one we follow here, one instead probes a density-type
response by gradually changing the magnetic flux piercing the lattice. As first discussed by Wannier in
reference [50], even a small change in the flux radically modifies the underlying band structure, thereby
altering the integrated density of states (i.e. the fraction of occupied bands). This may be conveniently
displayed in a so-called Wannier diagram, which shows how the density of states grows linearly with the
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magnetic flux. Subsequent works [61–63] proved that the linear coefficient which links the density of states
and the magnetic flux is proportional to the Hall conductivity. In particular, these studies highlighted that
the complete topological information about the 2D Hofstadter model is fully encoded in its Wannier
diagram [63]. As we will show in the following, this applies also to its generalizations to three [8, 9] and
four [23–25] dimensions.

2. 2D Hofstadter model

Let us consider spinless fermions on a square lattice in the xz plane, subject to a magnetic flux φ = p/q per
plaquette, with integers p and q (we set e = h = a = 1, where a is the lattice spacing). In the Landau gauge
with periodic boundary conditions in the z-direction, the eigenvalue problem reduces to the Harper
equation [64], which reads

[Enk + 2tz cos(2πφx + kz)] unk(x) = −tx
[
eikx unk(x + 1) + e−ikx unk(x − 1)

]
, (1)

where unk(x) is the Bloch function for the nth band, with quasi-momentum k in the reduced Brillouin zone
(RBZ): kx ∈ [0, 2π/q [and kz ∈ [0, 2π [.

The energy spectrum as a function of the magnetic flux φ, shown in figure 1(a), is the famous
Hofstadter butterfly, which displays an intriguing fractal structure. At zero temperature, the Hall
conductivity σxz

r in the rth energy gap equals the sum of the Chern numbers of the r occupied bands [3]

ν =
∑

n!r

∫

RBZ
Ωxz

n d2k/2π, (2)

defined in terms of the Berry curvature of the nth band Ωxz
n = i

[
〈∂kx unk|∂kz unk〉 − 〈∂kz unk|∂kx unk〉

]
.

Alternatively, the Hall conductivity can also be derived from the Streda–Widom formula ν = ∂φN [61],
where N ≡ r/q denotes the integrated density of states below the rth energy gap. This formula is very
general, and holds true also for incompressible fractional Chern insulator phases [65], where the Hall
conductivity is directly proportional to the many-body Chern number. For the 2D Hofstadter model, the
Streda–Widom formula leads to the celebrated Diophantine equation

r/q = φν + s, (3)

which has a unique integer solution ν for a set of integers p, q, r, s, assuming p and q are coprime, 0 < r < q
and |ν| < q/2. As shown by Dana et al [63], the Diophantine equation can also be derived from the
properties of the magnetic translation operators. Their elegant proof, which we review in appendix C, only
requires the periodicity of the wavefunction. The Diophantine equation can also be derived with the help of
perturbation theory in the weak-coupling limit tx ' tz [4]. Remarkably, within this limit one can show that
both the transverse conductivity and the quasi-momenta at which energy gaps open follow the same
Diophantine equation.

Here, we take advantage of the relation between the Bragg condition and the Diophantine equation to
recover the Hofstadter butterfly through a 1D diffraction experiment. In fact, by exhibiting the same spatial
periodic structure as the Harper onsite (cosine) potential, Bragg diffraction proves to be an ideal candidate
to study key topological features of the Hofstadter model. The Lorentz-type measurement of reference [58]
required direct access to the complex phase of the diffracted wave, which was ingeniously extracted through
an interferometric scheme. Here we discuss a conceptually different and much simpler density-type
experiment, which only requires measuring the far-field intensity of light. A detailed description of our
optical setup can be found in appendix A.

In a first experiment, we write on an SLM a 1D diffraction grating generated by the characteristic
function

χφ(x) = sign[cos(2πφx) + d], (4)

which generates a periodic figure with spatial period 1/φ. The choice of the non-linear ‘sign’ function is
mainly dictated by a practical convenience, as it enables one to observe many harmonics, thus allowing for a
more accurate reconstruction of the diffraction diagram. Furthermore, it can be displayed on the SLM with
high fidelity and exploiting the full resolution of the device. In principle, however, any other grating
preserving the spatial periodicity of the original magnetic unit cell could be adopted. The diffraction figure
collected out of this structure contains a series of sharp Bragg peaks, as shown in figure 1(c). The relative
intensity of the peaks can be controlled by tuning the dimensionless constant d. We set d = 0.25 to ensure
the best visibility of the main orders of diffraction. The position of the peaks can be derived from the
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Fourier transform of the grating (explicitly computed in appendix B), and is simply given by the Bragg
condition

k/(2π) = φν + s, (5)

with ν and s integer numbers, and k/2π = l/L is the ratio between an integer l and the lattice size L. The
latter condition requires that diffraction peaks are spaced by integer multiples of the RBZ. The Bragg
condition is therefore a direct analogue of the Diophantine equation (3). Figure 1(d) depicts the diffraction
diagram, obtained by arranging side-by-side the diffraction figures generated by the grating for increasing
values of φ. The slopes of the lines forming the diagram correspond to the values of ν, and the diffraction
diagram is in a 1-to-1 correspondence with the Wannier diagram obtained from the density of states shown
in figure 1(b). We point out that we are probing the topology of the bands which emerges from the
traditional derivation, i.e. by means of the Peierls substitution [4]. Our approach would also apply to the
Hofstadter butterfly spectrum resulting from the exact (numerical) calculation, since the topological
Wannier diagram is preserved [66].

We have also investigated the effects of structural disorder or different characteristic functions χ on the
diffraction diagram, and found that its main features are robust, as expected for topological properties. This
will be presented in detail in section 5.

3. 3D Hofstadter model

The Hofstadter model is generalized to three spatial dimensions by considering a magnetic field having
components along the three vectors spanning the cubic lattice [8, 9, 13–15]. Here we consider the particular
case of a magnetic field B = (0,φy,φz), where φy = py/qy (φz = pz/qz) is the magnetic flux through the
xz(xy) plane. In the 3D analogue of the Landau gauge, the Harper equation reads

[
Enk + 2ty cos(2πφzx + ky) + 2tz cos(2πφyx − kz)

]
unk(x) = −tx

[
eikx unk(x + 1) + e−ikx unk(x − 1)

]
. (6)

This eigenvalue problem has Q solutions, Q being the least common multiple of qy and qz, and the RBZ is
defined by 0 < kx ! 2π/Q, 0 < ky, kz ! 2π. The separation among the Q energy bands depends on the
relative amplitudes of the hopping, and in the limit tx ( ty, tz the system exhibits the maximum number of
Q − 1 gaps [8]. These gaps are characterized by a triad of first Chern numbers (νx, νy, νz). These invariants
appear in the quantization of the transverse conductivity in the planes defined by the unit vector of the
cubic lattice. In our case, one finds σxy = νz, σxz = −νy and σyz = νx = 0. The integrated density of states
is related to the rational fluxes by a 3D version of the Diophantine equation [8, 9]:

N ≡ r/Q = φyνy + φzνz + s, (7)

where s and να(α = {y, z}) are integers. As in the 2D case, this relation arises directly from the magnetic
translational symmetry of the system (see appendix D). The 3D Diophantine equation admits a unique
solution for every set r, py, pz, qy, qz, for qy and qz coprime integers, 0 < r < Q, |νy| < qy/2 and |νz| < qz/2.
The transverse conductivity in the different planes can therefore be computed with the help of the
generalized Streda–Widom formula σij = εijk∂φkN .

We now study the Hofstadter butterfly and the Wannier diagram resulting from the 3D quantum Hall
lattice. There are many ways one can change the magnetic field, for example: (i) changing its orientation
with respect to the unit cell while keeping its amplitude fixed [13], (ii) changing its amplitude while keeping
its orientation fixed [8, 14]. Here we adopt the second strategy, choosing the magnetic fluxes as
φy = myP/Q and φz = mzP/Q. The Diophantine equation (7) then reads

N = s + ΓP/Q, (8)

where we have introduced a ‘combined’ first Chern number Γ = νymy + νzmz. Figures 2(a) and (b) show
the Hofstadter butterfly generated for tx = 2ty = 2tz and a constant ratio between the fluxes φz/φy ≈ 3/5.
In the two panels, the color of the gaps corresponds to the values of νy and νz, respectively. Figure 2(c)
shows the Wannier diagram of the 3D Hofstadter model derived from the integrated density of states (here
the colors of the points correspond to the values of Γ). As an optical topological probe, we arranged a
second experiment where we write on the SLM a 1D diffraction grating generated by the characteristic
function

ψ(x) = sign[cos(2πφyx) + cos(2πφzx) + d]. (9)

As in the 2D case, we set the constant d = 0.25 to improve the visibility of the main diffraction orders. The
peaks are centered at k = 2π

[
φyνy + φzνz + s

]
. Again, the translational symmetry of ψ(x) ensures that the
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Figure 2. (a) and (b) Energy spectrum of the 3D Hofstadter model. We choose hopping amplitudes tx = 2ty = 2tz, and an
approximately constant ratio between magnetic fluxes: φz/φy ≈ 3/5, with qy = 42, qz = 65, and py = pz = P. Panels (a) and (b)
depict the values of the total Chern numbers νy and νz, respectively, computed within each gap. (c) Wannier diagram extracted
from the integrated density of states. The sizes of the points are proportional to the amplitude of the corresponding gap and the
color is associated with the value of Γ. (d) Experimental diffraction diagram generated by ψ(x), with d = 0.25 and φz/φy ≈ 3/5.
We set qy = 147 and qz = 250, and let py = pz = P change from 0 to qy.

position of the Bragg peaks obeys the Diophantine equation (7). We reconstruct the Wannier diffraction
diagram by arranging side-by-side the diffraction figures generated by the grating for different values of φy.
The slopes of the lines forming the diagram correspond to the values of Γ (see figure 2(d)). Also for the 3D
case, we found an excellent agreement between the diffraction diagram and the Wannier diagram (see
figure 2(c)).

4. 4D Hofstadter model

4.1. 4D decoupled Hofstadter model
The simplest model exhibiting the 4D IQHE is obtained by superposing two copies of the Hofstadter
model, with a magnetic tensor having two non-zero components Bxz = φx and Byw = φy [23, 25, 57]. The
corresponding Hamiltonian leads to the following Harper equation:

Enkunk(x, y) = −
[
2tz cos(2πφxx + kz) + 2tw cos(2πφyy + kw)

]
unk(x, y)

− tx
[
eikx unk(x + 1, y) + e−ikx unk(x − 1, y)

]

− ty
[
eiky unk(x, y + 1) + e−iky unk(x, y − 1)

]
. (10)

In this ‘minimal’ 4D model, as the planes having non-zero Berry curvatures are fully decoupled, the second
Chern number C2 is simply the product of the two first Chern numbers νx and νy. We will show that our
approach also applies in the case in which the planes are coupled and the second Chern number is not
factorizable.

After invoking the two commuting magnetic translation symmetries of the system along x and y, one is
led to two independent Diophantine equations, which may be multiplied to obtain

A = (νxφx + sx)(νyφy + sy), (11)

where A is the fraction of filled bands in the system at zero temperature. As familiar from the
Gedanken-experiment proposed by Laughlin [67], changing the magnetic flux across the system effectively
induces a ‘density-response’ which alters the band-filling in a way that is proportional to the Chern
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Figure 3. 4D Hofstadter model. (a) and (b) Expected diffraction diagram generated by ξ(x, y) (simulation). The 3D spatial
distribution of the diffraction peaks is characterized by multiple lines, each associated with different values of the first Chern
numbers

(
νx, νy

)
. The particular case φx = φy = φ = 7/30 is depicted, where bright spots associated with different values of the

first Chern numbers are enclosed by black circles. To improve readability, peaks distributions for max|{νx, νy}| = 1 (blue lines in
panel (a)) and max|{νx, νy}| = 2 (green lines in panel (b)) are plotted separately.

numbers. In particular, the first total Chern numbers νx and νy are given by να = (1/sβ)∂φαA|φβ=0, and the
second total Chern number is C2 = ∂φx∂φyA = νxνy. In a third experimental realization, we would suggest
to write on the SLM a 2D diffraction grating generated by the characteristic function

ξ(x, y) = sign
[
cos(2πφx) + cos(2πφy) + d

]
, (12)

where we set φx = φy = φ. The diffraction pattern generated by the grating defined above exhibits a series
of bright spots placed at k = 2π

{
(φνx + sx), (φνy + sy)

}
(see figure 3). As in the previous experiments, a

constant offset d may be added to reinforce the visibility of the main spectral gaps. After stacking the 2D
diffraction figures generated for different values of φ in a 3D plot, a Wannier diffraction diagram is
obtained, where the coordinates of the points are given by two Diophantine equations, and the area under
each line is given by equation (11) (see figure 3). We finally emphasise that this setup also allows one to
reproduce diffraction figures featuring the same topology (in the sense discussed in section 2) as a class of
2D quasi-crystals, corresponding to the dimensional reduction of the 4D quantum Hall effect with
irrational fluxes [23, 27, 28].

4.2. 4D coupled Hofstadter model
Until now we focused on the simplest version of a 4D decoupled Hofstadter model, where the second Chern
number could be factorized as a product of two first Chern numbers. More generally, let us consider the
characteristic function

Ψ(x) = sign{cos(2πφ1x) + cos[2πφ2(εx + y)]}, (13)

with ε being either 0 (yielding the decoupled model) or 1 (yielding the coupled model introduced in
reference [68], where the factorization of the second Chern number no longer holds). This function is
invariant under discrete translations, with crystal vectors a1 = q1(1,−ε) and a2 = q2(0, 1). The reciprocal
vectors are therefore b1 = 2π

q1
(1, 0) and b2 = 2π

q2
(ε, 1), so that ai · bj = 2πδij. The edges of the RBZ are

quasi-momenta of the form
k = r1b1 + r2b2, (14)

where r1 = p1ν1 + q1s1 and r2 = p2ν2 + q2s2. This gives

k
2π

=

(
r1

q1
+ ε

r2

q2
,

r2

q2

)
. (15)

The second Chern number is given by

C2 =
∂2

(
r1r2
q1q2

)

∂φ1∂φ2
=

∂2

∂φ1∂φ2

[(
kx

2π
− ε

ky

2π

)
ky

2π

]
=

∂2

∂φ1∂φ2

(
kxky

(2π)2
− ε

k2
y

(2π)2

)
. (16)
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Figure 4. (a)–(c) Hofstadter spectra in presence of spatial (on-site) disorder, with tx = tz = 1. Energy values (in units of the
hopping tz) have been divided in bins of amplitude δE = 0.05, and each bin is colored according to the fraction of states whose
energy falls within the range [E − δE/2, E + δE/2] (see legend). (d)–(f) Experimental Wannier diffraction diagrams. Plots in
each panel result from an average over 10 realizations with disorder. Different disorder strengths are probed: ∆ = 0.4 (panels (a)
and (d)), ∆ = 0.7 (panels (b) and (e)), ∆ = 1 (panels (c) and (f)).

In this more general framework, it is always possible to relate the second Chern number to the position of
the diffraction peaks, even though the second Chern number does not factorize.

5. Robustness against disorder

In presence of structural disorder, topological systems are known to be robust as long as the perturbation is
much smaller than the corresponding spectral gap. Here we probe, both numerically and experimentally,
the robustness of the Wannier diffraction diagram corresponding to the 2D Hofstadter model.

Figures 4(a)–(c) show the energy spectra of the 2D Hofstadter model, in presence of a disorder potential
Vdis = tzξ(x), where ξ(x) represents random numbers ranging in [−∆,∆], ∆ denoting the disorder
strength. The on-site disorder has been optically implemented by slightly altering the 1D characteristic
function:

χdis(x) = sign[cos(2πφx) + d + ξ(x)], (17)

with d = 0.25.
Experimental diagrams obtained for the different disorder strengths are plotted in figures 4(d)–(f). Each

plot in figure 4 results from an average over 10 realizations in presence of the picked level of disorder. It is
evident that diffraction orders associated with small spectral gaps are rapidly washed away, while the
1st-order Bragg peaks, which are associated with the largest gaps of the spectrum, remain visible even for
the largest disorder (i.e. ∆ = 1). This proves that the main properties of the Wannier diffraction diagram
are robust against disorder, as expected for topological features.

6. Conclusions and outlook

In this paper, we showed that the topological properties of crystal electrons in presence of a constant
magnetic field in 2, 3 and 4 spatial dimensions solely depend on the translational symmetry of the effective
magnetic lattices. By means of a compact and intuitive genuinely-optical architecture, we succeeded in
linking the topological invariants of the Hofstadter Hamiltonians to diffraction figures generated by
photonic gratings that reflect the essential symmetries of the original model. Remarkably, such a connection
is established within a single experimental realization, in contrast to other methods which typically rely on
populating a subset of states. This is especially notable for 3D and 4D, where multiple topological invariants
are required for each gap and where complete topological characterizations have not yet been achieved in
experiments. In the future, it will be interesting to further generalize our method to probe even
higher-dimensional extensions or other classes of topological models. In 4D, for example, a non-zero
second Chern number may arise in systems featuring time-reversal symmetry, e.g. with spin-dependent
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gauge fields, in which all first Chern numbers vanish [20, 21, 23, 26]. In our implementation, the role of
spin may be played by the polarization degree of freedom of the light beam.
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Appendix A. Details of the experimental setup

The experiment has been realized by studying the far-field diffraction patterns of a He–Ne laser beam
(operating wavelength: λ = 632.8 nm) impinging on a spatial light modulator (SLM). The SLM is a
liquid-crystal (LC) device where the extraordinary refractive index has an inhomogeneous distribution that
can be controlled and dynamically changed with a computer. This is achieved by means of an array of
1920 × 1152 pixels (of side 9.2 µm), each one consisting of an electrode whose voltage independently tunes
the local out-of-plane orientation of the LCs below it. This allows to manipulate the spatial phase
distribution of the impinging beam, e.g. to display the desired transmission functions, as long as the beam
is polarized along the extra-ordinary axis of the LCs.

Assuming a plane-wave incident wave-front, when imaging the diffracted light on the focal plane of a
converging lens, one accesses the Fourier transform of the chosen transmission function. For instance, the
transmission function χ(x) = sign

[
cos(2πp/q x) + d

]
was implemented by displaying the phase pattern

g(x) = π(3 + χ(x))/2. Since the input beam polarization can be not perfectly aligned with the
extraordinary axis of the liquid crystals, we added to g(x) the blazing function 2πy/Λmod 2π, with Λ
chosen to be small enough to spatially separate the light diffracted by the SLM from the 0th (unmodulated)
diffraction order in the Fourier plane (in our experiment, a convenient choice was Λ = 150 pixels).

We displayed the pattern associated with χ(x) choosing q = 353 and varying p from 0 to q. The
corresponding lattice step size was chosen equal to nx = 4 pixels, thus building a grating consisting of 480
sites. The Fourier-transforming lens had focal length f = 30 cm. These parameters were chosen to avoid
overlap of diffracted light spots, and to image all the Brillouin zone on the camera sensor. In the
experiment, the effective lattice length L, to be considered for simulating numerically the diffraction
pattern, was determined by the transverse width of the beam. Assuming an input Gaussian beam of
transverse intensity proportional to exp(−2r2/w2), we measured a beam waist w = 1.72 ± 0.05 mm. This
implies that we were illuminating a portion of the SLM corresponding to ≈100 lattice sites. Numerical
simulations of the diffraction of a plane-wave impinging on a finite lattice of L = 100 sites reproduces with
good approximation the intensity patterns detected experimentally (see next section).
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Appendix B. Analytic expression of the diffraction figure for the 2D Hofstadter
experiment

Let us consider a grating SL made up of L sites, whose periodicity is modulated by the square pulse χ(x)
defined in equation (4), and let us define d ≡ sin(δ/2). The diffracted field results

f (k) =
1√
L

L−1∑

x=0

χ(x)eikx =
1√
L

L−1∑

x=0

sign

[
cos

(
2πxp

q

)
+ sin(δ/2)

]
eikx, (B1)

where we restrict the choice of δ to the range [0,π [. Since the system is finite, k takes discrete values:
k ≡ 2πl/L, with l ∈ [− L/2, L/2 [.

In order to explicitly evaluate equation (B1), we replace χ(x) with its Fourier series. The real (An) and
the imaginary (Bn) part of the Fourier coefficients are given by

An ≡ 1
T

∫ T

0
dx χ(x) cos(nΩx),

Bn ≡ 1
T

∫ T

0
dx χ(x) sin(nΩx),

(B2)

where Ω ≡ 2π/T = 2πp/q = 2πφ is the frequency of the square pulse (i.e. 1/φ is its spatial period) and
n ∈ N. Performing these integrals we obtain:

A0 =
δ

π
, An =

2(−1)n+1 sin
[
n (π−δ)

2

]

πn
, Bn = 0. (B3)

The constant δ controls the number of visible lines in the Wannier diffraction diagram. In order to resolve a
large number of peaks, we choose δ so that the visibility of the 6th diffraction peak is maximized. Since the
first maximum of A6(δ) occurs at δ ∼ 0.5, we pick d = sin(δ/2) ∼ 0.25. The Fourier expansion of χ(x)
reads

χ(x) =
∞∑

n=0

An cos(2πφnx) =
q∑

n=1

Ãn cos(2πφnx), (B4)

where Ãn =
∑∞

s=0An+sq. To reach the last equality, we used the periodicity of the function to fold the
Fourier spectrum over a range of q harmonics. It becomes clear now that each harmonic component of the
pulse corresponds to one eigenvalue of the Harper equation (1) in the limit of vanishing tx ' tz, multiplied
by a coefficient Ãn which modulates relative intensities. We stress here that the previous limit is properly
addressed in the context of adiabatic perturbation theory, as rigorously discussed in reference [4]. Under
those conditions, the gaps open at momenta kx given by a Diophantine equation identical to the one
determining the conductivity. Inserting equation (B4) in equation (B1), we find

f (k) =
L−1∑

x=0

q∑

n=1

Ãn

2
√

L
(ei[k−nΩ]x + ei[k+nΩ]x). (B5)

The two summations can be swapped (since they both converge to finite quantities), so we can first
evaluate the one over x:

ζ± ≡
L−1∑

x=0

ei(k±nΩ)x =
1 − e±i2πφL

1 − ei2π
(

l
L ±nφ

) , (B6)

where we used k = 2πl/L. Therefore, the explicit expression of the Fourier expansion of the field reads

f (l) = f0(l) +
∞∑

n=1

2(−1)n+1 sin
[
n (π−δ)

2

]

2πn
√

L
(ζ+ + ζ−) = f0(l) +

q−1∑

n=1

Ãn

2
√

L
(ζ+ + ζ−), (B7)

where f0(l) ≡ 2δ
π

1−i sin(2πφL)
1−ei2πl/L .

For L →∞, each term in equation (B7) is a sum of two Dirac delta-like contributions:
ζ± ∝ δ

(
l
L ± nφ

)
, with φ = p/q. For finite L, there are two possible scenarios: L may or may not be a

multiple of q. When L is a multiple of q, namely L = zq (with integer z), we find the same result as in the
infinite case and fn(l) 0= 0 only when l/L = ±np/q, that is l = ±znp. Since the main contribution to the
diffracted field comes from the first harmonic n = 1, the brightest peaks appear at l = ±zp. When L is not a
multiple of q, we find non-zero diffracted field for many more values of l, which contribute to creating the
fractal spectrum typical of quasi-crystals. Nevertheless, the brightest peaks still appear at l = ±zp, with
z = Floor[L/q].
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Appendix C. Diophantine equation in 2D

Here we demonstrate how the 2D Diophantine equation may be derived from the magnetic translational
symmetry of the lattice Hamiltonian [63, 69]. Let us consider spinless fermions on a square lattice under the
action of a constant magnetic field with a magnetic flux φ = p/q per plaquette. In the Landau gauge, the
Hamiltonian reads

H =
∑

m,n

− txc†
m+1,ncm,n − tz e−2πiφmc†

m,n+1cm,n + h.c. (C1)

In presence of a non-zero magnetic flux, this Hamiltonian is no longer commuting with the lattice
translation operator Tz. This motivates the introduction of the ‘magnetic translation operators’

Mx =
∑

m,n

c†
m+1,ncm,n,

Mz =
∑

m,n

e−2πiφmc†
m,n+1cm,n.

(C2)

These operators commute with the Hamiltonian, but not with each other: MxMz = e−2πiφMzMx. However,
(Mx)q commutes with Mz, so that {H, (Mx)q, Mz} form a ‘complete set of commuting operators’. Therefore,
one has to consider a magnetic unit cell of at least q sites in the x-direction in order to apply the Bloch
theorem. Let us first focus on the ground band, which we assume to be non-degenerate. The eigenstates of
the Hamiltonian within this band are Bloch states of the form [70]

ψk(m, n) = e−i(kxm+kzn) e2πiφmnuk(m), (C3)

where kx and kz are varying in an RBZ, defined by 0 < kx ! 2π/q and 0 < kz ! 2π,
ukx,kz (m + q) = ukx,kz (m) and we omit the band index and take the lattice spacings equal to one for
simplicity. Since Mx and Mz commute with the Hamiltonian, ψk can be simultaneous eigenvectors of both
Mx and Mz (i.e., ψk, Mxψk, and Mzψk all have the same energy εk, and represent the same state, up to a
phase factor). Such Bloch states satisfy the relations

(Mx)qψk(m, n) = ψk(m + q, n) = eikxqψk(m, n),

Mzψk(m, n) = e−2πiφmψk(m, n + 1) = eikzψk(m, n),
(C4)

as required for the Bloch theorem.
This expression has still some residual degrees of freedom originating from the momentum-space

periodicity of uk. Indeed, Mx is a standard translation operator, so that ukx+2π/q,kz = ukx,kz (omitting the
spatial indices). Along the other direction, instead, Mz is not a standard translation operator, so that Bloch
theorem does not apply and there is some extra freedom: ukx,kz+2π = eiζ(k)ukx ,kz . This implies

eiζ(k)uk = ukx,kz+2π = ukx+2π/q,kz+2π = eiζ(kx+2π/q,kz)uk, (C5)

so that ζ(kx + 2π/q, kz) = ζ(k) + 2πC1, with C1 an integer number. The simplest function satisfying this
condition is ζ(k) = kxqC1, and 2πC1 is the phase acquired as the wavefunction is parallely-transported
around the whole RBZ, and therefore C1 may be readily identified as the Chern number of the ground band.

There is yet an additional gauge freedom arising from the non-commutativity of the magnetic
translation operators. Since

MzMxψk = e2πiφMxMzψk = ei(kz+2πφ)Mxψk (C6)

and Mzψkx ,kz+2πφ = ei(kz+2πφ)ψkx ,kz+2πφ, we find that Mxψk and ψkx,kz+2πφ must represent the same state, up
to a phase factor:

Mxψk = eiη(k)ψkx,kz+2πφ. (C7)

This leads to

eiη(k)ψkx ,kz+2πφ = Mxψk = Mxψkx+2π/q,kz = eiη(kx+2π/q,kz)ψkx+2π/q,kz+2πφ

= eiη(kx+2π/q,kz)ψkx,kz+2πφ. (C8)

Proceeding as above, one finds that the simplest functional form for the phase factor is η(k) = kxqS1, with
S1 an integer number.
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To derive the Diophantine equation, let us now consider a translation by a whole magnetic cell (along its
extended direction), which gives

(Mx)qψk = eikxq2S1ψkx,kz+2πp = eikxq(qS1+pC1)ψkx ,kz

= eikxqψkx ,kz , (C9)

where in the last step we have used the fact that the translation by a whole magnetic cell generated by (Mx)q

results in a simple phase factor eikxq. This finally leads to the Diophantine equation for the ground band:

p C1 + qS1 = 1. (C10)

This equation has a unique solution provided that p and q are coprime and |C1| < q/2. Considering now
multiple bands, the same treatment as above may be performed for each band, obtaining p Ci + qSi = 1. Let
us now recall that the ith Chern number is linked to the Hall conductivities of the neighboring gaps by
Ci = νi − νi−1, and let us assume similarly that Si = si − si−1, with ν0 = s0 = 0. Summing the equations
over all the gaps, one readily obtains the usual Diophantine equation

pνr + qsr = r, (C11)

where νr =
∑r

i=1Ci is the Hall conductivity. Again, the solution is unique provided that |νr| < q/2.

Appendix D. Diophantine equation in 3D

By closely following the steps of the previous section, here we derive the 3D Diophantine equation
equation (7) from the magnetic translation symmetry of the 3D Hofstadter model [69].

First, we set the following periodic boundary conditions on the Bloch functions:

ukx+2π/Q,ky ,kz = uk,

ukx,ky+2π,kz = eikxσyQuk,

ukx,ky ,kz+2π = eikxσzQuk,

(D1)

where we refer to the band Chern numbers as σα, and we omit the band index and set the lattice spacings
equal to one again.

Applying the 3D magnetic translation operator Mx to uk, we obtain

Mxuk = eiSkxQukx,ky+2πφy ,kz+2πφz . (D2)

By reiterating this application Q times and invoking the boundary conditions (D1), one is led to

eikxQuk = eikxQ(σymyP+σzmzP+SQ)uk, (D3)

where we set φy = myP/Q and φz = mzP/Q. Equation (D3) is satisfied if

σymyP + σzmzP + SQ = 1. (D4)

The 3D Diophantine equation
ν(r)

y myP + ν(r)
z mzP + s(r)Q = r (D5)

is obtained from equation (D4), by recalling σ(r)
α = ν(r)

α − ν(r−1)
α .
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[33] Goldman N, Juzeliūnas G, Öhberg P and Spielman I B 2014 Light-induced gauge fields for ultracold atoms Rep. Prog. Phys. 77

126401
[34] Ozawa T et al 2019 Topological photonics Rev. Mod. Phys. 91 015006
[35] Cooper N R, Dalibard J and Spielman I B 2019 Topological bands for ultracold atoms Rev. Mod. Phys. 91 015005
[36] Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbène S, Cooper N R, Bloch I and Goldman N 2014

Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms Nat. Phys. 11 162
[37] Asteria L, Tran D T, Ozawa T, Tarnowski M, Rem B S, Fläschner N, Sengstock K, Goldman N and Weitenberg C 2019 Measuring

quantized circular dichroism in ultracold topological matter Nat. Phys. 15 449
[38] Kraus Y E, Lahini Y, Ringel Z, Verbin M and Zilberberg O 2012 Topological states and adiabatic pumping in quasicrystals Phys.

Rev. Lett. 109 106402
[39] Mittal S, Orre V V, Leykam D, Chong Y D and Hafezi M 2019 Photonic anomalous quantum Hall effect Phys. Rev. Lett. 123

043201
[40] D’Errico A et al 2020 Two-dimensional topological quantum walks in the momentum space of structured light Optica 7 108
[41] Ni X, Chen K, Weiner M, Apigo D J, Prodan C, Alù A, Prodan E and Khanikaev A B 2019 Observation of Hofstadter butterfly and

topological edge states in reconfigurable quasi-periodic acoustic crystals Commun. Phys. 2 55

12

https://doi.org/10.1103/revmodphys.58.519
https://doi.org/10.1103/revmodphys.58.519
https://doi.org/10.1103/physrevb.14.2239
https://doi.org/10.1103/physrevb.14.2239
https://doi.org/10.1103/physrevlett.49.405
https://doi.org/10.1103/physrevlett.49.405
https://doi.org/10.1103/physrevb.39.11943
https://doi.org/10.1103/physrevb.39.11943
https://doi.org/10.1103/physrevb.31.3372
https://doi.org/10.1103/physrevb.31.3372
https://doi.org/10.1103/physrevlett.51.51
https://doi.org/10.1103/physrevlett.51.51
https://doi.org/10.7567/jjaps.26s3.1913
https://doi.org/10.7567/jjaps.26s3.1913
https://doi.org/10.1103/physrevb.41.11417
https://doi.org/10.1103/physrevb.41.11417
https://doi.org/10.1103/physrevb.45.13488
https://doi.org/10.1103/physrevb.45.13488
https://doi.org/10.1016/0039-6028(84)90325-x
https://doi.org/10.1016/0039-6028(84)90325-x
https://doi.org/10.1103/physrevlett.56.85
https://doi.org/10.1103/physrevlett.56.85
https://doi.org/10.1103/physrevlett.80.365
https://doi.org/10.1103/physrevlett.80.365
https://doi.org/10.1103/physrevlett.86.1062
https://doi.org/10.1103/physrevlett.86.1062
https://doi.org/10.1103/physrevb.67.195336
https://doi.org/10.1103/physrevb.67.195336
https://doi.org/10.1103/physrevb.69.033202
https://doi.org/10.1103/physrevb.69.033202
https://doi.org/10.1103/physrevb.94.161107
https://doi.org/10.1103/physrevb.94.161107
https://doi.org/10.1038/s41467-018-07817-3
https://doi.org/10.1038/s41467-018-07817-3
https://doi.org/10.1103/physrevlett.61.1329
https://doi.org/10.1103/physrevlett.61.1329
https://doi.org/10.1126/science.294.5543.823
https://doi.org/10.1126/science.294.5543.823
https://doi.org/10.1103/physrevb.78.195424
https://doi.org/10.1103/physrevb.78.195424
https://doi.org/10.1103/physrevlett.109.135701
https://doi.org/10.1103/physrevlett.109.135701
https://doi.org/10.1103/physrevlett.111.226401
https://doi.org/10.1103/physrevlett.111.226401
https://doi.org/10.1103/physrevlett.115.195303
https://doi.org/10.1103/physrevlett.115.195303
https://doi.org/10.1103/physrevb.93.245113
https://doi.org/10.1103/physrevb.93.245113
https://doi.org/10.1103/physrevb.101.205141
https://doi.org/10.1103/physrevb.101.205141
https://doi.org/10.1038/nature25000
https://doi.org/10.1038/nature25000
https://doi.org/10.1038/nature25011
https://doi.org/10.1038/nature25011
https://doi.org/10.1126/science.aam9031
https://doi.org/10.1126/science.aam9031
https://doi.org/10.1038/s41467-020-15940-3
https://doi.org/10.1038/s41467-020-15940-3
https://doi.org/10.1103/physrevx.11.011016
https://doi.org/10.1103/physrevx.11.011016
https://doi.org/10.1103/physrevresearch.2.022049
https://doi.org/10.1103/physrevresearch.2.022049
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1103/revmodphys.91.015006
https://doi.org/10.1103/revmodphys.91.015006
https://doi.org/10.1103/revmodphys.91.015005
https://doi.org/10.1103/revmodphys.91.015005
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/s41567-019-0417-8
https://doi.org/10.1038/s41567-019-0417-8
https://doi.org/10.1103/physrevlett.109.106402
https://doi.org/10.1103/physrevlett.109.106402
https://doi.org/10.1103/physrevlett.123.043201
https://doi.org/10.1103/physrevlett.123.043201
https://doi.org/10.1364/optica.365028
https://doi.org/10.1364/optica.365028
https://doi.org/10.1038/s42005-019-0151-7
https://doi.org/10.1038/s42005-019-0151-7


New J. Phys. 24 (2022) 013028 F Di Colandrea et al

[42] Tang F et al 2019 Three-dimensional quantum Hall effect and metal-insulator transition in ZrTe5 Nature 569 537
[43] Krinner S, Stadler D, Husmann D, Brantut J-P and Esslinger T 2014 Observation of quantized conductance in neutral matter

Nature 517 64
[44] Umucalılar R O, Zhai H and Oktel M O 2008 Trapped Fermi gases in rotating optical lattices: realization and detection of the

topological Hofstadter insulator Phys. Rev. Lett. 100 070402
[45] Bardyn C-E, Huber S D and Zilberberg O 2014 Measuring topological invariants in small photonic lattices New J. Phys. 16 123013
[46] Tran D T, Dauphin A, Grushin A G, Zoller P and Goldman N 2017 Probing topology by ‘heating’: quantized circular dichroism in

ultracold atoms Sci. Adv. 3 e1701207
[47] Wang C, Zhang P, Chen X, Yu J and Zhai H 2017 Scheme to measure the topological number of a Chern insulator from quench

dynamics Phys. Rev. Lett. 118 185701
[48] Cardano F et al 2017 Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons Nat.

Commun. 8 15516
[49] Tarnowski M, Ünal F N, Fläschner N, Rem B S, Eckardt A, Sengstock K and Weitenberg C 2019 Measuring topology from

dynamics by obtaining the Chern number from a linking number Nat. Commun. 10 1728
[50] Wannier G H 1978 A result not dependent on rationality for Bloch electrons in a magnetic field Phys. Status Solidi b 88 757
[51] Price H M and Cooper N R 2012 Mapping the Berry curvature from semiclassical dynamics in optical lattices Phys. Rev. A 85

033620
[52] Dauphin A and Goldman N 2013 Extracting the Chern number from the dynamics of a Fermi gas: implementing a quantum Hall

bar for cold atoms Phys. Rev. Lett. 111 135302
[53] Thouless D J 1983 Quantization of particle transport Phys. Rev. B 27 6083
[54] Lohse M, Schweizer C, Zilberberg O, Aidelsburger M and Bloch I 2015 A Thouless quantum pump with ultracold bosonic atoms

in an optical superlattice Nat. Phys. 12 350
[55] Nakajima S, Tomita T, Taie S, Ichinose T, Ozawa H, Wang L, Troyer M and Takahashi Y 2016 Topological Thouless pumping of

ultracold fermions Nat. Phys. 12 296
[56] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Metallic phase with long-range orientational order and no translational

symmetry Phys. Rev. Lett. 53 1951
[57] Prodan E 2015 Virtual topological insulators with real quantized physics Phys. Rev. B 91 245104
[58] Dareau A, Levy E, Aguilera M B, Bouganne R, Akkermans E, Gerbier F and Beugnon J 2017 Revealing the topology of

quasicrystals with a diffraction experiment Phys. Rev. Lett. 119 215304
[59] Tanese D et al 2014 Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential Phys. Rev. Lett. 112 146404
[60] Zilberberg O 2021 Topology in quasicrystals Opt. Mater. Express 11 1143
[61] Streda P 1982 Theory of quantised Hall conductivity in two dimensions J. Phys. C: Solid State Phys. 15 L717
[62] Streda P 1982 Quantised Hall effect in a two-dimensional periodic potential J. Phys. C: Solid State Phys. 15 L1299
[63] Dana I, Avron Y and Zak J 1985 Quantised Hall conductance in a perfect crystal J. Phys. C: Solid State Phys. 18 L679
[64] Harper P G 1955 Single band motion of conduction electrons in a uniform magnetic field Proc. Phys. Soc. A 68 874
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