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This document provides supplementary information to "Shearing interferometry via geometric phase," 
https://doi.org/10.1364/OPTICA.6.000396.  It presents a study of the extension of shearing 
interferometry through geometric phase to more general geometries, with the aim of showing the full 
potential of this technique. Any pair of identical SVAPs (introduced in the main body) conveniently 
displaced along the propagation direction, can be adopted to create two oppositely-deformed 
coherent replicas of the input beam. Since the SVAPs can be designed to reshape the input wavefront 
at will, more general geometries can be easily devised in addition to the linear and radial ones. We 
present a proof of this concept based on a ray-optical approach, accounting for higher order wave 
features. This analysis provides useful criteria for ensuring that setups analogous to those proposed in the 
main body are able to perform tailored directional derivatives with respect to general degrees of 
freedom.

1. EFFECT OF ARBITRARY SVAP PAIRS

Let the incident linearly-polarized field be given by E(x, 0) =
E(x, 0) (C+ + C−) /

√
2, where x = (x, y) and C± = (x ±

iy)/
√

2 are the two circular polarization basis vectors. This
field then traverses two identical spatially varying axis bire-
fringent plates (SVAPs), whose fast axes are oriented at angles
Θ(x). The derivation that follows uses ray optics to model
the field’s amplitude and phase after the two SVAPs. Suppose
that a ray is incident at the point x0 on the first SVAP, with
transverse direction cosines p0 (also referred to as the optical
momentum). After passing through the first SVAP, this direc-
tion acquires a shift whose sign depends on the handedness
of the polarization in question, according to p1 = p0 ± δ(x0),
where δ(x0) = k−1∇Θ(x0), with ∇ denoting the vector differ-
ential operator over the transverse plane. This is followed by
free propagation by a distance z, which leaves the direction
unchanged but changes the ray coordinates according to

x = x0 + zp0 ± zδ(x0). (S1)

Finally, transmission through the second SVAP at z = ζ leaves
the ray position unchanged but introduces a second direction
shift that is nearly the opposite of the first:

p2 =p1 ∓ δ(x) = p0 ± δ(x0)∓ δ(x)

=p0 ±
1
k
[∇Θ(x0)−∇Θ(x)]

=p0 ±
1
k

[
∆i∂i∇Θ(x) +

1
2

∆i∆j∂i∂j∇Θ(x) + ...
]

. (S2)

where we define ∆ = x0 − x, and use the convention of implicit
sum over repeated indices in the last step, with ∂i = {∇}i.
Except for special cases such as the Λ-plates discussed in the
main body, the two momentum shifts do not exactly cancel due
to the fact that the ray hits the second SVAP at a slightly different
coordinate.

In order to express the residual direction in terms of the final
coordinates x, we need to find an expression for ∆ in terms of x
by using Eq. (S1) at the second SVAP:

∆ = −ζ p0 ∓
ζ

k
∇Θ(x + ∆). (S3)
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Applying recursively this relation through a Taylor expansion,
and dropping the explicit dependence on x, we obtain

∆ ≈ −ζ p0 ∓
ζ

k
(∇Θ + ∆ ·HΘ) (S4)

≈ −ζ p0 ∓
ζ

k
∇Θ± ζ2

k
p0 ·HΘ +

ζ2

k2∇Θ ·HΘ, (S5)

where HΘ is the Hessian matrix of Θ with components
{HΘ}ij = ∂i∂jΘ. Notice that we keep terms only up to sec-
ond order in ζ/k = ζλ/2π, which is a parameter with units
of square length that naturally enters the equations and whose
square root is assumed to be small compared to the scale of
spatial variation of the SVAPs.

Substituting in Eq. (S2) we find that the final direction mis-
match can be expressed as a gradient

p2 − p0 ≈
1
k
∇(Φ1 ±Φ2), (S6)

where

Φ1 = − ζ

k
|∇Θ|2

2
+

ζ2

k
p0 ·HΘ · ∇Θ, (S7)

Φ2 =
ζ2

k2
∇Θ ·HΘ · ∇Θ

2
− ζ p0 · ∇Θ + ζ2 p0 ·HΘ · p0. (S8)

In the substitution of Eqs. (S7) and (S8) into Eq. (S6) we take p0
to be independent of x. The fact that the total direction change is
proportional to a gradient is consistent with the fact that the rays
constitute a normal congruence, namely, that they are solutions
to an eikonal equation.

The field after the second SVAP can be expressed in terms of
the nominal field (without the SVAPs) at z = ζ according to the
following approximation:

exp(iΦ1)√
2

[√
j−E (x− ε, ζ) exp(iΦ2)C++√

j+E (x + ε, ζ) exp(−iΦ2)C−
]

, (S9)

where ε(x) = k−1ζ∇Θ(x) and the Jacobians j±, which guaran-
tee power conservation, are defined as

j± =
∂(x± ε)

∂(x)
= 1± ζ

k
∇2Θ +

ζ2

k2 Det(HΘ). (S10)

By using the approximation
√

j± ≈ 1± k−1ζ∇2Θ/2 and the
shorthands S = E (x + ε, ζ) + E (x− ε, ζ), D = E (x + ε, ζ)−
E (x− ε, ζ) and a = k−1ζ∇2Θ/2, the intensity measured after
an analyzer oriented at an angle ψ can be found to be

I(ψ) ∝ |(S + aD) cos(ψ + Φ2) + i(D + aS) sin(ψ + Φ2)|2

= (|S|2 + a2|D|2) cos2(ψ + Φ2)

+ (|D|2 + a2|S|2) sin2(ψ + Φ2)

+ 2aRe(S∗D) + (1− a2)Im(S∗D) sin[2(ψ + Φ2)]. (S11)

In the limit of small shears, we can approximate S ≈ 2E and
D ≈ 2ε · ∇E. Also, under some conditions to be discussed later,
we can ignore Φ2, to get

I(ψ)∝̃|E|2 cos2 ψ +
ζ

k
|E|2∇Θ · ∇Arg(E) sin 2ψ

+
ζ2

4k2

{[
4|∇Θ · ∇E|2 + (∇2Θ)2|E|2

]
sin2 ψ

+2∇2Θ∇Θ · ∇|E|2
}

, (S12)

where we ignored terms of orders (ζ/k)3 and higher. Even the
terms proportional to (ζ/k)2 can be dropped except when the
analyzer angle is chosen so that the remaining two terms are
very small. As was discussed in the main body, the optimal
choice of ψ is the one that makes the second term comparable
to the first. By also measuring at ψ = 0 we can recover the first
term to subtract it. In cases where the intensity is constant, this
extra measurement is not necessary.

Finally, notice that the phase Φ2 can be ignored if, within
the profile of the beam, it varies by an amount significantly
smaller than 2π. There are two parts to this phase, one that
is independent of the incident beam’s angular spectrum (i.e.
the range of optical momenta p0), and one that depends on it.
The first part gives us a condition for ζ, which is that k−2ζ2∇Θ ·
HΘ ·∇Θ should vary in an amount significantly smaller than 2π.
This condition is automatically satisfied for a Λ-plate, and for a
Geometric Phase Lens (GPL) it reduces to ζ � f 3/(λr), where
f is the focal length of the lenses and r is the radius of the beam.
The second condition has two parts, but it is usually dominated
by the first one, which can be written as ζ|p0 ·HΘ| � k. This
condition is satisfied if the range of the angular spectrum of the
beam under test is much smaller than (λζ|∇2Θ|)−1. Again, for
a Λ-plate this is automatically satisfied, while for a GPL it places
a constraint on the level of collimation of the test beams, whose
directional range should be smaller than λζ/ f 2.

2. EXAMPLES

The novelty of the proposed shearing mechanism via geomet-
ric phase objects is that it enables non-uniform shears, both in
direction and magnitude. For the purpose of illustration, the
shearing distance in the following examples is exaggerated by
incrementing the propagation distance ζ between the SVAPs.

Arbitray Axis Distirbution and ∇θ Output: Circularly Polarized Grids

Fig. S1. (Left) General SVAP with arbitrary axis distribution Θ.
The blue arrows depict the gradient ∇Θ, which is proportional
to the directional shifts that each circular component under-
goes. (Right) Coordinate transformations undergone by both
circular polarization components, shown in green and red, and
the resulting local shearing ε achieved via this mechanism,
depicted by the light blue arrows. The original grid is shown
in gray. The total shear is exaggerated for the sake of clarity.

Figure S1 illustrates the phase gradient caused by a generic
SVAP with prescribed optical axis directions on circularly-
polarized light. This causes that, after propagation through
the second SVAP, the output left and right circularly polarized
fields undergo opposite coordinate transformations, causing
a spatially-varying shearing given by ε = k−1ζ∇Θ(x). Notice
that the coordinate transformations for each circular polarization
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component may imply an expansion or contraction, whose effect
is accounted for by the Jacobians j± (discussed in the previous
section) to ensure power conservation.

Figure S2 shows the two cases discussed in the main body,
corresponding to the use of Λ-plates and GPLs, which perform
lateral and radial shears, respectively. Also shown is the case
of Q-plates [1, 2], which perform a type azimuthal shear. Note
that in this third case the central region of the grids is omitted.
This is because, given the singularity at the centre of the SVAP,
light near this region is scattered outwards given the large phase
gradients. It can be easily seen that the direction mismatch given
in Eq. (S6) for the Λ-plates is zero, whereas GPL’s/Q-plates leave
only/mainly a radial component having an opposite behavior
for each handedness.

Λ plate Axis Distirbution and ∇θ Output: Circularly Polarized Grids

GPL Axis Distirbution and ∇θ Output: Circularly Polarized Grids

Q- Plate Axis Distirbution and ∇θ Output: Circularly Polarized Grids

Fig. S2. (Left) SVAPs with simple geometries that lead to com-
mon shearing types. From top to bottom: lateral, radial and
azimuthal shearing. Notice the opposite radial dependence
of the magnitude of the gradient for Q-plates and GPLs: For
GPLs the shearing vanishes linearly as one approaches the
origin, while for Q-plates it diverges. (Right) Coordinate trans-
formations for each circular polarization component, shown
in green and red, and the resulting shearing distribution ε
(depicted by the light blue arrows) achieved by each of these
SVAP pairs. The original coordinates are shown in gray. The
total shear is exaggerated for clarity.
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