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The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial
step for the development of quantum technologies, from quantum communication to quantum computation.
One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary
quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time
quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of
relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the
protocol. Our results represent a further investigation of quantum walk dynamics in photonics platforms,
paving the way for the use of such a quantum state-engineering toolbox for a large range of applications.
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Introduction.—The preparation of high-dimensional
quantum states is of great significance in quantum infor-
mation science and technology. Compared to qubits, qudit
states—describing quantum systems in d-dimensional
spaces—enable stronger foundational tests of quantum
mechanics [1–3] and better-performing applications in
secure quantum communications [4–9], quantum emu-
lation [10,11], quantum error correction [12–14], fault-
tolerant quantum computation [15–19], and quantum
machine learning [20–22].
Protocols performed on systems living in large Hilbert

spaces require great control in light of the number of
parameters required to describe states and operations.
Nonetheless, qudit states have been prepared successfully
in various physical settings [11,23–32]. Such schemes rely
on ad hoc strategies whose dependence on the under-
pinning dynamics makes their translation across different
physical platforms difficult.
A promising way to achieve a higher degree of platform

universality is the use of the rich dynamics offered by
quantum walks (QWs) [33–35]. These can be thought of
as the quantum counterparts of classical random walks
and comprise—in their discrete version—a qudit, named
walker, endowed with an internal two-dimensional degree
of freedom dubbed coin [36]. QWs have been successfully
implemented [37] in systems as diverse as trapped atoms
[38] and ions [39,40], photonic circuits [41–50], and
optical lattices [51]. An approach for state engineering
based on their dynamics offers hope of being applicable in

a variety of different systems, independently of the physical
implementation.
While the QW dynamics was previously shown to

allow the engineering of specific walker’s states [52,53],
in Ref. [54] a scheme was proposed to use discrete-time
QWs on a line to prepare arbitrary qudit states with high
probability and fidelity, in principle for arbitrary dimen-
sions of target qudit states. This is achieved by enhancing
the degree of control over walk’s dynamics through the
arrangement of suitable step-dependent coin operations,
which affect the coin-walker quantum correlations by de
facto steering the state of the walker towards the desired
final state, and finally projecting in the coin space. This
removes correlations between walker and coin, thus pro-
ducing a pure walker state with the desired features.
In this Letter, we use the scheme of Ref. [54] to

demonstrate a state-engineering protocol based on the
controlled dynamics generated by QWs. We use the orbital
angular momentum (OAM) degree of freedom of single-
photon states as a convenient embodiment of the walker
[48,55,56]. OAM-based experiments offer the possibility to
cover Hilbert spaces of large dimensions in light of the
favorable (linear) scaling of the number of optical elements
with the size of the walk. Moreover, the scheme allows for
full control of the coin operation that is key to the walk
implementation. In order to demonstrate the versatility of
our scheme, we focus on the interesting classes of large
superpositions of OAM states [57,58]. Furthermore, we
show experimentally the capability of engineering arbitrary
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states. The quality of the generated states and the feasibility
of the experimental protocol that we have put in place,
demonstrate the effectiveness of a hybrid platform for
quantum state engineering. Such platform holds together a
programmable quantum system, the photonic QW in the
angular momentum, and classical optimization algorithms
to effectively reach a given target.
Engineering quantum walks.—We consider a discrete-

time QW with a two-dimensional coin with logical states
labeled as fj↓ic; j↑icg. The dynamics are made up of
consecutive unitary steps. At step t, a coin operator Ĉt
changes the coin state and is then followed by a shift
operator Ŝwc, which moves the walker conditionally to the
coin state. Such transformations are described by the
operators

Ĉt ¼
�
eiξt cos θt eiζt sin θt
−e−iζt sin θt e−iξt cos θt

�
; ð1Þ

which accounts for coin tossing, and Ŝwc ¼
P

kjk − 1i
hkjw ⊗ j↓ih↓jc þ jkþ 1ihkjw ⊗ j↑ih↑jc, which realizes
the conditional motion of the walker. Here k is the
lattice-site occupied by the walker and fθt; ξt; ζtg are
parameters identifying a unitary transformation in two
dimensions. The evolution through n steps of the QW is
given by Û ¼ Q

n
t¼1 ŜwcĈt.

In Ref. [54] it was shown that it is always possible to
find a set of coin operators fĈtgnt¼1 that produce an
arbitrary target state in the full coin-walker space. In
addition, via suitable projection in the coin space, arbi-
trary walker states can also be obtained. The identification
of the correct set of coin operators is enabled by a classical
algorithm to maximize the fidelity between the final state
of the walker, after projection of the coin, and the target
(nþ 1)-dimensional state. It is worth noting that all states
can be reachable with unit fidelities (albeit probabilisti-
cally) and high probabilities, regardless of the number of
steps n (see Ref. [59]).
To demonstrate the effectiveness of this approach for state

engineering of high-dimensional spaces, we here focus on
classes of physically relevant states. First, we consider the
synthesis of superposition of large OAM states (SLOS)
achieved by engineering coherent superpositions of extremal
walker positions [62]. To this end, we exploit the corre-
spondence between the position space of the walker and an
angular momentum of quantum number n=2. These states
play a crucial role in the investigations on foundations of
quantum mechanics [63] and their generation is at the core
of various quantum engineering protocols [57,58,64,65].
The second class of states that we consider is spin-coherent
states [66], which are the spinlike counterpart of coherent
states of a quantum harmonic oscillator. Finally, in order
to validate the flexibility of our approach, we demonstrate
high-quality engineering of both balanced and randomly
sampled states.

Experimental apparatus.—We have implemented a dis-
crete-time QWwith n ¼ 5 steps, using the angular momen-
tum states of light fjmiwg (m ¼ �5;�3;�1) as the
physical embodiment of the walker, while logical states
of the coin are encoded in circular-polarization states
fjRi; jLig. We dub such degree of freedom as spin angular
momentum (SAM) to mark the difference with OAM. Our
experimental setup, which is shown schematically in Fig. 1
and follows Refs. [48,49], allows for the full coin-walk
evolution to take place in a single light beam, thus avoiding
a nonlinear growth of optical paths as in previous inter-
ferometric implementations [48,55,56]. Such a scheme
guarantees a linear scaling of the number of optical elements
needed to implement a n-step QW (see Ref. [59]). Arbitrary
coin operators are achieved through a sequence of suitably
arranged and oriented quarter- andhalf-wave plates [67]. The
shift operator Ŝwc is instead implemented using a Q plate
(QP) [68], an active device that uses an inhomogeneous
birefringent medium to convert SAM into OAMand that can
conditionally change the values of the OAMby a quantity 2q
(here q is the topological charge of the device) according to
transformations

jL;mi⟶QP cos
δ

2
jL;mi þ ie2iα0 sin

δ

2
jR;mþ 2qi;

jR;mi⟶QP cos
δ

2
jR;mi þ ie−2iα0 sin

δ

2
jL;m − 2qi: ð2Þ

The additional phase α0 between the two polarizations is
compensated by changing the orientations of thewave plates
which implement the coin operator of the subsequent step.
Single-photon states are generated via a type-II, col-

linear spontaneous-parametric-down-conversion source
[cf. Fig. 1]. The photons emitted by the source are
separated with a polarizing beam splitter (PBS) and
coupled to two single-mode fibers (SMF). One photon
acts as the trigger signal, while the other one undergoes
the QW evolution. After propagation in the SMF and the
first PBS, the initial state of the walker and coin is
prepared in jψ0iwc¼j0iw⊗jþic with jþic¼ðj↑icþj↓icÞ=ffiffiffi
2

p
. At the end of an n-step QW, the protocol involves a

projection of the coin state onto jþic. This is experimen-
tally implemented by a final PBS. The OAM analysis
is performed through a spatial-light modulator (SLM)
followed by coupling into a single-mode fiber, which
allows for the measurement of arbitrary superposition
of OAM components with high accuracy [69,70]. The
quantum state fidelity between the actual state of the
walker and the target (nþ 1)-dimensional state is esti-
mated by projecting the OAM state onto a basis that
contains the given target state [cf. Fig. 1].
Engineering superposition of large OAM states.—Our

investigation on the engineering of quantum states living in
Hilbert spaces of large dimensions starts from coherent
superpositions of two extremal lattice sites of the walker.
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The isomorphism of the OAM with an angular momentum
of quantum number n=2 allows us to put in correspondence
position states of the walker on the lattice j�5i with
angular momentum states with minimum and maximum
projections onto the quantization axis j�5=2i (for simplic-
ity of notation, we will use position states only). Hence, the
superposition state ðj5i þ eiφj−5iÞ= ffiffiffi

2
p

(with φ a suitable
phase) allows us to benchmark the performance of our
experiment with a relevant class of states [52,53,65] used in
quantum sensing [71,72].
In Fig. 2 we report experimental results for the gen-

eration of four of such states, which are conveniently
pictured as states pointing towards the poles of a Bloch-
like ball. Quantum coherence between the components
of such states has been tested by changing their relative
phase. The values of the state fidelity between exper-
imentally synthesized states and their respective target
ones are reported in Fig. 2. Hereafter we compute
fidelities by projecting the state on the orthonormal basis
which includes the target qudit in the six-dimensional
subspace associated to our five-step QW, generated by
OAM eigenstates fjmiwg (m ¼ �5;�3;�1).
The second class of relevant states that we addressed are

spin-coherent states (SCSs) [64]. These are the counterparts

of harmonic oscillator coherent states for a particle with
spin s [64,73–75]. SCSs are eigenstates—with eigenvalue
s—of the component of the total spin-momentum operator
Ŝ pointing along the direction identified by the polar
spherical angles fθ;ϕg [64,66,74,76]. A decomposition
of such states over the fjszig basis of the projected spin
along the z direction (Ŝz) reads

js; θ;ϕi ¼
Xs

sz¼−s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sÞ!

ðsþ szÞ!ðs − szÞ!

s
e−iϕszCsþsz

θ Ss−szθ jszi;

ð3Þ

with Cθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − S2θ

q
¼ cosðθ=2Þ. SCSs have various appli-

cations in condensed matter physics, in particular in
quasiexactly solvable models, for Wigner-Kirkwood
expansion and in quantum correction to energy quantiza-
tion rules [66]. At the foundational level, they can be used
to generate Schrödinger cat states [64].
Although SCSs are in general not orthogonal, they form

a convenient basis. Moreover, as two SCSs pointing in
opposite azimuthal directions are orthogonal for θ ∼ π=2,
by restricting the attention to fjs; π=2;ϕi; js;−π=2;ϕig
we would be dealing with an orthonormal basis, which we

(a)

(b)

(c)

FIG. 1. Setup for the quantum state engineering toolbox. (a) Conceptual scheme of the protocol. At each step of the QW the coin
operator is changed to obtain a target state in the output. (b) A single-photon source, composed of a periodically poled potassium titanyl
phosphate (PPKTP) crystal, generates pairs of photons that are coupled in a single-mode fiber. One photon acts as trigger while the other
is prepared in jψ0i ¼ jþi ⊗ j0i through polarization controllers and a polarizing beam splitter. Five sets of quarter (QWP) and half
(HWP) wave plates implement operators fCig for each step. Five Q plates implement the shift operator of the QW fSig. The detection
stage consists of a PBS followed by a spatial light modulator, a SMF and an avalanche photodiode detector (APD), for projection onto
jþi ⊗ jψi. (c) Pictures of OAM modes of the output states after PBS, obtained with coherent light. From right: OAM eigenstate
corresponding to m ¼ 5; balanced superposition of m ¼ �5; balanced superposition of all OAM components covered by the five-step
QW m ¼ f�5;�3;�1g.
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can use to construct the analogous of a Bloch ball for a
two-level system [cf. Fig. 3(a)]. We have thus engineered
jS1i≡ j5=2; π=2; 0i and jS2i≡ j5=2;−π=2; 0i, and con-
sidered the experimental synthesis of balanced coherent
superpositions of such states. Furthermore, S1 and S2 are
also eigenstates of Ŝx operator. In Figs. 3(b)–3(c) the state
S1 is projected firstly on the computational basis, the
eigenstates of Ŝz, and then on the basis fSig, with
i ¼ 1;…; 6, which consists of Ŝx eigenstates. Balanced
superpositions of S1 and S2 are akin to superposition of

coherent states of a harmonic oscillator, as they exhibit
signatures of nonclassical interference [59,64]. For in-
stance, only even (odd) components of the logical basis
enter the superposition jS1i þ jS2i (jS1i − jS2i). Hence,
we can generate SCS mapping the basis fjszig in Eq. (3)
into the basis of the QW fjmiwg. In Figs. 3(a)–3(e) we
show the high quality of the generated states.
Engineering arbitrary qudits.—In order to demonstrate

the flexibility of our scheme, we have addressed the
generation of states of arbitrary complexity, starting from

(a) (b) (c)

(d)

FIG. 2. Experimental results for the engineering of SLOS states. (a) Representation on a Bloch-like ball of the four target states
corresponding to the superposition of j�5i, corresponding to OAM states with maximum and minimum projection of the angular
momentum along the quantization axis. (b) Population of the OAM components after five-step QW for states jψ iiði ¼ 1; 2; 3; 4Þ in panel
(a). Odd-m position states (bold numbers on the x axis) should be the only ones involved in the state engineering. However, we report
also the populations of even-m position states (light-black numbers on the x axis) to illustrate possible imperfections at generation and
detection stages. The error bars associated with experimental populations are shown by the transparent areas on top of each histogram.

(c)–(d) Distributions of probabilities Pi ¼ hBðjÞ
i jρexpjBðjÞ

i iðj ¼ 1; 2Þ that the experimental walker state ρexp is found to be one of the
elements of the bases BðjÞ ¼ fjψpi; jψpþ1i; j�4i; j�3i; j�2i; j�1i; j0igwith p ¼ 1 for j ¼ 1 and p ¼ 3 for j ¼ 2. All the error bars are
due to Poissonian uncertainties, propagated through Monte Carlo methods.

(a) (b) (d) (f)

(c) (e)

FIG. 3. Experimental results for the engineering of SCSs and their coherent superposition: (a) Bloch-sphere representation for the
mutually orthogonal SCSs jS1i and jS2i. (b) Probability distributions associated to the projection of jS1i onto the computational basis.
As previously explained, we also consider the contribution of even OAM components. (c) Probability distribution corresponding to the
basis that contains the target state itself jS1i, generated with the fidelity reported in the panel. Such orthonormal basis, Si with
i ¼ 1;…; 6, contains eigenstates of Ŝx for a particle with spin s ¼ 5=2 that are in turn all spin-coherent states. (d) Experimental
probability distribution on computational basis for jψ2i ¼ ð1= ffiffiffi

2
p ÞðjS1i − jS2iÞ. Only components f−5;−1; 3g, corresponding to

logical states f1; 3; 5g, have nonzero probabilities. (e) Quantum state fidelity evaluated measuring state jψ2i on the orthonormal basis
that contains state jψ1i, as described in the main text. (f) Summary of quantum state fidelities for the 32 states generated in the
experiment. Magenta area: average fidelity F̄ ¼ 0.954� 0.001.
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balanced states and then moving towards randomly
chosen states. Balanced states are challenging as one
needs to ensure equal population of all their components,
a condition that is very prone to experimental imperfec-
tions. Assessing the quality of generation of such states
provides a significant benchmark to the effectiveness of
the procedure. We have then engineered the element of a
Fourier basis associated to the Hilbert space of the walker.
This choice is motivated by the importance of quantum
Fourier transform in quantum algorithms [77], as well as
its role in identifying mutually unbiased bases for quan-
tum cryptography and communication in high-dimensions
[70,78–80].
Final measurements concern the generation of randomly

chosen qudits. We have engineered up to 5 states with real-
valued amplitudes and 5 with complex-valued ones, where
the state components are sampled from a uniform distri-
bution (cf. Ref. [59]). In Fig. 3(f) quantum state fidelities
are reported for all experimental engineered states, includ-
ing the Fourier basis and randomly sampled qudits, where
the magenta area shows the average fidelity and its
uncertainty (F̄ ¼ 0.954� 0.001) [59]. Such a test provides
a further proof of the effectiveness of the strategy demon-
strated in our experiment.
Discussion.—We have successfully tested a QW-based

quantum state engineering strategy assisted by numerical
optimization [54]. Our tests were performed in a photonic
platform using OAM as the embodiment of a quantum
walker. This allowed us to implement a five-step QW,
without nonlinear overhead in the number of required
optical paths and with full control on the preparation,
coin-operation, and detection stages. We showed the
effectiveness of the protocol, demonstrating its ability to
synthesize high-quality qudit states. Our results reinforce
the idea that numerical optimization complementing a
complex QW dynamics is effective for high-dimensional
state engineering. A natural generalization of this novel
paradigm could be the engineering in the multipartite
scenario, exploiting quantum correlations between
multiple walkers. Regarding the research of the coin,
further improvements of our approach can be envisaged
by identifying appropriate routines to optimize the state
engineering process in the presence of actual experimental
imperfections. To this end, machine learning algorithms
can be a promising add-on to our numerical optimization
approach to adapt the coin operators to a given exper-
imental implementation.
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