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Abstract—Nowadays, Cloud Computing is a fundamental
paradigm that provides computational resources as a service,
on which users heavily rely. Cloud computing infrastructures
behave as an ecosystem, where several actors play a crucial
role. Unfortunately Cloud Computing Ecosystems (CCEs) are
often affected by outages, such as those experienced by Amazon
Web Service in the last years, that result from component
faults that propagate through the whole CCE. Thus, there is
still a need for approaches to improve CCEs’ reliability. This
paper discusses both existing approaches and open challenges
for the dependability evaluation of CCEs, and the need for novel
techniques and methodologies to prevent fault propagation within
CCEs as a whole.
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I. INTRODUCTION

Cloud Computing is strongly reshaping the IT industry
panorama, actually making new research topics and challenges
for the near future. Such impact was shown in a recent IDC
market analysis [1], which predicted that the cloud software
market will surpass $75B by 2017, attaining a five year
compound annual growth rate of 22% in the forecast period.
To support such view, starting from 2012, we are witnessing
the proliferation of new Infrastructures as a Service (IaaS),
such as Google Compute Engine, HP Cloud, and Microsoft
Windows Azure, along with the well-known Amazon Web Ser-
vices (AWS) IaaS. Cloud computing was born to avoid the need
for many corporations to build and manage their own IT data
centers: it is a new paradigm meant to provide computational
resources, in such a way to allocate and deallocate them on
demand, based on a pay-per-use business model, avoiding
expensive hardware platforms and big initial capital costs. Such
computing resources include Internet services, storage facili-
ties, compute power, all provided just like a service. In this
panorama, several research projects have been pursuing novel
methodologies, architectures and tools to achieve trustworthy
cloud services [2] [3].

A cloud computing infrastructure is a complex ecosystem,
in which several actors play a crucial role (see Fig. 1). These
ecosystems are highly distributed, consist of heterogeneous
hardware and software components, and are expected to pro-
vide highly-available services requested by millions of user
in parallel. Failures in such a complex system are inevitable,
because of too many factors are outside of our control. They
include not only hardware faults (e.g., CPU, memory, disk,
network faults) but also software faults (i.e., bugs) and operator
faults (e.g., a software misconfiguration). As the reader might

Fig. 1. Cloud Computing Ecosystem (CCE)

guess, these problems are exacerbated by the fact that Cloud
Computing Ecosystems (CCEs) are mostly driven by software,
thus the likelihood of incurring in software and operator faults
is very high, leading cloud services to outages, unresponsive-
ness and data losses.

In the last years, both industry and researchers are debating
about how much we can trust in cloud computing [2]. Recently,
several cases of cloud failures such as Amazon Web Services
(AWS) [4] (a race condition in the code on the servers which
manage data storage), Microsoft Azure [5] (a network device
misconfiguration) and Google Docs [6] (software fault in the
memory management component), have raised concerns on
cloud computing. From the cloud provider perspective, failures
can lead to billion of money losses, just for an hour of offline
time [7]. These outages result from faults that occur in a
component of the cloud system, and that propagate through
the entire ecosystem.

Delivering a trustworthy cloud computing service (ranging
from IaaS to SaaS [8]) is a priority. Indeed, if we think
that a lot of organizations and companies rely on cloud
computing services (e.g., in traffic management system for
decision support [9], in finance [10], in healthcare [11], etc.),
cloud services will become more critical in the near future!



Failures are random in time and it is really difficult to
predict them. In addition, many cloud services depend on third-
party services over the Internet, exposing cloud services to
cascading failures. Given such an unpredictable and dynamic
scenario, it is extremely important to know the nature of
faults and their propagation within CCE, in order to deliver
dependable cloud services. Actually, addressing dependability
issues early in design and making decisions to reduce the
impact of failures of a specific service, are important benefits
that cloud developers have to consider. Thus, it is necessary to
conduct research and develop techniques and methodologies
that allow us to build countermeasures against faults, with the
purpose of preventing fault propagation within a CCE and,
ultimately, of avoiding failures of the CCE as a whole.

In this context, my PhD thesis proposal is to:

Analyze and understand fault propagation within
Cloud Computing Ecosystems (CCEs), in order to prevent
and mitigate failures of CCEs as a whole.

The main goal of my work will be to provide techniques
and methodologies for understanding how faulty components
in the CCE can affect other components and the overall CCE
services, and for predicting and quantifying the impact of fault
propagation on the CCE as a whole. This will enable CCE
architects to identify dependability bottlenecks in their infras-
tructures, will lead them at introducing fault-tolerance mech-
anisms and at making dependability-oriented design choices.
Furthermore, knowledge from fault propagation analysis can
help cloud developers both to minimize the amount of time
necessary to recover cloud services from failures and to make
the time to failure of cloud services as long as possible. My
work will leverage tools and techniques for both fault injection
and monitoring of cloud systems, and will enhance them to
provide an effective and easy-to-use experimental framework
for evaluating CCEs dependability.

This paper will discuss open challenges behind the evalua-
tion of CCE dependability. It is organized as follows: Section
II overviews CCEs, describing each component and how they
can be source of failures; Section III presents open issues in
testing and validation of CCEs, focusing on the definition of
fault models (III-A), on tools, techniques and methodologies
needed to analyze fault propagation (III-B), and on how to
test the cloud management software (III-C); finally, Section
IV presents the conclusion and future directions.

II. CLOUD COMPUTING ECOSYSTEMS

As mentioned in the introduction, the CCEs is a complex
infrastructures. According to NIST service models [8], we can
see them as consisting of a stack of several layers, which are
supplied by a cloud provider depending by the specific model
(see Fig. 2).

Usually, applications in the cloud are deployed in a dis-
tributed way, that is, on several interconnected computers,
which belong to data centers that are geographically distributed
and managed by third parties. Furthermore, each application
entity communicates with others entities leveraging middle-
ware technologies such as Web Services and Message Queues.

Finally, application entities rely on several core services such
as storage, database, load balancing, etc., provided by the cloud
infrastructure where application is deployed.

In particular, the virtualization layer is the cornerstone of
such infrastructures. Indeed, it allows to abstract the specific
details of physical resources (e.g., CPUs, network and storage
devices, etc.), providing and sharing them for applications at
higher levels. This perspective completely changes the way
we see a physical machine (or a pool of physical machines),
making it a simply soft component to use and manage at the
push of a button. A main concept within virtualization is the
Virtual Machine (VM), which provides an isolated execution
context running on top of the underlying physical resources.
The Hypervisor actually runs VMs and it is also responsible of
coordinating multiple VMs in order to discipline the access to
the underlying CPU, memory and I/O resources. Furthermore,
in CCE a central role is given to cloud managements tools (e.g.,
Openstack [12]) that orchestrate and control compute, storage
and networking resources in order to achieve the essential
characteristic of a cloud computing environment (see [8]).

Currently, in the virtualization panorama there is a
spectrum of approaches, but mainly Hypervisor-based and
Container-based (or Operating system-level) virtualization are
actually in use in CCEs.
Hypervisor-based virtualization technologies provide an envi-
ronment that allows for a guest operating system to run on top
of a so-called Hypervisor. As mentioned above, hypervisor is
a piece of software that runs multiple virtual machines, each
of which run a guest operating system. There are two main
types of Hypervisor-based virtualization:

• Full virtualization, in which the hypervisor completely
isolates the guest OS and completely abstracts hard-
ware resources to guest. The task of the hypervisor is
to emulate privileged CPU instructions and I/O oper-
ations, and to multiplex resources between concurrent
VMs. Examples of hypervisors with full virtualization
are VMware ESXi [13], KVM [14], and Microsoft
Hyper-V [15].

• Paravirtualization (partial virtualization), in which the
guest OS is aware that it is running in a VM, that is,
it is modified in order to communicate directly with
the hypervisor (via a system call mechanism called
hypercalls) to achieve better performance. An example
of hypervisor with paravirtualization is Xen [16].

On the other side of spectrum, Container-based virtualiza-
tion, also called Operating System-level virtualization, allows
to runs multiple guest OSes without hardware virtualization.
OSes have been already designed to provide resource isolation,
but among processes. Thus, the idea is to use a traditional OS
to run virtual appliances, by enhancing the (host) kernel OS
to provide isolation between guest applications that run in so-
called containers. A container is not a Virtual Machine in the
traditional sense, but it is an environment that allows to runs
a guest application with its own filesystem, memory, devices,
processes, etc., leveraging kernel OS host process isolation
(e.g., namespace in Linux [17]) and resource management ca-
pabilities (e.g., cgroups in Linux [18]). Examples of container-
based virtualization technologies are LXC (LinuX Container
[19]), Docker [20], OpenVZ [21].



Fig. 2. Layers in a Cloud Computing Ecosystem

Virtualization is a major, but not the sole, ingredient for
CCEs. Among cloud computing technologies, cloud manage-
ment tools are a fundamental component. Management tools
allow to perform and automate many tasks in CCEs, over
hundreds or even thousands of services, resources and VMs.
Nowadays, there is a pletora of tools that help to enhance the
reliability, availability and, more in general, efficiency of cloud
service management. Such tools allow to manage:

• VMs and resource allocation, for example how many
CPUs are assigned to a VM, or how much memory is
reserved for.

• Virtual-physical resource mapping, in order to track
resource usage;

• Monitoring and fault diagnosis, that allows to gather
basic information (e.g., system and network informa-
tion) during an issue, and supports system administra-
tors in the troubleshooting process;

• Fault detection and recovery, in order to react as soon
as possible to faults using policies defined by system
administrators;

• Reconfiguration, in order to perform resource al-
location in response to changes in workload in-
crease/decrease;

• Checkpointing and rollback, that are techniques to
enhance the VM availability, saving the state of a VM
and then migrate such VM to a remote node within
the cloud; finally, restore the VM state.

• Migration, in order to move data, applications (often
within a VM), from a cloud environment to another;

• Update/upgrade, in order to upgrade cloud software
without service availability loss.

III. CHALLENGES IN TESTING CLOUD COMPUTING
ECOSYSTEMS

As mentioned before, the problem of testing and vali-
dating the CCE is a big challenge. In fact, since a CCE is
consisting of many elements, it is hard to understand how
individual elements impact on the reliability of the cloud
service/infrastructure, and how to prevent failures. Recent

studies have been done in testing of cloud-based applications
[22], using cloud platforms to perform testing of application
[23], and studies related to verification of cloud services
[24]. Furthermore, other studies [2] addressed the problem of
reliability of cloud infrastructure.

Nevertheless, there is still a need for approaches specifi-
cally focused on the reliability of cloud services and infras-
tructures against faults. We foresee the following challenges
and open problems that needs to be tackled in testing CCEs
as a whole.

A. Define Fault Models and Reliability measures for CCEs

In recent years, several studies and tools have proved that
Fault Injection Testing is a valuable approach for assessing
fault-tolerant systems [25]. Fault injection is an approach
in which we deliberately introduce faults in a system. As
mentioned before, this approach can assess the robustness and
performance of a system in the presence of faults, and to state
if fault tolerance algorithms and mechanisms are effective.

In the CCE context, some studies have faced with testing of
components that constitute such ecosystem, mainly focusing on
network applications (D-Cloud [26]; DS-Bench Toolset [27],
Chaos Monkey [28]), Hypervisors (CloudVal [29]), and cloud
management stack (Openstack resilience study [30], PreFail
[31]). Table I shows a comparison between fault injection
approaches and the related tools mentioned above. All these
tools are mostly focused on injection of hardware faults, for
example CPU (e.g., corrupt registers), memory (e.g., bit error),
network controller (e.g., bit error in packet), and hard disk
(e.g., fault in a specific sector). Moreover, these tools are not
meant for the evaluation of CCE architecture as a whole.

In addition to hardware faults, a system can be affected
also by software faults and configuration faults. A Fault
Model is a description of the types of fault that the system
is expected to experience during runtime. This description
model is useful to help the design of fault-tolerant and robust
systems against the faults within the model. Furthermore,
a fault model is fundamental to drive fault injection tests
which aim to verify fault-tolerance and robustness properties.
The fault model should describe which entities, in terms of
environment, components and services, can be affected by
faults, and how the faulty component behaves. Finally, a fault
model must be state what to inject, when to inject and where
to inject. It is very challenging to define realistic fault models
that takes into account all the specifics of each CCE elements,
given the complexity of these systems. Furthermore, in the
CCE context, software and operator faults have not yet been
studied deeply, thus there is another big question to answer.

Another important aspect is Measures that aim to express
quantitative indicators (e.g., performance and the responsive-
ness) of the cloud system. For instance, when testing a fault tol-
erance mechanism or algorithm (e.g., a system with redundant
components, or a fault-tolerant network protocol), measures
can express the probability that the system recovers from a
fault (e.g., injected faults do not lead to system unavailability),
and performance levels in the presence of faults (e.g., a server
can sustain a high rate of served requests or messages even in
the presence of injected faults).



TABLE I. COMPARISON OF FAULT INJECTION APPROACHES.

Approach Tool Target Faultload Injection technique Examples of results

Fault Injection Testing of
Virtual Machines

D-Cloud [26] and
DS-Bench Toolset [27]

Server software (e.g.,
web applications)

Network, disk, memory
faults

Emulation of faulty
devices; VM memory

corruption

Validation of
performance levels under

faults

Chaos Monkey [28] Virtual instances during
runtime

CPU, disk, network
faults

Executing scripts that
simulates a fault on

target machine

Terminates over 65,000
instances running in

Netflix production and
testing environments,

detecting many failure
scenarios

Fault Injection Testing of
Cloud Management

Software
PreFail [31]

Distributed filesystems
and algorithms (e.g.,
HDFS, ZooKeeper)

Network and disk faults;
Process crashes API exception injection Robustness of recovery

protocols

Openstack resilience
framework [30] OpenStack Service crash and

Network partition API exception injection Improvement of
robustness

Fault Injection Testing of
Hypervisors CloudVal [29] Hypervisors (e.g., Xen,

KVM)
CPU, memory, VM

faults Memory corruption Improvement of VM
isolation

In order to evaluate the degree of trustworthiness of the
CCE we need to consider that there are many metrics already
adopted for monitoring, administration, and accounting pur-
poses. Given a Service Level Agreement (SLA) requirements
to be met, there are Key Performance Indicators (KPIs) that tell
you how the service is performing according to certain param-
eters. Moreover, there are several detailed metrics collected
from network services (e.g., round trip time, response time,
packet loss rate), storage services (e.g., throughput, free disk
space, average read/write speed), compute services (e.g., CPU
utilization, memory consumption). Which metrics to use for
analyzing dependability? For sure, some of the metrics above
will still play a role, to provide an user- and administrator-
oriented evaluation of CCEs. Nevertheless, new measures will
be necessary at a more fine-grained level, to monitor the
behavior of each individual component, in order to spot the
effects of faults during the experiments and metrics related to
the fault propagation. Furthermore, we will need to consider
measures related to fault tolerance, such as fault detection
coverage and latency, migration and checkpointing time, etc.

In such scenario we have to get two kind of measures:

• System-level measures to evaluate the CCE as a
whole. This is important in the perspective of vali-
dation and also to meet SLA specific requirements
[32]. For example, let’s consider a scenario in which
we want to “cloudify” the network elements that con-
stitute an IP Multimedia Subsystem (IMS) [33], that
is, adopting virtualization technologies to virtualize
the network elements within an IMS. This scenario
is well described in NFV Use Cases document [34],
leveraging Network Function Virtualization (NFV), an
emerging solution that exploits virtualization technolo-
gies to turn network equipments (i.e., middleboxes)
into virtual entities, in order to reduce costs, improve
efficiency and scalability, reduce time-to-market [34].
IMS is one of the most important element in 3G net-
work and essentially delivers IP multimedia services,
such as video conferencing, IPTV, VoIP, etc., with the
main goal of achieving a specific Quality of Service
(QoS). In this scenario i would want to get measures
related to specific IMS KPI [35] (e.g., Call Drop Rate
of IMS Sessions, Session Setup Time, Mean Session
Utilization). Such metrics are important to conduct
empirical analysis;

• Internal measures, that is, those related to individual

cloud stack components (see Fig. 2). Such measures
are necessary to test and analyze in depth CCE, in
order to learn how to design and configure them
optimally. For example, related to virtualization layer,
we need to assure that resources (e.g., number of
CPUs assigned to a VM) are efficiently used, to
achieve SLA assurance, and that faults in individual
components are readily detected and isolated.

Experimenting and making measurements in CCEs can
be challenging, due to the quantity and the heterogeneity of
hardware and software technologies that are involved. For
instance, in the IP Multimedia Subsystem scenario mentioned
above, the CCE can include proprietary components that could
not be supported by existing monitoring tools. Moreover, we
would need to collect measures with very low intrusiveness,
since these systems are performance-sensitive and any in-
strumentation can potentially perturb their behavior. Finally,
measures often depend on the specific cloud scenario, and need
to be customizable by the experimenter.

B. Fault Propagation analysis in CCEs

It is clear that having knowledge about how faults prop-
agate in a system is fundamental. In the past, a lot of fault
propagation studies were done in complex system, much more
related to hardware systems and embedded systems [36]. Also
in complex software systems, like OSes [37] [38] and real-time
OSes [39] a lot of work have been done.

In the context of CCE, in order to perform a reliability
evaluation there is a need to study, possibly with experimental
methods, how faults in individual components propagate and
impact on CCE as a whole. In particular, we need:

• Comprehensive Tools/Framework for execution
monitoring. As mentioned in the previous section,
measures are fundamental to conduct an empirical
evaluation of CCE. Moreover, given the high number
of components and of hardware/software layers in
cloud systems, it is important to monitor the reliability
at run-time (i.e., during the operational phase), in
order to quickly pinpoint the effects and the causes
of performance and fault tolerance issues, and to
enable a quick recovery. This goal is achieved through
reliability monitoring, by leveraging resource and per-
formance data collected from VMs, the OS, and from
the hardware.



• Tools/Framework for data analysis and to de-
fine/propose analyses that would be useful for
CCE designer/architect. Analysis of monitoring data
allows a variety of objectives, which range from
resources and SLA management to troubleshooting
[40]. Measurement of workload and quality of service
(QoS) parameters collected during the system execu-
tion enables resource planning and management. For
example, monitored data can be used to establish the
optimal number of nodes, CPUs, storage and memory
size, that allow copying with a given SLA, to apply
corrective measures to the system, or to characterize
the state of the system as affected by the workload.

These tools/framework should be developed taking into
account key properties such as usability (i.e., tools/framework
easily and quickly usable by cloud developers, with a high level
of compatibility across heterogeneous cloud technologies),
non-intrusiveness (i.e., tools/framework should not introduce
significant perturbation to the system, in order to provide ac-
curate measures), efficiency (i.e., tools/framework that achieve
meaningful results with a reasonable computational time).

Failures in CCEs may involve fault propagation, and due
to complex interactions between different layers, it is very
challenging to predict and quantify which is the impact that
such a propagation could have on the CCE as a whole.

The idea is to leverage fault injection techniques to conduct
such a fault propagation analysis. Fig. 3 shows that we can
inject faults (hardware, software and configuration faults) in
each layer, to understand how these faults propagate through
different components and layers within CCEs. For instance,
fault injection can emulate application faults triggered by user
data (e.g., customers’ data submitted to a data-processing
SaaS) [41] [42]. This analysis can give useful information
about if there is (or not) a fault propagation path from less
critical components/layers to more critical components/layers.
Furthermore, we can discover new failure modes, and localize
failures to the greatest extent possible. This work aims to
develop framework, tools, mechanisms, and algorithms in
order to detect faults and prevent their propagation within
CCEs.

Important questions need to be answered by fault propaga-
tion analysis:

• We can inject faults in whatever layer within CCE
stack, and in several components that constitute these
layers (see Fig. 2). What is the components/faults that
have the major impact on the CCE? How to quantify
that impact?

• The CCEs should be self-healing, that is, an infras-
tructure that autonomically detects failures and takes
proper decisions to react them. Most of self-healing
is related to the resilience of a system, that is, the ca-
pability to adapt properly when facing changes in the
environment (i.e., ecosystem) [43]. For example, self-
healing actions are VMs migration and checkpointing.
How can we use monitored data to train algorithms
and mechanisms for “smart-healing”?

• A designer/architect can choose various technologies
to build a cloud infrastructure. For example, at virtu-

Fig. 3. Fault Propagation in CCE

alization layer, he can choose different virtualization
technologies, such as hypervisor-based (e.g., VMware
ESXI) and container-based (e.g., LXC) virtualization
technologies. How to compare/benchmark alternative
design choices in terms of reliability (e.g., degree
of fault isolation provided) in order to improve the
overall reliability of CCE?

C. Testing of Cloud Management Software

Nowadays, cloud management and provisioning tools are
very popular. For instance, Puppet [44] and Ansible [45], are
widespread open source tools today in the cloud panorama
[46]. Cloud computing administrators heavily rely on these
tools, whose faults may have critical consequences on the
CCEs. The nature of cloud management software is very differ-
ent from traditional software. Indeed, it is not an elementary
procedure, module, or program with simple inputs (integer,
strings, etc.), but it is software with several components, which
takes in input complex entities like VMs to snapshot/migrate,
policies for fault detection and recovery, software updates, net-
work topologies and traffic flows. Given such complexity, we
need to ask ourselves: How we should define meaningful and
thorough test scenarios for cloud management software? How
we can automate this kind of testing? Towards these goals, we
can exploit fuzzing techniques and search-based algorithms.
Furthermore, it is necessary to formalize the input space of
this software, the properties to verify, and the measurements
that need to be collected and analyzed.

IV. CONCLUSION

As discussed in this paper, CCEs are very critical, complex
and layered infrastructures, and the interactions between their
components make testing and validation activities very chal-
lenging. Existing studies reveal the necessity of approaches
focused on the reliability of cloud services and infrastructures
against faults. Fault propagation analysis, leveraging fault



injection techniques, is a promising solution, thus techniques
and tools have to be developed in the next future, in order
to help validation and testing activities of CCEs as a whole.
Due to complexity of layers within CCE, such evaluation may
be performed initially by focusing on faults occurring at the
lower levels of the cloud stack.
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