
Improving Usability of Fault Injection

D. Cotroneo∗, L. De Simone∗, A.K. Iannillo†, A. Lanzaro†, R. Natella∗†
∗Critiware s.r.l. / Università degli Studi di Napoli Federico II, Italy
†Consorzio Interuniversitario Nazionale per l’Informatica (CINI), Italy

Abstract—The lack of tools that can fit in existing development
practices and processes hampers the adoption of Software Fault
Injection (SFI) in real-world projects. This paper presents an
ongoing work towards an SFI tool integrated in the Eclipse IDE,
and designed for usability.

Keywords—Fault Injection Tools; Eclipse IDE; Usability

I. INTRODUCTION

As software is becoming more and more pervasive in many
critical systems, it is more important than ever to assure soft-
ware dependability against threats from the environment, users,
other systems, and even design flaws in software components.
Software Fault Injection (SFI) is an approach for gaining confi-
dence about fault-tolerance properties of a software system, by
deliberately injecting perturbations in the software to emulate
faulty components and stressful conditions.

Research efforts in the last decades on SFI focused on
extending the scope of fault injection from its traditional
focus on the hardware dimension (faults that originate in, or
affect, hardware, e.g., heavy-ion radiations and electromagnetic
interference [3]) to the software dimension (faults that affect
software code and data, e.g., bugs, configuration faults, re-
source exhaustion or unavailability). Several studies advocated
the use of SFI for:

• Validating fault-tolerance mechanisms: SFI can
evaluate error detection and handling mechanisms
(such as assertions and exception handlers) against
faulty hardware and software components, and to
improve such mechanisms if needed [17], [13], [2],
[4].

• Aiding FMECAs (Failure Mode, Effects, and Crit-
icality Analysis): Developers can quantify the impact
of a faulty component on the overall system (e.g., in
terms of catastrophic system failures), and mitigate
risks by testing the most critical components and by
revising the system design [21], [9], [15].

• Dependability benchmarking: SFI helps developers
to choose among alternative systems or components
the one that provides the best dependability and/or
performance in the presence of faults [11].

Recent technical advances in SFI include the definition
of realistic fault models for software [8], [14] and operator
faults [12], the non-intrusive injection of faults using advanced
debugging facilities [5], [1], and easy portability to different
target systems [20]. Despite these technical advances, SFI is
still not widely used among developers. We partially attribute
this to the lack of tools that can fit in existing development
environments, technologies, practices, and processes that are

adopted everyday by developers. For this reason, as will be
discussed in the next sections, we aim at compensating this gap
by developing a fault injection tool closer to users’ practical
needs.

II. FAULT INJECTION TOOLS

Software Fault Injection includes software-implemented
fault injection (SWIFI) techniques and tools, that were initially
developed to emulate hardware faults, and were later adopted
to also emulate software faults. Moreover, SFI includes more
recent, ad-hoc methodologies specifically developed for emu-
lating software faults. The research split into two main direc-
tions. While fault injection techniques have been evolving to
a more accurate emulation of faults, tools have been evolving
towards better usability. A brief overview of some SFI tools,
with emphasis on usability, is reported below:

• FIAT [18]: it was one of the first SWIFI tools,
aimed to provide an automated testing environment for
distributed real-time systems. Based on fault injection
techniques, the tool needs to be fed with workload,
faultload and experiment descriptions. This informa-
tion should be written in C files and configuration files
with a specific format. These files are automatically
transformed into the experimental script that runs the
fault injection campaign;

• GOOFI [1]: this tool aims at adapting to various
target systems and different fault injection techniques.
The user has the possibility to customise the tool to
target systems, fault injection techniques, workloads
and fault models through the implementation of some
abstract methods in an object-oriented fashion. Then,
a graphical user interface guides the user to define and
run a fault injection campaign, storing the system state
logs into a database. The user analyses the results by
writing SQL queries;

• NFTAPE [20]: it is a modular environment whose
components (i.e., the fault injection component, the
fault trigger component, and the control mechanisms)
can be simply added and their combination can be
configured. A control host executes the fault injec-
tion experiment based on a user-provided script. A
lightweight injector and trigger can be added (and
possibly customised) to different target systems, and
controlled by the control host;

• ORCHESTRA [7]: this fault injection tool is based
on a framework called script-diven probing and fault-
injection. A probe-injection layer is inserted between
any two consecutive layers in a protocol stack, and its
behaviour is determined by a user-defined script;



Fig. 1. Fault Injection Tool - Plug-in Wizard

• Loki [6]: based on a partial view of the global state
of a distributed system, this tool injects faults in one
node of the system according to the states of all
the nodes. A fault injection campaign is specified
through more than one graphical user interface. The
state machine specification is easily performed due to
a visual editor, while the fault specification exploits
boolean expressions, in a very simple language, in
order to formalize the fault trigger;

• PreFail [10]: it is a programmable fault-injection tool
designed for experiments with multiple injections, and
it avoids the combinatorial explosion of the number
of experiments by using sampling heuristics. The user
should provide the tool both failure-injection points
(where to inject the failures) and failure-injection tasks
(how to inject these failures). In addiction to these,
the user should use a special declarative language to
write filter and cluster policies in order to reduce the
experimental space.

There are still open issues with respect to usability. In
the tools mentioned above, a user needs to write scripts or
configuration files, to extends programs or to use specific APIs
in order to perform the desired fault injection test. All these
tasks may impose significant efforts on the user due to the
adoption of an ad-hoc formalism.

Another open issue is the lack of integration of FI in
existing Integrated Development Environments (IDEs) and
development processes. Fault injection is mainly performed
after the development phase, before deployment, along with
other testing activities. Integrated environments are widely
used for software development, as they provide comprehensive
facilities and they are moving into the integration of software
testing tools (e.g., JUnit for Eclipse) that developers expect
to find there. To the best of our knowledge, there is no IDE
that integrates a fault injection tool and let a user exploit these
innovative techniques in a simple way. Notable exceptions are
represented by tools such as MODIFI [19], which is integrated
in Simulink, but focuses only on model-based projects.

III. KEY FEATURES

A SFI tool should guide practitioners through three funda-
mental phases: (1) create the fault injection tests by selecting
what, where and when to inject, (2) build and execute the
fault injection tests, and (3) gather, analyse and present the
results. Both the way these three phases are automated and the
effort a user should make to reach his/her goal influence the
tool usability and, thus, have an impact on productivity. The
more the tool is usable, the more it facilitates the adoption of
fault injection in the software life cycle, by reducing costs in
terms of time or human resources. In our tool, we consider the
following key features for a usability-oriented design:

Integration of the tool in an IDE speeds up the setup of
the fault injection testbed, and the learning process for the
application of fault injection. The user works with the same
familiar interface, enhanced for SFI tasks, to create the fault
injection tests and execute them. The tool exploits the IDE
procedures to automate the build, execution, and monitoring
of the target system.

An exhaustive set of injectors, for different types of
faults and target systems (e.g., systems based on different
programming languages or operating systems). The injectors
allow the user to adopt the fault types that fulfill the fault-
tolerance requirements for the system (e.g., the user can select
to inject a specific type of fault, such as select whether to
inject hardware or software faults, see Fig. 1). Moreover, the
tool aids the user in the selection of what, where, and when to
inject. For instance, if the user wants to inject a specific type of
exception or error at library interfaces, the tool automatically
detects where this kind of faults can be injected (e.g., focus the
injection on specific methods/library function that can throw
that error). Or, if the user wants to inject faults for a specific
method or library interface, the tool automatically detects what
types of errors can be injected. Finally, the injectors aids
the developers at sampling the space of injections, by using
software complexity metrics to identify which components are
most fault-prone.



Finally, the fault injection tool includes procedures to
gather, analyse and present the results of the fault injection
tests in a way the practitioner can get useful feedback for
improving the system under test. Our tool provides the user
with brief statistics about the failure modes exhibited by the
system during the experiments. Analyzing failure modes is
useful for studying the severity of failures of the target system,
and to point out faults that are not tolerated by the system (and
which require to improve fault-tolerance mechanisms to be tol-
erated). Two types of failure modes are considered: “standard”
failure modes that are application-independent (e.g., crash or
hang failure), and application-dependent failure modes. For the
latter, we require the user to provide limited information: (1)
the list of application-dependent failure modes, and, for each
failure mode, (2) the I/O channels to be monitored during the
experiment (e.g., output log files, standard output/error, calls to
I/O methods or system calls), and (3) the criteria for correlating
outputs and failure modes (e.g., to identify whether a fault has
been tolerated, the user can specify to look for a keyword in a
log file produced by a fault-tolerance mechanism; or, the tool
can compare the contents of an output file with a fault-free
run).

At time of writing, the tool is being implemented as an
Eclipse plug-in. It supports both Java and C/C++ applications,
focusing on C embedded applications, and can inject errors
from the environment (e.g., I/O exceptions) and software bugs.

IV. USE CASE EXAMPLE

In the common use case, we expect that the user selects
and configures fault injection tests using a wizard (see Fig. 1).
The plug-in tool gets information about by the project opened
in the current workspace, and adds a fault injection menu for
each project. The user can start a new fault injection campaign,
or load a previously saved one. In both cases, the wizard:

1) shows the elements of the selected project in a check
box tree (e.g., Java, packages, classes, methods);

2) requires the user to insert information about desired
injection points, fault types and triggers, with the aid
of hints and, possibly, automated filtering tasks (e.g.,
during the selection of injection points [16]);

3) creates fault injection test plans, i.e., a set of experi-
ments which specifies what to inject (i.e., which kind
of faults to inject), when to inject (i.e., the timing of
the injection), and where to inject (i.e., in which part
of the target system the user wants to inject).

The plug-in saves a test plan as an Eclipse run configu-
ration, an abstraction that allows the user to run FI tests as
it does with usual applications. This execution is controlled
by the tool, which saves outputs from the target system. The
plug-in, then, analyzes these data and reports results to the
user. These results are presented to highlight, for example, the
distribution of failure modes, which reflects the effectiveness of
fault-tolerance mechanisms. Moreover, the raw data from the
campaign will be stored and made available to the user for in-
depth analysis (e.g., the user could be interested in looking at
system logs, or to repeat a specific fault injection experiment).

ACKNOWLEDGMENT

This work has been partially supported by the SVEVIA
PON Project (PON02 00485 3487758) funded by the Italian
Ministry of Education, University and Research.

REFERENCES

[1] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. GOOFI: Generic
Object-Oriented Fault Injection Tool. In Proc. Int. Conf. on DSN, pages
83–88, 2001.

[2] J. Arlat, J. Fabre, M. Rodrı́guez, and F. Salles. Dependability of COTS
Microkernel-Based Systems. IEEE TC, pages 138–163, 2002.

[3] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE TDSC,
pages 11–33, 2004.

[4] A. Bondavalli, S. Chiaradonna, D. Cotroneo, and L. Romano. Effective
Fault Treatment for Improving the Dependability of COTS and Legacy-
Based Applications. IEEE TDSC, pages 223–237, 2004.

[5] J. Carreira, H. Madeira, and J. Silva. Xception: A technique for the
experimental evaluation of dependability in modern computers. IEEE
TSE, pages 125–136, 1998.

[6] R. Chandra, R. M. Lefever, M. Cukier, and W. H. Sanders. Loki: A
state-driven fault injector for distributed systems. In Proc. Int. Conf. on
DSN 2000., pages 237–242, 2000.

[7] S. Dawson, F. Jahanian, T. Mitton, and T. Tung. Testing of Fault-
Tolerant and Real-Time Distributed Systems via Protocol Fault Injec-
tion. In Proc. Intl. Symp. on Fault-Tolerant Comp., pages 404–414,
1996.

[8] J. Durães and H. Madeira. Emulation of Software faults: A Field Data
Study and a Practical Approach. IEEE TSE, 32(11):849–867, 2006.

[9] M. Hiller, A. Jhumka, and N. Suri. EPIC: Profiling the propagation and
effect of data errors in software. IEEE TC, pages 512–530, 2004.

[10] P. Joshi, H. S. Gunawi, and K. Sen. Prefail: a programmable tool for
multiple-failure injection. ACM SIGPLAN Notices, 46(10):171–188,
2011.

[11] K. Kanoun and L. Spainhower. Dependability Benchmarking for
Computer Systems. Wiley-IEEE Computer Society, 2008.

[12] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A Tool for Assessing
Resilience to Human Configuration Errors. In Proc. Intl. Conf. on DSN,
pages 157–166, 2008.

[13] P. Koopman and J. DeVale. The Exception Handling Effectiveness of
POSIX Operating Systems. IEEE TSE, 26(9):837–848, 2000.

[14] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri. An
Empirical Study of Injected Versus Actual Interface Errors. In Proc.
Int. Symp. on Software Testing and Analysis, pages 397–408, 2014.

[15] R. Moraes, J. Durães, R. Barbosa, E. Martins, and H. Madeira.
Experimental Risk Assessment and Comparison using Software Fault
Injection. In Proc. Int. Conf. on DSN, pages 512–521, 2007.

[16] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira. On Fault
Representativeness of Software Fault Injection. IEEE TSE, pages 80–
96, 2013.

[17] W. Ng and P. Chen. The Systematic Improvement of Fault Tolerance in
the Rio File Cache. In Proc. 29th Int. Symp. on Fault-Tolerant Comp.,
pages 76–83, 1999.

[18] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Bar-
ton, R. Dancey, A. Robinson, and T. Lin. FIAT—Fault Injection based
Automated Testing environment. In Proc. Intl. Symp. on Fault-Tolerant
Comp., pages 102–107, 1988.

[19] D. Skarin, J. Vinter, and R. Svenningsson. Visualization of model-
implemented fault injection experiments. In Computer Safety, Reliabil-
ity, and Security, pages 219–230. Springer, 2014.

[20] D. Stott, B. Floering, Z. Kalbarczyk, and R. Iyer. A Framework for
Assessing Dependability in Distributed Systems with Lightweight Fault
Injectors. In Proc. Int. Computer Performance and Dependability Symp.,
pages 91–100, 2000.

[21] J. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman. Predicting
How Badly ”Good” Software Can Behave. IEEE Software, 14(4):73–83,
1997.


