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Abstract—Bugs affecting storage device drivers include the
so-called protocol violation bugs, which silently corrupt data
and commands exchanged with I/0 devices. Protocol violations
are very difficult to prevent, since testing device driver is
notoriously difficult. To address them, we present a monitoring
approach for device drivers (MolO) to detect 1/0 protocol
violations at run-time. The approach infers a model of the
interactions between the storage device driver, the OS kernel,
and the hardware (the device driver protocol) by analyzing
execution traces. The model is then used as a reference for
detecting violations in production. The approach has been
designed to have a low overhead and to overcome the lack
of source code and protocol documentation. We show that
the approach is feasible and effective by applying it on the
SATA/AHCI storage device driver of the Linux kernel, and by
performing fault injection and long-running tests.

Keywords-Device Drivers; Storage failures; Run-time Moni-
toring; Model Inference; Linux kernel

I. INTRODUCTION

It is well-known that device drivers are the most bug-
prone part of the OS [1], [2], [3], and represent a critical
component of every storage stack in IT systems. A large-
scale study of failures from about 39,000 commercially-
deployed storage systems [4], [5] showed that disk faults
are not anymore the dominant factor of storage failures,
and that software faults in the I/O protocol stack account
for a noticeable percentage (up to 10%). These failures are
caused by the so-called protocol violation bugs, i.e., bugs
that violate the protocol between the hardware and the driver,
such as misinterpreting or incorrectly setting the device state,
and exchanging incorrect data and commands with the I/O
device. Ryzhyk et al. [6] analyzed about 500 bugs in Linux
device drivers, and found that a large proportion (38%)
were indeed device protocol faults. Unfortunately, protocol
violations are very difficult to prevent, since testing device
drivers is notoriously difficult [7], [8]. Moreover, they have
a severe impact, since data corruptions can spread without
being noticed until they impact on end-users, when it is too
late and the chances of data recovery are reduced.

In this paper, we address I/O protocol violation bugs
that affect storage device drivers, by proposing an approach
(MolO) for detecting I/O protocol violations at run-time.
Failure detection is a fundamental prerequisite for adopting
fault-tolerance strategies: if a failing device driver is timely
detected, then it can be stopped before executing invalid
operations that could corrupt data; moreover, the system

administrator can be informed about the anomaly, thus
increasing the chances of protecting and recovering data.
The detection of protocol violations is challenging, as it
requires a model of the driver protocol, which should serve
as a reference of the correct behavior, for checking whether
the actual behavior of the driver deviates from it. However,
such a protocol model is difficult to get, since the source
code of the device driver may not be available, and the
device control logic is often not accurately documented [6].

As discussed in this paper, we address the lack of a
reference model by developing a model inference technique,
which automatically learns a protocol model from failure-
free execution traces of the device driver. Then, the model
is translated into a lightweight kernel monitoring module,
which is executed alongside the device driver in order
to detect I/O protocol violations. This monitor probes the
interactions among the storage device driver, the OS, and
the physical devices (e.g., reads/writes to I/O registers),
and quickly raises an alarm once an anomalous interaction
is detected. We applied the proposed monitoring approach
on the SATA/AHCI device driver of the Linux kernel. To
evaluate the effectiveness of the approach, we conducted
an extensive fault injection campaign, in which the monitor
was able to detect storage data corruptions. Moreover, we
also conducted long-running tests using a set of several I/O-
bound workloads, showing that the I/O monitor is robust
against false alarms and has a small performance overhead.

The paper is structured as follows. Section II gives an
overview of past studies on fault tolerance for device drivers.
Section III discusses in depth the problem of I/O protocol
violations, and presents the proposed approach. Sections IV
and V discuss the application of the approach on the Linux
kernel and experimental results. Section VI closes the paper.

II. RELATED WORK

Research on OS reliability has been mostly focused
on folerating faulty device drivers. In particular, several
software fault isolation techniques have been developed to
prevent (either in hardware or in software) the propagation
of drivers’ faults across OS components (e.g., by accessing
and corrupting kernel memory), which may cause data loss
and the crash of the whole system.

Nooks [9] ensures isolation by confining drivers into a
domain, using the Memory Management Unit of the CPU.
These domains share the same address space of other kernel



components, but different components have different access
permissions to pages. In this way, a driver can read all pages,
but it is allowed to write only a subset of them. The same
authors [10] later proposed a technique to automatically
recover from transient drivers’ faults, by introducing a
shadow driver that runs alongside a device driver: when a
driver failure is detected, the shadow driver becomes active
and replies, on behalf of the faulty driver, to kernel requests,
in order to guarantee availability. Subsequent studies further
developed these ideas by moving device drivers into user-
space processes (thus, running them in unprivileged mode),
such as the microdrivers approach [11], and the microkernel
OS architecture (such as Minix3) [12]. Furthermore, the
I/O Memory Management Unit has been adopted to isolate
kernel data from faults that affect DMA transfers [13], [14].

It is important to note that software fault isolation prevents
device drivers from access data of other OS components,
but it does not prevent device drivers from corrupting the
data managed by them (e.g., memory and storage data of a
storage device driver). Protecting the hardware device from
driver’s faults is still an open problem. Guardrail [15] is one
of the few existing solutions, in which a hypervisor protects
the hardware device from data races and memory access
failures. More specific solutions for storage problems, such
as filesystem verifiers (e.g., fsck) [16], check the consistency
of filesystem metadata, but they may not be able to detect
silent data block corruptions, and can have a significant
overhead (and are only run on a periodical basis) [17].
Detecting such corruptions would require end-to-end checks
on data block contents’, for instance by storing checksums
alongside data, and verifying the checksum when retrieving
data [18]. Some studies have introduced this kind of checks
between the filesystem and the device driver [19], [20].
However, we note that the effectiveness of checksums is
limited since data corruptions are detected only when such
data is retrieved for reading, which may occur only after a
long time has elapsed since the corruption. To compensate
for this gap, in this paper we investigate an approach for
monitoring the individual interactions between the device
driver, the hardware device and the OS, and to timely detect
incorrect interactions as soon as they take place.

III. THE RUN-TIME MONITORING APPROACH

We propose a run-time monitoring approach for detecting
I/0 protocol violations of storage device drivers. It monitors
how the storage device driver interacts with (i) the physical
device, to transmit I/O commands, and (ii) other software
components of the OS, to transfer I/O data from and to user
applications. The interactions follow a protocol that specifies
the type and the order of interactions to accomplish I/O
operations. Device driver bugs can lead to interactions that
violate such a protocol: in the worst case, the device driver
can corrupt data on the physical device.
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Figure 1. Storage architecture.

A. Background on storage architectures

To understand the nature of device driver interactions, we
need to consider the typical architecture of the storage stack
(see Figure 1), which includes the following components:

o The file system, which provides to the user the abstrac-
tion of files and directories, along with their metadata;

« The block I/0 manager, which provides a block device
abstraction to the filesystem. It schedules I/O block
read and write requests generated by the filesystem, and
manages buffering and caching of disk data on RAM;

o The generic kernel services, that is, APIs for dynamic
memory allocation, timers, synchronization, and inter-
rupt management, and other services used by develop-
ers for supporting I/O transfers in the device driver;

o The bus management services, that is, APIs for
identifying devices, setting their status and getting
information about them (such as the device model, and
the address of memory-mapped /O registers);

« The DMA management services, which manage the
off-loading of I/O transfers to DMA (Direct Memory
Access) controllers (thus relieving the CPU during
transfers), and the allocation of DMA memory areas;

o The device driver, which provides a software interface
for the device to the block I/O manager, and actually
controls I/O transfers;

o The disk controller, which exposes a set of 1/O reg-
isters and memory areas to the device driver, and is
controlled by the device driver.

Storage 1/O starts from read and write operations made
by user applications on the filesystem. These operations flow
to the device driver. The device driver then accesses the
controller, and uses OS services (e.g2., DMA and bus APIs).
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Figure 2. Interactions between the device driver, the disk controller, and the OS kernel.

B. Background on the Device Driver Protocol (DDP)

All the interactions between the device driver and the
rest of the storage stack follow the Device Driver Pro-
tocol (DDP). Overall, I/O operations require a series of
interactions between the device driver, the OS and the disk
controller. These interactions must follow strict rules for
the correct execution of I/O operations. The DDP involves:
(1) software interfaces of the OS kernel (such as APIs for
I/O transfers and for managing kernel resources); and (ii)
hardware interfaces with the device (such as I/O control and
status registers, and interrupts). The software and hardware
interfaces are respectively referred to as the Driver Pro-
gramming Interface (DPI) and the Device Interface (DI).
For instance (Figure 2), when an user application requests an
I/0O write operation, the OS interacts with the device driver
through the DPI, and the device driver reads and writes the
DI to actually perform the I/O transfer on the disk.

The DDP can be quite complex, as it involves several
layers of the storage stack, both in hardware and in software
(Figure 1). On the hardware side, the DDP involves the DI,
which is specified by industry standards from organizations
such as the ANSI, the ISO, and the IEC. These standards
describe several rules for communicating with the device,
including the layout of registers and data structures, the
format of I/O commands, data, and status information, and
the temporal sequence at which this information should be
read and written from/to the disk controller. On the software
side, the interactions between the device driver and the OS
are defined by OS developers in the form of DPI rules.
For instance, such interactions can include the sequence of
APIs to be called for configuring a DMA buffer, and for
initializing a data structure with I/O data or commands.

The goal of our run-time monitoring approach is to detect
whether the device driver deviates from the DDP. Detecting
such violations requires a reference model of the DDP, which
should accurately specify how the device driver is expected
to interact with the rest of the storage stack. However,
obtaining an accurate model is a challenging problem. On
the hardware side, as a matter of fact, industry standards in-
tentionally leave out of scope some aspects of the disk device
specifications, which vary across different manufacturers, or
even across different products of the same manufacturer
(e.g., a specific disk controller can provide registers not
required by an industry standard, to enhance performance or
to provide more rich functionalities). In many cases, device
manufacturers deviate from standard specifications, or may
adopt proprietary interfaces not compliant with any standard.
On the software side, the DDP is also difficult to model,
since the DPI rules between the device driver and the OS
are documented in natural language, and in some cases such
documentation is lacking, outdated or not consistent with
the actual implementation. Even worse, the DPI itself often
varies across different OS versions.

C. Overview of the monitoring approach

Given the architecture and the issues discussed above, we
design a monitoring approach by taking into account the
following requirements:

o No need for user-provided protocol specifications:
Since the DDP has a cross-layer nature and its speci-
fication is not easily available, we do not require the
user to provide a specification of the DDP.

« Applicable on binary-only device drivers: We do not
assume the availability of the source code of the device
driver, since the device driver may be only provided in



binary form, for instance by a device manufacturer that
wants to protect intellectual property.

o Low-overhead: Run-time monitoring should not cause

a significant loss of I/O performance, since it would
discourage users that do not want to sacrifice perfor-
mance for improving reliability.

To fulfil these requirements, the MolO approach adopts
a technique to automatically infer the DDP model from
failure-free execution traces of DDP events. These events
are then monitored in production for detecting protocol vio-
lations, using the inferred DDP model. Events are collected
at driver’s interfaces (the DPI and the DI), which can be
traced even without access to the source code of the driver.
We design the approach to collect only a small amount of
information to keep low the performance overhead.

The proposed monitoring approach consists of two phases.
The first phase (model learning and synthesis) collects
execution traces from the OS, and generates a monitoring
component (which we call monitor) from them. Traces are
obtained by inserting low-overhead probes at selected points
of the kernel, which intercept and record I/O interactions
during the execution of the storage device driver. The traces
are turned into a finite state machine (FSM) that summarizes
the behavior of the device driver according to the traces.
Finally, a monitor is generated from the learned FSM. In
the second phase (run-time monitoring) the monitor is
deployed in production, to detect deviations from the DDP.

The underlying idea of the approach is to automatically
generate a behavioral model of the device driver by analyz-
ing its failure-free execution traces. This idea is based on
the observation that device driver failures have a transient
nature, and are triggered by relatively-rare environmental
factors that are difficult to reproduce and to debug [21],
[10], [12], [22], [23], [24], [25]. Such environmental fac-
tors include multi-threading, asynchrony, interrupts, locking
protocols, hardware events and virtual memory [21].

For this reason, it is feasible to collect failure-free exe-
cution traces before deployment (as failures are unlikely),
and use these execution traces to build a “reference model”,
that will be used at run-time to detect anomalous behaviors
(i.e., transient failures) that have not been observed before.
The device driver can be executed and traced in a testing
environment, by using traditional performance benchmarks
or other test workloads. The user can guarantee the absence
of errors during the training phase, since he/she has full
control on the workload executed and can easily check its
(expected) outputs. For example, if the training workload
consists in a file copy, the user can check that the copy is
equal to the original file. In a similar way, benchmarking
tools allow checking the end-to-end correctness of I/O
transfers. For example, /Ozone provides the “+d” option
for this purpose [26]. Tools for checking the consistency
of filesystems and DBs can also be applied.

Technical details about the approach are presented in

the following subsections, which discuss the monitoring
architecture (III-D) and the model learning algorithm (III-E).

D. Monitoring architecture

The high-level monitoring architecture of MolO is showed
in Figure 3. It includes a prober component, which is
triggered both at the start and at the end of every I/O oper-
ation. When triggered, it records the current contents of the
device interface (DI), which include commands and status
information for on-going I/O operations. This information
from the DI is used to keep track of the “current state” of
the DDP. During the model learning phase, the prober copies
the contents of the DI in a trace, to be later processed and
synthesized into an executable monitor component. During
the run-time monitoring phase, the prober collects again
the contents of the DI, and forwards this information to
the monitor component, which checks whether the current
state complies to the DDP model. If this is not the case,
the monitor raises a warning to notify a DDP violation. For
instance, a violation may occur when the device driver does
not follow the correct format and sequencing of commands
and data according to the DDP (e.g., the device driver writes
invalid or out-of-order commands on the DI).
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Figure 3. High-level architecture of the MoIO monitoring approach.

As discussed in subsection III-B (see also Figure 2), the
device driver interacts with the OS and with the device
controller when: (i) the device driver starts an I/O transfer,
and (ii) the device driver finalizes an I/O transfer and notifies
the OS. On these events (denoted by the “probing” marks in
Figure 2), the device driver updates the contents of the DI.
Therefore, to identify the DDP, our approach collects and
analyzes the DI when these events occur. In modern storage
controllers (Figure 4), the DI consists of:

o Memory-mapped registers, that is, control, data, and
status registers of the disk controller that are associated
to the physical memory address space. These registers
are accessed by the device driver using the same
instructions for accessing RAM memory.



o In-memory data structures that are shared between the
device driver and the disk controller to exchange com-
plex information. For instance, in the case of storage
devices, shared data structures are used to provide a
list of DMA buffers to the disk controller, or a vector
of commands for performing several concurrent I/O
transfers. The device driver allocates the data structure
in memory (using kernel APIs), and shares it with the
disk controller by writing its address on a register.
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Figure 4. Device interface (DI) inspected by the prober.

During the model learning phase (which takes place
before deployment) we collect, for each I/O transfer, full
snapshots of all memory-mapped registers and in-memory
data structures, where a trace is a sequence of several such
snapshots. During the monitoring phase (after deployment,
when we are concerned about performance overhead), we
only collect a snapshot of few bytes from the DI, which are
selected by our model learning algorithm.

The prober component is triggered by invocations of the
DPI between the OS kernel and the device driver. To trigger
the prober, our approach leverages probing mechanisms that
are available in several commodity OS. These mechanisms
allow OS users to dynamically insert breakpoints in kernel
code, in particular at the invocation and at the return of a
kernel function. When the execution of the kernel reaches
the breakpoint, it invokes a handler function (customizable
by OS users) that can collect information about the current
execution context: for instance, the handler can inspect the
input parameters or the return value of a kernel function in-
vocation. Nowadays, many commodity OSes provide mature
dynamic probing mechanisms: the most well-known tech-
nologies are DTrace for Solaris, Mac OS X and FreeBSD
[27], Kprobes and SystemTap for Linux [28], [29], Detours
for Microsoft Windows [30], and VProbes for VMware ESXi
[31]. These probing mechanisms add only a small overhead
that is reasonably low for most applications: experiments
with heavy I/O workloads showed that the impact on I/O
throughput is between 3% and 4.5% in the worst case [31].

In our approach, we use probing mechanisms to intercept
the following events (that are emphasized in Figure 2):
(i) the beginning of an I/O operation, which occurs when
the OS invokes a specific DPI function exported by the
device driver; (ii) the completion of an I/O operation, which
occurs when the device driver eventually invokes a specific
DPI function exported by the OS. Therefore, we insert
breakpoints at: (i) the function(s) for starting an I/O transfer
(exported by the device driver), and (ii) the function(s)
for finalizing an I/O transfer (exported by the OS kernel).
The prober is triggered right after the execution of the
probed DPI functions, when the control flow returns from
the invocation. Then, the handler collects the contents of
the DI. The prober gets the memory addresses of controller
registers and data structures by invoking and/or probing the
DPI. The address of controller registers is obtained from the
bus management APIs, which poll the system bus to query
connected devices. The address of in-memory data structures
is obtained by probing the invocation of DMA APIs, which
are called by the device driver to allocate and share in-
memory data structures driver initialization (Figure 2).

E. Model learning and synthesis

The model learning and synthesis phase collects execution
traces using the techniques discussed above, infers a model
of the DDP from the traces, and generates a monitor to check
the driver behavior at run-time. It consists of these steps:

1) FullTrace < RunSystemWithFullTracing()

2) SelectedColumns < FilterColumns(FullTrace)

3) FilteredTrace +
RunSystemWithPartialTracing(SelectedColumns)

4) FSM < ModelLearning(FilteredTrace)

5) ModelSynthesis(FSM)

6) DDPViolations < RunSystemWithMonitor()

In the first step of this process, we execute the system
under analysis to collect “full” traces, that is, by recording
the whole contents of the DI (including all memory-mapped
registers and data structures). The raw trace (see the example
of Figure 5) contains a sequence of samples, where each
sample consists of all the contents of the DI (represented
as a vector of bytes) after each invocation of the probed
DPI. Moreover, each sample includes the DPI function
that triggered the prober (e.g., the hypothetical issue and
complete DPI functions in Figure 5).

DPI invocation that
triggered the probe

Filtered-out

column Finite State Machine

DI Sample

ie; m complete
Trace 00, 00, 01, complete |::> ‘

01, 00, 00, issue Model issue { 0o, 01 ]
learning

Figure 5. Simplified example of trace.



The initial tracing needs to sample the whole contents
of the DI since, before the model learning process, we
still do not know the DDP and which parts of the DI are
relevant for monitoring purposes. By analyzing this initial
trace, our approach learns about which types of information
are included in the DI (e.g., command codes, bitmasks,
addresses, etc.) and selects a subset of DI’s contents, which
will be the focus of the subsequent steps.

In fact, we note that not every information from the DI
is useful: for instance, we are not interested at analyzing
registers that are never modified during I/O transfers (e.g.,
registers only written during the device initialization). More-
over, we want to avoid noisy and highly-variable information
that have little influence on the DDP, such as memory
addresses (which are non-deterministically selected by the
dynamic memory allocator). Including noisy information
would inflate the learned model (thus potentially increasing
the performance overhead), and would make it prone to
false alarms when there are small variations in I/O transfer
patterns. Instead, the most valuable information for the DDP
model is the sequence of commands and status information
that is exchanged between the device driver and the disk
controller. Focusing on this information makes the model
compact and robust against small variations in I/O patterns
(e.g., the I/O command codes are still the same regardless
of allocated memory addresses).

The FilterColumns procedure inspects raw traces to locate
useful information in the DI. Each sample in the trace is
split into a sequence of bytes. The set of bytes at the same
position of each sample (e.g., the third byte of each sample)
is referred to as column of the trace. The output of this
procedure is the list of columns of the trace with relevant in-
formation. For instance, in Figure 5, FilterColumns removes
the second column, and retains the other two for further
analysis. FilterColumns identifies:

Constants: Columns are first analyzed independently
from each other. For each column, we analyze the number of
different values that are assumed by the bytes in the column,
and remove columns that are constant across the whole trace.

Large fields: The remaining columns are further ana-
lyzed, to coalesce adjacent columns that are part of the
same information (e.g., a group of several bytes that form
a command code). Two or more columns are coalesced
into a new multi-byte column when: (i) they are located at
adjacent positions (e.g., two subsequent bytes from an in-
memory data structure), and (ii) there is at least one sample
in the trace where all the bytes in the group vary from the
homologous bytes in the precedent sample. For instance, if
two adjacent bytes both change their values between two
consecutive samples, then their columns are grouped.

Bitmasks: Columns that represent bitmasks (e.g., bits
with the state of a set of I/O ports) are denoted by variations
that involve only involve one bit at a time. We identify them

by: (i) comparing, for each byte in each sample, the number
of bits that have varied compared to the homologous byte
in the precedent sample; (ii) identifying columns where, in
most of the samples (e.g., 90% or more), the variations
only involve one bit. The margin of tolerance accounts for
sporadic cases when several bits vary almost at the same
time (e.g., the completion of concurrent I/O transfers). These
columns are rewritten by replacing bitmask values with the
number of bits that change between consecutive samples,
which is the most useful information from the point of view
of the DDP protocol, and allows to simplify the DDP model.

Addresses: To deal with columns that are prone to
variations across different executions (e.g., columns with
memory addresses), we remove the columns that exhibit
a high number of different values (i.e., the cardinality of
the column). This strategy is based on the observation that
command and status codes (and similar information) are
unlikely to exhibit very large cardinality. Since such fields
can assume few tens of different values at most, it is safe to
discard columns that assume more than one hundred values.
Another strategy is to remove columns that only contain
memory addresses: these columns can be identified by also
tracing memory areas allocated to the driver (by probing
memory allocation APIs) and comparing their addresses with
the values in the columns.

Once relevant columns have been selected, the system
under analysis is again executed (RunSystemWithPartial-
Tracing(...)), but this time only “partial” traces are collected,
i.e., we collect only the bytes from the DPI that are selected
by the previous procedure (SelectedColumns). We re-execute
the system since partial tracing has much lower overhead
than full tracing, and thus is less likely to perturb the
execution of the system (the “probe effect” [32]). While full
tracing is useful to identify data types in the DI (commands,
bitmasks, addresses, ...), partial tracing is more suitable to
collect accurate traces of the dynamic behavior of the device
driver (e.g., by preserving the timing of events and the
sequencing of commands). Columns in the partial trace are
coalesced and converted to bitmask counts.

From the filtered trace, we generate an FSM (ModelLearn-
ing). Each distinct vector of bytes in the trace is turned into
a state of the FSM, and the DPI function that triggered the
probe is turned into a transition between the current state
and the previous one. In the example of partial trace in
Figure 5, two states are generated from the two distinct
vectors (01,00) and (00, 01), with two transitions issue and
complete that connect them. Finally, the FSM is synthesized
into a monitor component. The monitor collects selected
bytes from the DI, in the same way of partial tracing. In
addition, the monitor keeps track of the state of the device
driver on the FSM, and detects a DDP violation when the
current state is not compliant to the FSM.

To tune the duration of tracing runs, the user can perform



several learning trials with increasing duration. At each trial,
the resulting monitor can be tested by running again the
training workload, and checking the rate of false alarms.
When the training workload duration is long enough to pro-
vide sufficient information on the device driver’s behavior,
the rate of alarms abruptly drops to zero.

IV. A CASE STUDY ON THE LINUX KERNEL

In the following of this study, we apply the proposed mon-
itoring approach on the SATA/AHCI disk device driver of
the Linux kernel. Both Linux and SATA/AHCI are mature,
advanced, and popular technologies. Needless to say, Linux
is today a predominant OS for business-critical servers, and
has evolved to support a wide range of storage devices,
protocols and filesystems. Moreover, SATA disks are today
the most popular and reliable disks for desktop and nearline
storage [4], and AHCI is a de-facto standard for managing
SATA disks. It should be noted that SATA/AHCI is a very
complex case study, which involves all the subtleties that are
typical of real-world device drivers. Suffice to say that, due
to the complexity of storage devices, almost all other studies
on device drivers’ reliability did not consider storage, but
focus on simpler devices (such as soundcards and ethernet
cards). We here provide a brief introduction to SATA and
AHCI, and technical details about its practical application.

A. Overview of SATA and AHCI

Serial ATA (SATA) is a standard for the communica-
tion with mass storage devices (e.g., magnetic tapes, hard
disks, optical disks) that leverages on high-speed serial
transmission [33]. The SATA standard introduced several
enhancements for storage performance and error detection.
The key component is the Frame Information Structure
(FIS), a frame that encapsulates information (commands and
controls) exchanged between the controller and device; in
turn, that frame is encapsulated within another frame, which
bears flow control and error-detection codes.

The Advanced Host Control Interface (AHCI) is a hard-
ware/software interface by Intel [34] to provide easier and
more flexible access to SATA devices. The AHCI standard
defines all the memory-mapped registers and in-memory
data structures (see sec. III-D) that allow communication
between the OS kernel and the storage device. Furthermore,
AHCI supports advanced features of SATA disks, such as
Native Command Queuing (NCQ) and hotplugging.

Figure 6 gives a simplified view (both hardware and
software) of an SATA/AHCI storage stack architecture. In
AHCI, the disk controller is named Host Bus Adapter
(HBA), and can handle up to 32 ports. A port is a physical
part of the controller where SATA devices are attached,
which can be individually controlled by the device driver.
Moreover, each port can handle up to 32 commands issued
by the driver, which are written on the command list, an in-
memory data structure. The device driver issues a command

by writing a command FIS (including the command op-code,
the logical disk block addresses to be read or written, etc.);
then, the HBA fetches the FIS, and starts a data transfer; on
command completion, the HBA raises an interrupt and writes
on another in-memory area, the Received FIS Structure, to
notify the device driver about the status of the transfer.

An AHCI HBA is a Peripheral Component Interconnect
(PCI) controller, which exposes a set of memory-mapped
PCI Configuration Space registers for the initialization and
configuration of AHCI devices. Moreover, the AHCI HBA
exposes a set of per-port registers (i.e., registers replicated
for each port). Figure 6 shows some of the most important
registers, which include:

o Generic Host Control (GHC): describes the capabilities
and controls the behavior of the HBA (e.g., which
ports the HBA exposes, and which capabilities the HBA
supports, such as NCQ);

o Port Command List Base (CLB): points to the command
list of a specific port;

e Port FIS Base Address (FB): points to an in-memory
area with the received FIS of a port;

e Port Interrupt Status (IS): the interrupt status of a
specific port;

o Port Serial ATA Active (SACT): a bitmask with the
status of each NCQ command entry (e.g., bit at position
’3’ is set if command entry ’3’ has been issued).

B. Applying the monitoring approach to Linux SATA/AHCI

To support SATA/AHCI disks, Linux uses a device driver
splitted in two kernel modules: ahci and libahci. When
loaded, the ahci module requests and maps all memory
regions for the HBA, registers an interrupt handler, and
resets the HBA. The libahci module implements low-level
routines to communicate with the HBA. These modules
interact with the libATA [35] library, which provides a kernel
interface for all ATA and SATA device drivers.

To apply the proposed monitoring approach, we have to
identify the DPI functions for starting and completing I/O
transfers. For the SATA/AHCI driver, these functions are
the ahci_qgc_issue function, which issues a command to the
HBA by writing a command FIS and registers of the HBA,
and the ata_scsi_gc_complete, which is a callback provided
by libATA, and which is invoked during interrupt handling.

When these two probe points are triggered during exe-
cution, we collect a snapshot of memory-mapped registers
and in-memory data structures that belong to the device
driver and to the HBA. We obtain the address of memory-
mapped HBA registers using the PCI kernel APIs (e.g.,
pcim_iomap_table), and the address of in-memory, DMA-
mapped areas (e.g., command list and the received FIS)
by probing the DMA APIs when ahci is loaded (e.g.,
dma_alloc_coherent). We use SystemTap [29] in order to
probe the issue and complete functions, and to inspect HBA
registers and in-memory data structures.
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Figure 6. SATA/AHCI architecture.

V. EXPERIMENTAL EVALUATION

We evaluate our monitoring approach in the context of the
SATA/AHCI device driver of the Linux kernel (presented
in sec. IV). We consider three aspects for the evaluation:
(i) the ability to detect protocol violations, (ii) the amount
of false positives, and (iii) the I/O performance overhead.
These three aspects are evaluated in two sets of experiments:
(i) fault injection experiments, in which we inject faults
in the device driver to force failures (including protocol
violations) and analyze the coverage of the monitor at
detecting them; (ii) fault-free experiments, in which we run
the monitor under heavy workloads, and analyze the rate
of false positives (i.e., alarms generated when there are no
faults), and the performance overhead (i.e., comparing the
I/O throughput with and without the monitor).

A. Fault injection experiments

We performed fault injection experiments on a Linux
system (which we refer to as the System Under Test (SUT))
that is based on the Fedora distribution version 21, and on
the Linux kernel version 3.19. Experiments are orchestrated
by an Experiment Management Software (EMS), which
configures the SUT, including the workload and the faultload
of the experiment, and collects data for later analysis.

Figure 7 shows the experimental setup and the workflow.
The SUT is executed in a virtual machine, while the EMS
is executed in the physical machine that hosts the virtual
machine. This separation is more and more adopted in fault
injection experiments in OS [36], [37], [38], and is necessary
in order to protect the Experiment Management Software
from the faults injected into the SUT: when using a virtual
machine, the injected faults remain isolated within the SUT,
thus allowing the EMS to correctly save the data from the
current experiment, and to start the subsequent one. We use
VMware Workstation 11 to run the SUT within a virtual
machine, which fully emulates a SATA AHCI disk controller
(i.e., the disk controller of the virtual machine is managed

Host machine
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*  Restart VM

Deploy the monitor
Configure the fault injector
Start the workload generator

VM
(System Under Te‘m

—_—
—

Data collection:

« AHCI driver logs
Linux kernel logs
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and accessed by the Linux kernel in the same way of a
physical disk controller, using the ahci device driver) [39].

Commands for executing experiments (e.g., to start the
workload, and to configure the fault injector) are sent
through an SSH connection, and experimental data (e.g.,
logs from the OS, from the monitor, and from user-space
processes) are collected from both a virtual serial connection
and an SSH connection. Experimental data are analyzed to
identify whether the injected fault caused a failure of the
SUT. Possible outcomes of the experiments are:

Figure 7. Fault injection setup.

o The crash or stall of either the OS or of the workload.
They are identified by crash messages, and by checking
the responsiveness of the SUT at the end of the exper-
iment (e.g., the SUT completes all experimental steps
and responds to commands from the EMS);

e Data corruptions, that is, executions that neither crash
nor stall, but where the data are corrupted at the end of
the experiment. They are identified by (i) checking the
contents of the output files produced by the workload
(by comparing them to fault-free executions), and (ii)
checking the consistency of filesystem data structures



(such as damaged directory trees and “orphaned” files)
using the fsck filesystem verification tool;

e No failure of the SUT. This outcome happens when the
injected fault does not propagate within the SUT (e.g.,
corrupted data is never accessed, or is overwritten by
correct data), and is identified by the lack of failures.

Our analysis is focused on I/O protocol violations that
cause data corruption failures. These failures are subtle and
not detectable by simply checking for crashes or stalls; our
monitor fills this gap by detecting I/O protocol violations.
We evaluate the coverage of failure detection, which is the
percentage of experiments where data corruption is detected,
among all experiments with data corruption failures.

We perform three fault injection campaigns by using the
following well-known I/O workloads [40], [41]:

o IOzone: A filesystem benchmarking tool. It generates
a variety of file operations, using several read and write
patterns (e.g., sequential, random, repeated, strided),
sizes (e.g., both small and large record and file sizes),
and APIs (e.g., memory-mapped, asynchronous 1/0);

o Postmark: An I/O benchmark that emulates a large
email server, by performing a mix of data- and
metadata-intensive operations on a pool of random text
files. It first creates the pool of files with uniformly dis-
tributed sizes, and then it performs a sequence (namely
transaction) of randomly selected I/O operations (e.g.,
file creation, deletion, read, and append);

o SQLite: a software library that implements a serverless
transactional SQL database engine. It is exercised by
performing several insert and select queries.

We generate the monitor component by running the SUT
using the IOzone workload. Then, we use the monitor trained
with IOzone for failure detection in all the three fault
injection campaigns. In this way, we are considering both
(i) the case when the workload for training the monitor is
representative of the workload in production (fault injection
experiments under 10zone), and (ii) the case when the work-
load in production differs from training (experiments under
Postmark and SQLite). Executing the 10zone workload for
five minutes was sufficient to train a robust monitor.

We inject faults in the SATA/AHCI device driver during
the execution of the SUT. We adopt the fault injector
developed by Ng and Chen for testing the Rio File Cache
in FreeBSD [42], and later ported to Linux and Minix in
subsequent studies on OS fault tolerance [21], [12]. This
fault injector emulates software bugs that are common in OS
code, according to field failure data [43]. The injector can
emulate assignment faults (i.e., incorrect source or destina-
tion in assignment instruction), control faults (i.e., incorrect
logical condition in loop or branch), parameter faults (i.e.,
incorrect parameter in a function call), omission faults (i.e.,
a missing instruction, by removing it), and pointer faults
(i.e., an incorrect memory pointer computation). Faults are

injected at run-time by replacing the original instructions
with corrupted ones in the binary code of the driver [44].
We perform 210 fault injection experiments, by randomly
selecting the fault type and location at each experiment.

From the experimental data, we identified the outcome
of the injected fault (crash/stall, data corruption, no failure)
and, in the case of data corruption failures, the outcome of
failure detection. Figure 8 summarizes both failure modes
and failure detection. Most of the cases resulted in no
failures, since the injected fault did not impact on the
device driver (e.g., the fault results in corrupted memory
that is overwritten or ignored by the device driver)—this is
a known phenomenon that is often observed in fault injection
experiments [45]. Experiments also include data corruption
failures, that affect both application data (causing incorrect
outputs) and the filesystem (such as, invalid partition infor-
mation; orphaned inodes; corrupted superblocks).

The monitor detected data corruptions in 85% of cases
(Figure 8d). In these experiments, faults caused the device
driver to omit a write on the DI or lead to incorrect writes;
they then resulted in I/O transfers that were not completed,
and to an incorrect sequencing of events that was detected by
the DDP model. Undetected corruptions can be attributed to
the relative simplicity of the monitor, which trades-off less
important information about the DDP (since some fields of
the DI are filtered-out and excluded from monitoring, as
discussed in sec. III-E) in order to be lightweight and robust
against noise (as discussed in the next subsection).

It must also be noted that the failure detection coverage of
the monitor is still high even when the workload for training
the monitor is different than the workload of the experiments
(i.e., the coverage in Figures 8b and 8c is comparable to
the coverage in Figure 8a). This can be explained by the
layered architecture of the storage stack (Figure 1) between
user applications and the device driver: the variations across
workloads (e.g., in terms of number and size of files and of
I/0O system calls) are not perceived by the device driver, since
the filesystem and the block I/O manager (which performs
I/O buffering, caching and scheduling) turns them into a
regular sequence of I/O interactions. This behavior allows to
use the monitoring approach even if there is a lack of a rep-
resentative workload of the production environment, since
using a generic (but enough comprehensive) benchmarking
tool, such as IOzone, suffices to train an effective monitor.

B. Performance and long-running experiments

We evaluate the robustness of the monitoring approach
to false positives, by executing the SUT for a long time
in the absence of faults. We perform three long-running
experiments, by repeatedly executing the IOzone, Postmark,
and SQLite workloads for one day. Again, we train the
monitor using [Ozone, and use this monitor in all three
experiments. To assure a fault-free execution, we check the
correctness of outputs of the workload at each iteration
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and do not inject any fault during the experiment. In these
conditions, the monitor should not detect any failure, thus
any DDP violation raised by the monitor is a false positive.

The long-running experiments gave a promising result: no
false alarms were raised. This result must be interpreted with
caution, since our monitor cannot assure freedom from false
positives. In general, any method based on dynamic program
analysis can be affected by false positives, since execution
traces of large software are not a comprehensive represen-
tation of all possible device driver executions. However,
the model learning technique has been able to extract only
minimal and stable features of the device driver protocol,
that are very likely to hold under fault-free executions. We
avoid false positives by filtering the parts of the device
interface that are prone to very high variability and that
would add little to the failure detection power. This allows to
achieve a reasonable trade-off between false positives, false
negatives, and overhead for practical applications.

Finally, we evaluated the impact of run-time monitoring
on performance. We measured the execution time of the 10-
zone, Postmark, and SQLite workloads, respectively without
and with monitoring. Figure 9 shows the average and the
standard deviation of the execution time, that have been
evaluated from 20 repeated executions of each workload.
Monitoring introduces a very small overhead (mostly due
to the overhead of dynamic probing mechanisms), since the
average execution time increases only by 2.97% in the worst
case (Postmark), and the differences of average execution
time are not statistically significant according to a t-test.

VI. CONCLUSION

We addressed the problem of detecting I/O protocol vio-
lations of storage device drivers at run-time. We proposed a
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Figure 9. Performance overhead of the monitoring approach.

monitoring approach based on a model inference technique,
which automatically learns the device driver protocol with-
out relying on documentation or source code. This approach
has been applied on a complex, real-word case study (the
SATA/AHCI driver of the Linux kernel), showing that it is
a promising solution with a good failure detection coverage,
a low rate of false positives, and small overhead.
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