
Enhancing the Analysis of Error
Propagation and Failure Modes in Cloud Systems

Domenico Cotroneo, Luigi De Simone, Alfonso Di Martino, Pietro Liguori, Roberto Natella
Universit`a degli Studi di Napoli Federico II

{cotroneo, luigi.desimone, roberto.natella}@unina.it, {alf.dimartino, pi.liguori}@studenti.unina.it

Abstract—We argue for novel techniques to understand

how cloud systems can fail, by enhancing fault injection with

distributed tracing and anomaly detection techniques.

I. INTRODUCTION

Cloud computing is becoming an attractive solution for
running services with high-reliability requirements, such as in
the telecom and healthcare domains. However, the reliability
of cloud computing is hampered by the adoption of a complex
stack of “off-the-shelf” components, including OSes, mid-
dleware, datastores, cloud management software, etc., which
expose services to heterogeneous faults [1], [2]. Addressing
these threats entails the systematic adoption of fault injection,
but there are still open issues for its practical adoption.

II. OPEN ISSUES IN FAULT INJECTION

Interpreting the outcome of fault injection experiments is a
key step towards improving reliability. In particular, the analyst
needs to assess the effects of the fault on the target system, and
how they lead to a service failure, as they provide indications
on where to improve fault tolerance. This assessment is
typically pursued by analyzing the spatial and temporal

propagation of errors. In the case of temporal propagation,
the analysis identifies latent errors in the system, which
manifest as a failure only after a period of time. Temporal
propagation represents an opportunity for improving error
handling: for example, by detecting the data affected by these
errors with more thorough consistency checks, and by prevent-
ing that they turn into failures through software rejuvenation;
or, if the error could not be recovered, by enforcing a fail-stop

behavior, i.e., a service is stopped and a failure is notified
to error handlers and/or to the users as soon as it occurs, in
order to reduce its severity. In the case of spatial propagation,
an error propagates across several components or layers of the
cloud system, which increases the risk of cascading failures,
and makes recovery more problematic (e.g., only recovering
the last component in the propagation chain does not correct
errors in the previous components). Spatial propagation can
be prevented by blocking errors at components’ interfaces, by
looking at execution traces from fault injection experiments.

Error propagation analysis too often relies only on the
knowledge, experience and intuition of human analysts, since
existing fault injection solutions provide little support to the

This work has been supported by UniNA and Compagnia di San Paolo in
the frame of “Programma STAR” (project “FIDASTE”).

analyst for interpreting what happened during a fault injection
experiment, which is especially cumbersome for systems with
a large codebase and off-the-shelf software. Moreover, the
analysis is made more difficult by the non-determinism of
cloud systems. As in other types of distributed systems, the
timing and the order of events is often not predictable, and
can change even if there is no failure. Therefore, the analyst
needs to distinguish between variations of the behavior that
are caused by genuine errors, and variations that are caused by
non-determinism and do not impact on the quality of service.

Identifying the failure modes of the system (that is, the
impact of the fault on the service provided by the system) is
another challenging aspect. Cloud systems can exhibit a large
variety of failure modes, and not all these failure modes are
necessarily known by the developers, due to the complexity
of these systems. In the trivial case, the system fails by
exhibiting an outage, but more subtle cases are also possible:
for example, even if the system is available, it can still
provide an incorrect service to the users, by returning wrong
data, exhibiting poor performance, or corrupting the state
of resources, leading to further service failures. Therefore,
it is important to encompass a rich set of potential failure
outcomes. Moreover, it is important to assess whether the
system is able to detect these failures, since this is needed to
trigger recovery. Ideally, the system should point out a failure
by generating an explicit signal (e.g., an exception that can be
handled by the service consumer, or by an automated recovery
mechanism), and by logging as much useful information as
possible about the failure, to let system administrators to
diagnose the causes of the failure. Fault injection can reveal
cases of missed detection that need to be covered.

Finally, accelerating fault injection experiments is a
key challenge to make this approach useful in practice.
From a technical perspective, it is very difficult to properly
automate a large number of fault injection experiments, while
assuring that the injected faults do not propagate from the
target system to the fault injection system. Moreover, after an
experiment, any residual effect must be cleaned-up, in order
to prepare the target system for the next one. Unfortunately,
the target system can corrupt its environment in subtle and
unexpected ways (e.g., by propagating errors in a persistent
datastore, which is the kind of error propagation issues that
fault injection is intended to identify). On the one hand, it
is important to clean-up any residual effect of an experiment
(such as, to restore the state of a datastore, to release stale



cloud computing resources, etc.). On the other hand, this
clean-up can take a significant amount of time, thus increasing
the duration of the experiments. If fault injection experiments
take too long, they may be not affordable by developers.

III. RESEARCH DIRECTIONS

Our current line of research is on supporting the analysis
of error propagation and of failure modes in cloud systems,
through a methodology that combines fault injection, black-
box tracing, and anomaly detection (Fig. 1). The methodology
handles the cloud system as a set of black-box components,
which interact through service-oriented interfaces using
messaging APIs (such as REST and message queues). The
methodology collects traces of executions of the cloud
system, that is, a sequence of external service calls from
users to the cloud system, and of internal service calls from
one internal component of the cloud system to another one.

Modeling)of)normal)
behavior

Anomaly)detection)of)error)
propagation

Internal)
service

Internal)
service

Internal)
service

Communication) layer)
(e.g.,) REST)APIs,)

Message) Queues,) ...)

Traces)of) interD
service) interactions)
under) fault&injected

conditions

Traces)of) interDservice) interactions)
under) fault&free.conditions

External)
service)
interface

W
or
kl
oa
d

time

time

?

?

E
ve
nt
)ID

E
ve
nt
)ID

FAULT'
INJECTED
TRACE

FAULT'
FREE/
TRACE

event)
matching

Fig. 1. Overview of error propagation and failure modes analysis.

Initially, the methodology executes the cloud system under
fault-free conditions (i.e., without fault injection), by applying
a workload with a sequence of service API requests. These
service requests generate further requests among components
inside the cloud system. During the execution of the workload,
the methodology collects a set of fault-free traces that record
all these requests. The traces are processed to create a
model of the normal behavior of the cloud system. Due to
non-determinism, the model generated by the methodology
takes into account the “benign” variability of the interactions
(e.g., different ordering, type, or duration of a subset of the
events) that can occur under fault-free conditions. For this
reason, the methodology adopts a probabilistic approach for
modeling the variability of the training traces.

The methodology then performs a series of fault injection

experiments on the cloud system. From every experiment, the
methodology gets a fault-injected trace, which is individually
analyzed by comparing it to the model of normal behavior,
with the aim to point out anomalies with respect to this
model. Many of the events in the fault-injected trace should
not exhibit any “significant” difference with respect to the
model of normal behavior, since all traces (both the fault-
free and fault-injected ones) are collected under the same

conditions (i.e., same software and hardware configuration,
same workload, etc.); any deviation between a faulty trace
and the model should be attributed to the injected fault, and
reported to the analyst as part of the error propagation.

The results of anomaly detection are visualized by
presenting the events both of the fault-injected and of the
fault-free executions (e.g., the plots on the right side of
Fig. 1). For visualization purposes, only one fault-free
execution is presented to the analyst, by selecting the fault-
free trace that is most similar to the fault-injected one. To
pinpoint the propagation of errors through the interactions, the
methodology matches the events of both traces, and highlights
differences in terms of missing events (i.e., interactions that
are not performed by the cloud system under faulty conditions)
and spurious ones (i.e., interactions that do not happen under
fault-free conditions). For every difference between the
fault-free and fault-injected execution, the methodology uses
the probabilistic model to estimate the likelihood of that
difference, in order to hide noise and to highlight to the analyst
only relevant differences. From these differences, the analyst
can point out whether the error has been propagating across
components (spatial propagation) and whether the errors keep
propagating over a long period of time (temporal propagation).

Similarly, anomaly detection is applied to the interactions
between the cloud system and its users. If there is an anomaly
with respect to the sequence of services invoked by the
workload, and with respect to the responses generated by
these invocations, then the methodology can point out that the
errors propagated into a failure of the cloud system. Moreover,
the methodology correlates these failures with error signals
raised by the cloud service interface, in order to identify cases
where the error signal is delayed with respect to the failure
(i.e., it is not raised in the same service call affected by the
failure), or where the error is not signaled at all. To allow the
methodology to detect the occurrence of service failures even
in the cases when they are not explicitly signaled by the cloud
service interface, the workload performs assertion checks,
which assess the integrity of the state of the cloud system (for
example, after requesting a resource update, the workload
checks that the resource has consistently been updated).

Towards these goals, we foresee the need for addressing
the following aspects: to develop accurate anomaly detection
algorithms for modeling sequences of service interactions in a
cloud system; to efficiently present fault injection experiments
to human analysts, to guide them in the interpretation of error
propagation and failure modes; to leverage anomaly detection
to accelerate fault injection experiments, by identifying the
components where errors were propagated, and selectively
cleaning-up these components.

REFERENCES

[1] D. Cotroneo, L. De Simone, AK Iannillo, A. Lanzaro, and R. Natella.
Dependability evaluation and benchmarking of network function
virtualization infrastructures. In IEEE NetSoft 2015.

[2] D. Cotroneo, L. De Simone, and R. Natella. NFV-Bench: a Dependability
Benchmark for Network Function Virtualization Systems. IEEE Trans.

Net. Serv. Mgmt., 14(4), 2017.


