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ABSTRACT

Cloud management systems provide abstractions and APIs for pro-
grammatically configuring cloud infrastructures. Unfortunately,
residual software bugs in these systems can potentially lead to high-
severity failures, such as prolonged outages and data losses. In this
paper, we investigate the impact of failures in the context wide-
spread OpenStack cloud management system, by performing fault
injection and by analyzing the impact of the resulting failures in
terms of fail-stop behavior, failure detection through logging, and
failure propagation across components. The analysis points out that
most of the failures are not timely detected and notified; moreover,
many of these failures can silently propagate over time and through
components of the cloud management system, which call for more
thorough run-time checks and fault containment.
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1 INTRODUCTION

Cloud management systems, such as OpenStack [49], are a funda-
mental element of cloud computing infrastructures. They provide
abstractions and APIs for programmatically creating, destroying and
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snapshotting virtual machine instances; attaching and detaching
volumes and IP addresses; configuring security, network, topology,
and load balancing settings; and many other services to cloud infras-
tructure consumers. It is very difficult to avoid software bugs when
implementing such a rich set of services: at the time of writing, the
OpenStack project codebase consists of more than 9 million lines of
code (LoC) [4, 55], which implies thousands of residual software bugs
even under the most optimistic assumptions on the bugs-per-LoC
density [41, 72]. As aresult of these bugs, many high-severity failures
have been occurring in cloud infrastructures of popular providers,
causing outages of several hours and the unrecoverable loss of user
data [24, 25, 36, 44].

In order to prevent severe failures, software developers invest
efforts in mitigating the consequences of residual bugs. Examples
are defensive programming practices, such as assertion checking
and logging, to timely detect an incorrect state of the system [18, 38]
and for providing to system operators useful information for quick
troubleshooting [17, 76, 77]. Another important approach to mitigate
failures is to implement fault containment strategies. Examples are
i) interrupting a service as soon as a failure occurs (i.e., a fail-stop
behavior), by turning high-severity failures, such as data losses, into
lower-severity API exceptions that can be gracefully be handled
[5,57, 71]; ii) notifying the cloud management system and operators
about the failures through error logs, so that they can diagnose is-
sues and undertake recovery actions, such as restoring a previous
state checkpoint or backup [19, 75]; iii) separating system compo-
nents across different domains to prevent cascading failures across
components [2, 26, 34].

In this paper, we aim to empirically analyze the impact of high-
severity failures in the context of a large-scale, industry-applied case
study, to pave the way for failure mitigation strategies in cloud man-
agement systems. In particular, we analyze the OpenStack project,
which is the basis for many commercial cloud management products
[54] and is widespread among public cloud providers and private
users [56]. Moreover, OpenStack is a representative real-world large
software system, which includes several sub-systems for managing
instances (Nova), volumes (Cinder), virtual networks (Neutron), etc.,
and orchestrates them to deliver rich cloud computing services.

We adopt software fault injection to accelerate the occurrence of
failures caused by software bugs [9, 45, 74]: our approach deliber-
ately injects bugs in one of the system components and analyzes the
reaction of the cloud system in terms of fail-stop behavior, failure
reporting through error logs, and failure propagation across com-
ponents. We based fault injection on information on software bugs
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reported by OpenStack developers and users [53], in order to char-
acterize frequent bug patterns occurring in this project. Then, we
performed alarge fault injection campaign on the three major subsys-
tems of OpenStack (i.e., Nova, Cinder, and Neutron), for a total of 911
experiments. The analysis of fault injections pointed out the impact
of the injected bugs on the end-users (e.g., service unavailability and
resource inconsistencies) and on the ability of the system to recover
and to report about the failure (e.g., the contents of log files, and the
error notifications raised by the OpenStack service API). Results of
the experimental campaign revealed the following findings:

e In the majority of the experiments (55.8%), OpenStack failures
were not mitigated by a fail-stop behavior, leaving resources in
an inconsistent state (e.g., instances were not active, volumes
were not attached) unbeknownst to the user; In the 31.3% of these
failures, the problem was never notified to the user through excep-
tions; the others were only notified after a long delay (longer than

2 minutes on average). This behavior threatens data integrity

during the period between the occurrence of the failure and its

notification (if any) and hinders failure recovery actions.

In a small fraction of the experiments (8.5%), there was no indi-

cation of the failure in the logs. These cases represent a high risk

for system operators since they lack clues for understanding the
failure and restoring the availability of services and resources;

o Inmostofthe failures (37.5%), the injected bugs propagated across
several OpenStack components. Indeed, 68.3% of these failures
were notified by a different component from the injected one.
Moreover, there were relevant cases of failures that caused subtle
residual effects on OpenStack (7.5%): even after removing the in-
jected bug from OpenStack, cleaning-up all virtual resources, and
restarting the workload on a set of new resources, the OpenStack
services were still experiencing a failure, that could only be re-
covered by fully restarting the OpenStack platform and restoring
its internal database from a backup.

These results point out the risk that failures are not timely de-
tected and notified, and that they can silently propagate through the
system. Based on this analysis, we identify a set of directions towards
more reliable cloud management system. To support future research
in this field, we share an artifact for configuring our fault injection
environment inside a virtual machine, and our dataset of failures,
which includes the injected faults, the workload, the effects of the
failures (both the user-side impact and our own in-depth correctness
checks), and the error logs produced by OpenStack.

In the following, Section 2 elaborates on the research problem; Sec-
tion 3 describes our methodology; Section 4 presents experimental
results; Section 5 discusses related work; Section 6 includes links to
the artifacts to support future research; Section 7 concludes the paper.

2 OVERVIEW ON THE RESEARCH PROBLEM

Mitigating the severity of software failures caused by residual bugs
is a relevant issue for high-reliability systems [11], yet it still rep-
resents an open research challenge. Ideally, in the case that a fault
occurs, a service should be able to mask the fault or recover from it
in a transparent way to the user, such as, by leveraging redundancy.
However, this is often not possible in the case of software bugs. Since
software bugs are human mistakes in the source code, the traditional
fault-tolerance strategies for hardware and network faults often do
not apply. For example, if a service is broken because of a regression
bug, then retrying to execute the service API with the same inputs
would result again in a failure; a retrial would only succeed in the
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case that the software bug is triggered by a transient condition, such
as a race condition [6, 21, 22]. If recovery is not possible, the failed
operation must be necessarily aborted and the user should be noti-
fied [43, 47], so that the failure can be handled at a higher level of the
business logic. For example, the end-user can skip the failed opera-
tion, or put on hold the workflow until the bug is fixed. If the failure
does not immediately generate an exception from the OS or from the
programming language run-time, the service may continue its faulty
execution until it corrupts in subtle ways the results or the state of re-
sources. Such cases need to be mitigated by architecting the software
into small, de-coupled components for fault containment, in order
to limit the scope of failure (e.g., the bulkhead pattern [42, 47]); and
by applying defensive programming practices to perform redundant
checks on the correctness of a service (e.g., pre- and post-conditions
to check that a resource has indeed been allocated or updated). In this
way, the system can enforce a fail-stop behavior of the service (e.g.,
interrupting an API call that experiences a failure, and generating an
exception), so that it can avoid data corruption and limit the outage
to a small part of the system (e.g., an individual service call).

In this work, we study the extent of this problem in the context of a
cloud management system. Applying software fault tolerance princi-
ples in such a large distributed system is difficult since its design and
implementation is a trade-off between several objectives, including
performance, backward compatibility, programming convenience,
etc., which opens to the possibility of failure propagation beyond
fault containment limits. We investigate this problem from three
perspectives, by addressing the following three perspectives.

> In the case that service experiences a failure, is it able to ex-
hibit a fail-stop behavior? If a service request could not be com-
pleted because of a failure, the service API should return an exception
to inform about the issue. Therefore, we experimentally evaluate
whether the service indeed halts on failure and whether the failure is
explicitly notified to the user. In the worst case, the service API nei-
ther halts nor raises an exception, and the state of resources is incon-
sistent with respect to what the user is expecting (e.g.,a VM instance
was not actually created, or is indefinitely in the “building” state).

> Are error reporting mechanisms able to point out the occur-
rence of a failure? Error logs are a valuable source of information
for automated recovery mechanisms and system operators to de-
tect failures and restore service availability; and for developers to
investigate the root cause of the failure. However, there can be gaps
between failures and log messages. We analyze the cases in which
the logs do not record any anomalous event related to a failure, since
the software may lack checks to detect the anomalous events.

> Are failures propagated across the services of the cloud
management system? To mitigate the severity of failures, it is
desirable that failure is limited to the specific service API that is af-
fected by a software bug. If the failure impacts other services beyond
the buggy one (e.g., the incorrect initialization of a VM instance also
causes the failure of subsequent operations on the instance), it is
more difficult to identify the root cause of the problem and to recover
from the failure. Similarly, the failure may cause lasting effects on
the cloud infrastructures (e.g., the virtual resources allocated for a
failed instance cannot be reclaimed, or interfere with other resource
allocations) that are difficult to debug and to recover from. Therefore,
we analyze whether failures can spread across different components
of the system, and across several service calls.
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Figure 1: Distribution of bug types.

3 METHODOLOGY

Our approach is to inject software bugs (§ 3.1, § 3.2) in order to obtain
failure data from OpenStack (§ 3.3). Then, we analyze whether the
system could gracefully mitigate the impact of the failures (§ 3.4).

3.1 Bug Analysis

A key aspect to perform software fault injection experiments is to
inject representative software bugs [9, 16]. Since the body of knowl-
edge on bugs in Python software [58, 67], the programming language
of OpenStack, is relatively smaller compared to other languages, we
seek for more insights about bugs in the OpenStack project. There-
fore, we analyzed the OpenStack issue tracker on the Launchpad
portal [50], by looking for bug-fixes at the source code level, in order
to identify bug patterns [16, 40, 59, 73, 78] for this project. From these
patterns, we defined a set of bug types to be injected.

We went through the problem reports and inspected the related
source code. We looked for reports where: (i) the root cause of the
problem was a software bug, excluding build, packaging and installa-
tion issues; (ii) the problem had been marked with the highest sever-
ity level (i.e., the problem has a strong impact on OpenStack services);
(iii) the problem was fixed, and the bug-fix was linked to the discus-
sion. We manually analyzed a sample of 179 problem reports from
the Launchpad, focusing on entries with importance set to “Critical”,
and with status set to “Fix Committed” or “Fix Released” (such that the
problem report also includes a final solution shipped in OpenStack).
Of these problem reports, we identified 113 reports that met all of the
three criteria. We shared the full set of bug reports (see Section 6).

The bugs encompass several areas of OpenStack, including: bugs
that affected the service APIs exposed to users (e.g., nova-api); bugs
that affected dictionaries and arrays, such as a wrong key used in
image [’imageId’]; bugs that affected SQL queries (e.g., database
queries for information about instances in Nova); bugs that affected
RPC calls between OpenStack subsystems (e.g., rpc.cast was omitted,
or had a wrong topic or contents); bugs that affected calls to external
system software, such as iptables and dsnmasg; bugs that affected
pluggable modules in OpenStack, such as network protocol plugins
and agents in Neutron. Figure 1 shows statistics about the bug types
that we identified from the problem reports and their bug-fixes. The
five most frequent bug types include the following ones.

® Wrong parameters value: The bug was an incorrect method
call inside OpenStack, where a wrong variable was passed to the
method call. For example, this was the case of the Nova bug #1130718
(https://bugs.Jaunchpad.net/nova/+bug/1130718, which was fixed in
https://review.openstack.org/#/c/22431/ by changing the exit codes
passed through the parameter check_exit_code).
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m Missing parameters: A method call was invoked with omitted
parameters (e.g., the method used a default parameter instead of the
correct one). For example, this was the case of the Novabug #1061166
(https://bugs.launchpad.net/nova/+bug/1061166, which was fixed
in https://review.openstack.org/#/c/14240/ by adding the parameter
read_deleted=’yes’ when calling the SQL Alchemy APIs).

m Missing function call: A method call was entirely omitted. For
example, this was the case of the Nova bug #1039400 (https://bugs.
launchpad.net/nova/+bug/1039400, which was fixed in https://review.
openstack.org/#/c/12173/ by adding and calling the new method
trigger_security_group_members_refresh).

® Wrong return value: A method returned an incorrect value (e.g.,
None instead of a Python object). For example, this was the case of the
Nova bug #855030 (https://bugs.launchpad.net/nova/+bug/855030,
which was fixed in https://review.openstack.org/#/c/1930/ by return-
ing an object allocated through allocate_fixed_ip).

m Missing exception handlers: A method call lacks exception
handling. For example, this was the case of the Nova bug #1096722
(https://bugs.launchpad.net/nova/+bug/1096722, which was fixed
in https://review.openstack.org/#/c/19069/ by adding an exception
handler for exception. InstanceNotFound).

3.2 FaultInjection

In this study, we perform software fault injection to analyze the impact
of software bugs [9, 45, 74]. This approach deliberately introduces
programming mistakes in the source code, by replacing parts of the
original source code with faulty code. For example, in Figure 2, the
injected bug emulates a missing optional parameter (a port number)
to a function call, which may cause failure under certain conditions
(e.g., a VM instance may not be reachable through an intended port).
This approach is based on previous empirical studies, which ob-
served that the injection of code changes can realistically emulate
software faults [1, 9, 12], in the sense that code changes produce run-
time errors that are similar to the ones produced by real software faults.
This approach is motivated by the high efforts that would be needed
for experimenting with hand-crafted bugs or with real past bugs: in
these cases, every bug would require to carefully craft the specific
conditions that trigger it (i.e., the topology of the infrastructure, the
software configuration, and the hardware devices under which the
bug surfaces). To achieve a match between injected and real bugs,
we focus the injection on the most frequent five types found by the
bug analysis. These bug types allow us to cover all of the main areas
of OpenStack (API, SQL, etc.), and suffice to generate a large and
diverse set of faults over the codebase of OpenStack.

We emulate the bug types by mutating the existing code of Open-
Stack. The Figure 2 shows the steps of a fault injection experiment.
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Figure 2: Overview of a fault injection experiment

We developed a tool to automate the bug injection process in Python
code. The tool uses the ast Python module to generate an abstract
syntax tree (AST) representation of the source code; then, it scans the
AST by looking for relevant elements (function calls, expressions,
etc.) where the bug types could be injected; it modifies the AST, by
removing or replacing the nodes to introduce the bug; finally, it
rewrites the modified AST into Python code, using the astunparse
Python module. To inject the bug types of Section 3.2, we modify or
remove method calls and their parameters. We targeted method calls
related to the bugs that we analyzed, by targeting calls to internal
APIs for managing instances, volumes, and networks (e.g., which
are denoted by specific keywords, such as instance and nova for the
methods of the Nova subsystem). Wrong input and parameters are
injected by wrapping the target expression into a function call, which
returns at run-time a corrupted version of the expression based on
its data type (e.g., a null reference in place of an object reference,
or a negative value in place of an integer). Exceptions are raised on
method calls according to a pre-defined list of exception types.

The tool inserts fault-injected statements into an if block, to-
gether with the original version of the same statements but in a
different branch (as in step 2 in Figure 2). The execution of the fault-
injected code is controlled by a trigger variable, which is stored in
a shared memory area that is writable from an external program.
This approach has been adopted for controlling the occurrence of
failures during the tests. In the first phase (round 1), we enable the
fault-injected code, and we run a workload that exercises the ser-
vice APIs of the cloud management system. During this phase, the
fault-injected code could generate run-time errors inside the system,
which will potentially lead to user-perceived failures. Afterward, ina
second phase (round 2), we disable the injected bug, and we execute
the workload for a second time. This fault-free execution points out
whether the scope of run-time errors (generated by the first phase) is
limited to the service API invocations that triggered the buggy code
(e.g., the bug only impacts on local session data). If failures still occur
during the second phase, then the system has not able to handle
the run-time errors of the first phase. Such failures point out the
propagation of effects across the cloud management system (see § 2).

We implemented a workload generator to automatically exercise
the service APIs of the main OpenStack sub-systems. The workload
has been designed to cover several sub-systems of OpenStack and
several types of virtual resources, in a similar way to integration
test cases from the OpenStack project [51]. The workload creates
VM instances, along with key pairs and a security group; attaches
the instances to volumes; creates a virtual network, with virtual
routers; and assigns floating IPs to connect the instances to the vir-
tual network. Having a comprehensive workload allows us to point
out propagation effects across sub-systems caused by bugs.

oFF
@
4. Deploy & start

the target system

execution path is
enabled at this point
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Table 1: Assertion check failures.

Name Description
FAILURE IMAGE ACTIVE The created image does not transit into the ACTIVE state
FAILURE INSTANCE ACTIVE The

created instance does not transit into the ACTIVE state

FAILURE SSH It is impossible
to establish a ssh session to the created instance
FAILURE KEYPAIR The creation of a keypair fails

FAILURE SECURITY GROUP

The creation of a security group and rules fails

FAILURE VOLUME CREATED

The creation of a volume fails

FAILURE VOLUME ATTACHED

Attaching a volume to an instance fails

FAILURE FLOATING IP CREATED

The creation of a floating IP fails

FAILURE FLOATING IP ADDED

Adding a floating IP to an instance fails

FAILURE The created
PRIVATE NETWORK ACTIVE network resource does not transit into the ACTIVE state
FAILURE The creation of a subnet fails
PRIVATE SUBNET CREATED
FAILURE ROUTER ACTIVE The created

router resource does not transit into the ACTIVE state
FAILURE The creation of a router interface fails

ROUTER INTERFACE CREATED

The experimental workflow is repeated several times. Every ex-
periment injects a different fault, and only one fault is injected per
experiment. Before a new experiment, we clean-up any potential
residual effect from the previous experiment, in order to be able
to relate failure to the specific bug that caused it. The clean-up re-
deploys OpenStack removes all temporary files and processes and
restores the database to its initial state. However, we do not perform
these clean-up operations between the two workload rounds (i.e.,
no clean-up between the steps 6 and 8 of Figure 2), since we want
to assess the impact of residual side effects caused by the bug.

3.3 Failure Data Collection

During the execution of the workload, we record inputs and outputs
of service API calls of OpenStack. Any exception generated from the
call (APIErrors) is also recorded. In-between calls to service APIs, the
workload also performs assertion checks on the status of the virtual
resources, in order to point out failures of the cloud management
system. In the context of our methodology, assertion checks serve as
ground truth about the occurrence of failures during the experiments.
These checks are valuable to point out the cases in which a fault
causes an error, but the system does not generate an API error (i.e.,
the system is unaware of the failure state). Our assertion checks are
similar to the ones performed by the integration tests as test oracles
[30, 52]: they assess the connectivity of the instances through SSH
and query the OpenStack APIto check that the status of the instances,
volumes and network is consistent with the expectation of the test
cases. The assertion checks are performed by our workload generator.
For example, after invoking the API for creating a volume, the work-
load queries the volume status to check if it is available (VOLUME
CREATED assertion). These checks are useful to find failures not no-
tified through the API errors. Table 1 describes the assertion checks.

If an API call generates an error, the workload is aborted, as no
further operation is possible on the resources affected by the failure
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(e.g., no volume could be attached if the instance could not be cre-
ated). In the case that the system fails without raising an exception
(i.e., an assertion check highlights a failure, but the system does not
generate an AP error), the workload continues the execution (as a
hypothetical end-user, being unaware of the failure, would do), re-
gardless of failed assertion check(s). The workload generator records
the outcomes of both the API calls and of the assertion checks. More-
over, we collect all the log files generated by the cloud management
system. This data is later analyzed for understanding the behavior
of the system under failure.

3.4 Failure Analysis

We analyze fault injection experiments according to three perspec-
tives discussed in Section 2. The first perspective classifies the exper-
iments with respect to the type of failure that the system experiences.
The possible cases are the following ones.

m API Error: In these cases, the workload was not able to correctly
execute, due to an exception raised by a service API call. In these
cases, the cloud management system has been able to handle the
failure in a fail-stop way, since the user is informed by the exception
that the virtual resources could not be used, and it can perform recov-
ery actions to address the failure. In our experiments, the workload
stops on the occurrence of an exception, as discussed before.

m Assertion failure: In these cases, the failure was not pointed out
by an exception raised by a service API. The failure was detected
by the assertion checks made by the workload in-between API calls,
which found an incorrect state of virtual resources. In these cases,
the execution of the workload was not interrupted, as no exception
was raised by the service APIs during the whole experiment, and the
service API did (apparently) work from the perspective of the user.
These cases point out non-fail-stop behavior.

m Assertion failure(s), followed by an API Error: In these cases,
the failure was initially detected by assertion checks, which found
an incorrect state of virtual resources in-between API calls. After
the assertion check detected the failure, the workload continued
the execution, by performing further service API calls, until an API
error occurred in a later API call. These cases also point out issues
at handling the failure, since the user is unaware of the failure state
and cannot perform recovery actions.

m No failure: The injected bug did not cause a failure that could be
perceived by the user (neither by API exceptions nor by assertion
checks). It is possible that the effects of the bug were tolerated by the
system (e.g., the system switched to an alternative execution path to
provide the service); or, the injected source code was harmless (e.g.,
an uninitialized variable is later assigned before use). Since no failure
occurred, these experiments are not further analyzed, as they do not
allow to draw conclusions on the failure behavior of the system.

Failed executions are further classified according to a second
perspective, with respect to the execution round in which the system
experienced a failure. The possible cases are the following ones.
> Failure in the faulty round only: In these cases, a failure oc-
curred in the first (faulty) execution round (Figure 2), in which a bug
hasbeen injected; and no failure is observed during the second (fault-
free) execution round, in which the injected bug is disabled, and in
which the workload operates on a new set of resources. This behavior
is the likely outcome of an experiment since we are deliberately forc-
ing a service failure only in the first round through the injected bug.
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Figure 3: Distribution of log messages severity during a
fault-free execution of the workload.

> Failure in the fault-free round (despite the faulty round):
These cases are concerns for fault containment since the system is
still experiencing failures despite the bug is disabled after the first
round and the workload operates on a new set of resources. This
behavior is due to residual effects of the bug that propagated through
session state, persistent data, or other shared resources.

Finally, the experiments with failures are classified from the per-
spective of whether they generated logs able to indicate the failure. In
order to make more resilient a system, we are interested in whether
it produces information for detecting failures and for triggering re-
covery actions. In practice, developers are conservative at logging
information for post-mortem analysis, by recording high volumes of
low-quality log messages that bury the truly important information
among many trivial logs of similar severity and contents, making
it difficult to locate issues [35, 77, 80]. Therefore, we cannot simply
rely on the presence of logs to conclude that a failure was detected.

To clarify the issue, Figure 3 shows the distribution of the num-
ber of log messages in OpenStack across severity levels, TRACE to
CRITICAL, during the execution of our workload generator, and
without any failure. We can notice that all OpenStack components
generate a large number of messages with severity WARNING, INFO,
and DEBUG even when there is no failure. Instead, there are no mes-
sages of severity ERROR or CRITICAL. Therefore, even if a failure is
logged with severity WARNING or lower, such log messages cannot
be adopted for automated detection and recovery of the failure, as it
is difficult to distinguish between “informative” messages and actual
issues. Therefore, to evaluate the ability of the system to support
recovery and troubleshooting through logs, we classify failures ac-
cording to the presence of one or more high-severity message (i.e.,
CRITICAL or ERROR) recorded in the log files (logged failures), or
no such message (non-logged failures).

4 EXPERIMENTAL RESULTS

In this work, we present the analysis of OpenStack version 3.12.1
(release Pike), which was the latest version of OpenStack when we
started this work. We injected bugs into the most fundamental ser-
vices of OpenStack [14, 70]: (i) the Nova subsystem, which provides
services for provisioning instances (VMs) and handling their life cy-
cle; (ii) the Cinder subsystem, which provides services for managing
block storage for instances; and (iii) the Neutron subsystem, which
provides services for provisioning virtual networks for instances,
including resources such as floating IPs, ports and subnets. Each
subsystem includes several components (e.g., the Nova sub-system
includes nova-api, nova-compute, etc.), which interact through mes-
sage queues internally to OpenStack. The Nova, Cinder, and Neutron
sub-systems provide external REST API interfaces to cloud users.
Figure 4 shows the testbed used for the experimental analysis
of OpenStack. We adopted an all-in-one virtualized deployment of
OpensStack, in which the OpenStack services run on the same VM,
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Figure 4: OpenStack testbed architecture.

for the following reasons: (1) to prevent interferences on the tests
from transient issues in the physical network (e.g., sporadic net-
work faults, network delays caused by other user traffic in our local
data center, etc.); (2) to parallelize a high number of tests on several
physical machines, by using the Packstack installation utility [65] to
have a reproducible installation of OpenStack across the VMs; (3) to
efficiently revert any persistent effect of a fault injection test on the
OpenStack deployment (e.g., file system issues), in order to assure
independence among the tests. Moreover, the all-in-one virtualized
deployment is a common solution for performing tests on Open-
Stack [39, 66]. The hardware and VM configuration for the testbed
includes: 8 virtual Intel Xeon CPUs (E5-2630L v3 @ 1.80GHz); 16GB
RAM; 150 GB storage; Linux CentOS v7.0.

In addition to the core services of OpenStack (e.g., Nova, Neutron,
Cinder, etc.), the testbed also includes our own components to auto-
mate fault injection tests. The Injector Agent is the component that
analyzes and instruments the source code of OpenStack. The Injector
Agent can: (i) scan the source code to identify injectable locations
(i.e., source-code statements where the bug types discussed in § 3.2
can be applied); (ii) instrument the source code by introducing log-
ging statements in every injectable location, in order to get a profile
of which locations are covered during the execution of the workload
(coverage analysis); (iii) instrument the source code to introduce
a bug into an individual injectable location.

The Controller orchestrates the experimental workflow. It first
commands the Injector Agent to perform a preliminary coverage
analysis, by instrumenting the source code with logging statements,
restarting the OpenStack services, and launching the Workload Gen-
erator,but without injecting any fault. The Workload Generator issues
a sequence of API calls in order to stimulate OpenStack services. The
Controller retrieves the list of injectable locations and their coverage
from the Injector Agent. Then, it iterates over the list of injectable lo-
cations that are covered, and issues commands for the Injector Agent
to perform fault injection tests. For each test, the Injector Agent in-
troduces an individual bug by mutating the source code, restarts the
OpenStack services, starts the workload, and triggers the injected
bug as discussed in § 3.2. The Injector Agent collects the logs files
from all OpenStack subsystems and from the Workload Generator,
which are sent to the Controller for later analysis (§ 3.4).

We performed a full scan of injectable locations in the source code
of Nova, Cinder, and Neutron, for a total of 2,016 analyzed source
code files. We identified 911 injectable faults that were covered by the
workload. Figure 5 shows the number of faults per sub-system and
per type of fault. The number of faults for each type and sub-system
depends on the number of calls to the target functions, and on their
input and output parameters, as discussed in § 3.2. We executed one
the test per injectable location, by injecting one fault at a time.
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Figure 6: Distribution of OpenStack failures.

After executing the tests, we found failures respectively in 52.6%
(231 out of 439 tests), 46.4% (125 out of 269 tests), and 61% (124 out
of 203 tests) of tests in Nova, Cinder, and Neutron, for a total of 480.
In the remaining 47.3% of the tests (431 out of 911 tests), instead,
there were neither an API error nor assertion failures: in these cases,
the fault was not activated (even if the faulty code was covered by
the workload), or there was no error propagation to the component
interface. The occurrence of tests not causing failures is a typical
phenomenon that occurs with code mutations, which may not infect
the state even when the faulty code is executed [10, 33]. Yet, the injec-
tions provided us a large and diverse set of failures for our analysis.

4.1 Does OpenStack Show a Fail-Stop Behavior?

We first analyze the impact of failures on the service interface APIs
provided by OpenStack. The Workload Generator (which imperson-
ates a user of the cloud management system) invokes these APIs,
looks for errors returned by the APIs and performs assertion checks
between API calls. A fail-stop behavior occurs when an API returns
an error before any failed assertion check. In such cases, the Work-
load Generator stops on the occurrence of the API error. Instead, it
is possible that an API invocation terminates without returning any
error, but leaving the internal resources of the infrastructure (in-
stances, volumes, etc.) in a failed state, which is reported by assertion
checks. These cases represent violations of the fail-stop hypothesis,
and represent a risk for the users as they are unaware of the failure.
To investigate this aspect, we initially focus on the faulty round of
each test, in which fault injection is enabled (Figure 2).

Figure 6 shows the number of tests that experienced failures,
divided into API Error only, Assertion Failure only, and Assertion Fail-
ure(s), followed by an API Error. The figure shows the data divided
with respect to the subsystem where the bug was injected (respec-
tively in Nova, Cinder, and Neutron); moreover, Figure 6 shows the
distribution across all fault injection tests. We can see that the cases
in which the system does not exhibit a fail-stop behavior (i.e., the
categories Assertion Failure only and Assertion Failure followed by
an API Error) represent the majority of the failures.
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Figure 7 shows a detailed perspective on the failures of assertion
checks. Notice that the number of assertion is greater than the num-
ber of tests classified in the Assertion failure category (i.e., Assertion
Failure only and Assertion Failure followed by an API Error) since a
test can generate multiple assertion failures. The most common case
hasbeen one of the instances not active because the instance creation
failed (i.e., it did not move into the ACTIVE state [52]). In other cases,
the instance could not be reached through the network or could
not be attached to a volume, even if in the ACTIVE state. A further
common case is the failure of the volume creation, but only the faults
injected in the Cinder sub-system caused this assertion failure.

These cases point out that OpenStack lacks redundant checks to as-
sure that the state of the virtual resources after a service call is in the
expected state (e.g., newly-created instances are active). Such redun-
dant checks would assess the state of the virtual resources before and
after a service invocation and would raise an error if the state does
not comply with the expectation (such as a new instance could not
be activated). However, these redundant checks are seldom adopted,
most likely due to the performance penalty they would incur, and be-
cause of the additional engineering efforts to design and implement
them. Nevertheless, the cloud management system is exposed to the
risk that residual bugs can lead to non-fail-stop behaviors, where
failures are notified with a delay or not notified at all. This makes
not trivial to prevent data losses and to automate recovery actions.

Figure 8 provides another perspective on API errors. It shows the
number of tests in which each API returned an error, focusing on 15
out of 40 APIs that failed at least one time. The API with the highest
number of API errors is the one for adding a volume to an instance
(openstack server add volume), provided by the Cinder sub-system.
This API generated errors even when faults were injected in Nova

1
Figure 8: Distribution
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(instance management) and Neutron (virtual networking). This be-
havior means that the effects of fault injection propagated from other
sub-systems to Cinder (e.g., if an instance is in an incorrect state,
other APIs on that resource are also exposed to failures). On the one
hand, this behavior is an opportunity for detecting failures, even if in
alater stage. On the other hand, it also represents the possibility of
a failure to spread across sub-systems, thus defeating fault contain-
ment and exacerbating the severity of the failure. We will analyze
fault propagation in more detail in Section 4.3.

To understand the extent of non-fail-stop behaviors, we also an-
alyze the period of time (latency) between the execution of the
injected bug and the resulting API error. It is desirable that this la-
tency is as low as possible. Otherwise, the longer the latency, the
more difficult is to relate an API error with its root cause (i.e., an
API call invoked much earlier, on a different sub-system or virtual
resource); and the more difficult to perform troubleshooting and
recovery actions. To track the execution of the injected bug, we in-
strumented the injected code with logging statements to record the
timestamp of its execution. If the injected code is executed several
times before a failure (e.g., in the body of a loop), we conservatively
consider the last timestamp. We consider separately the cases where
the API error is preceded by assertion check failures (i.e., the injected
bug was triggered by an API different from the one affected by the
bug) from the cases without any assertion check failure (e.g., the API
error arises from the same API affected by the injected bug).

Figure 9 shows the distributions of latency for API errors that
occurred after assertion check failures, respectively for the injec-
tions in Nova, Cinder, and Neutron. Table 2 summarizes the average,
the 504", and the 90‘" percentiles of the latency distributions. We
note that in the first category (API errors after assertion checks),
all sub-systems exhibit a median API error latency longer than 100
seconds, with cases longer than several minutes. This latency should
be considered too long for cloud services with high-availability SLAs
(e.g., four nines or more [3]), which can only afford few minutes of
monthly outage. This behavior points out that the API errors are
due to a “reactive” behavior of OpenStack, which does not actively
perform any redundant check on the integrity of virtual resources,
but only reacts to the inconsistent state of the resources once they are
requested in a later service invocation. Thus, OpenStack experiences
along API error latency when a bug leaves a virtual resource in an
inconsistent state. This result suggests the need for improved error
checking mechanisms inside OpenStack to prevent these failures.

In the case of failures that are notified by API errors without any
preceding assertion check failure (the second category in Table 2),
the latency of the API errors was relatively small, less than one sec-
ond in the majority of cases. Nevertheless, there were few cases with
an API error latency higher than one minute. In particular, these
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Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella, and Nematollah Bidokhti

Table 3: Logging coverage of high-severity log messages.
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cases happened when bugs were injected in Nova, but the API error
was raised by a different sub-system (Cinder). In these cases, the high
latency was caused by the propagation of the bug’s effects across
different API calls. These cases are further discussed in § 4.3.

4.2 Is OpenStack Able to Log Failures?

Since failures can be notified to the end-user with a long delay, or
even not at all, it becomes important for system operators to get
additional information to troubleshoot these failures. In particular,
we here consider log messages produced by OpenStack sub-systems.

We computed the percentage (logging coverage) of failed tests
which produced at least one high-severity log message (see also
§ 3.4). Table 3 provides the logging coverage for different subsets of
failures, by dividing them with respect to the injected subsystem and
to the type of failure. From these results, we can see that OpenStack
logged at least one high-severity message (i.e., with severity level
ERROR or CRITICAL) in most of the cases. The Cinder subsystem
shows the best results since logging covered almost all of the fail-
ures caused by fault injection. However, in the case of Nova and
Neutron, logs missed some of the failures. In particular, the failures
without API errors (i.e., Assertion Failure only) exhibited the lowest
logging coverage. This behavior can be problematic for recovery
and troubleshooting since the failures without API errors lack an
explicit error notification. These failures are also the ones in need
of complementary sources of information, such as logs.

To identify opportunities to improve logging in OpenStack, we
analyzed the failures without any high-severity log across, with re-
spect to the bug types injected in these tests. We found that MISSING
FUNCTION CALL and WRONG RETURN VALUE represent the 70.7%
of the bug types that lead to non-logged failures (43.9% and 26.8 %,
respectively). The WRONG RETURN VALUE faults are the easiest
opportunity for improving logging and failure detection since the
callers of a function could perform additional checks on the returned
value and record anomalies in the logs. For example, one of the
injected bugs introduced a WRONG RETURN VALUE in calls to a
database API called by the Nova sub-system to update the informa-
tion linked to a new instance. The bug forced the function to return
a None instance object. The bug caused an assertion check failure,
but OpenStack did not log any high-severity message. By manually
analyzing the logs, we could only find one suspicious message with
the only WARNING severity and with little information about the
problem, as this message was not related to database management.

The non-logged failures caused by a MISSING FUNCTION CALL
emphasize the need for redundant end-to-end checks to identify
inconsistencies in the state of the virtual resources. For example, in
one of these experiments, we injected a MISSING FUNCTION CALL
in the LibvirtDriver class in the Nova subsystem, which allows Open-
Stack to interact with the libvirt virtualization APIs [37]. Because
of the injected bug, the Nova driver omits to attach a volume to an
instance, but the Nova sub-system does not perform checks that the
volume is indeed attached to the instance. This kind of end-to-end
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checks could be introduced at the service APl interface of OpenStack
(e.g., in nova-api) to test the availability of the virtual resources at
the end of API service invocations (e.g., by pinging them).

4.3 Do Failures Propagate Across OpenStack?

We analyze failure propagation across sub-systems, to identify more
opportunities to reduce their severity. We consider failures of both
the “faulty” and the “fault-free” rounds, respectively (Figure 2).

In the faulty round, we are interested in whether the injected bug
impacted on sub-systems beyond the injected one. To this aim, we
divide the API errors with respect to the API that raised the error
(e.g., an API exposed by Nova, Neutron, or Cinder). Similarly, we
divide the assertion check failures with respect to the sub-system
that manages the virtual resource checked by the assertion. There
is a spatial fault propagation across the components if an injection
on a sub-system (say, Nova) causes an assertion check failure or an
API error on a different sub-system (say, Cinder or Neutron).

Figure 10a shows a graph with of events occurred during the faulty
round of the tests with a failure. The nodes on the top of the graph
represent the sub-systems where bugs were injected; the nodes on
the middle represent assertion check failures; the nodes on the bot-
tom represent API errors. The edges that originate from the nodes on
the top represent the number of injections that were followed by an
assertion check failure or an API error. Moreover, the edges between
the middle and the bottom nodes represent the number of tests where
an assertion check failure was followed by an API error. The most nu-
merous cases are emphasized with proportionally thicker edges and
annotated with the number of occurrences. We used different shades
to differentiate the cases with respect to the injected sub-system.

The failures exhibited a propagation across OpenStack services in
a significant amount of cases (37.5% of the failures). In many cases,
the propagation initiated from an injection in Nova, which caused
afailure at activating a new instance; as discussed in the previous
subsections, the unavailability of the instance was detected in a later
stage, such as when the user attaches a volume to the instance using
the Cinder APL Even worse, there are some cases of propagation from
Neutron across Nova and Cinder. These failures represent a severe
issue for fault containment since an injection in Neutron not only
caused a failure of their APIs but also impacted on virtual resources
that were not managed by these sub-systems. Therefore, the failures
are not necessarily limited to the virtual resources managed by the
sub-system invoked at the time of the failure, but also to other related
virtual resources. Therefore, end-to-end checks on API invocations
should also include resources that are indirectly related to the API
(such as, checking the availability of an instance after attaching a
volume). For as concerns Cinder, instead, there are no cases of error
propagation from this sub-system across Nova and Neutron.

We further analyze the propagation of failures by considering
what happens during the fault-free round of execution. The fault-
free round invokes the service APIs after the buggy execution path
is disabled as dead code. Moreover, the fault-free round executes
on new virtual resources (i.e., instances, networks, routers, etc., are
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Figure 10: Fault propagation during fault injection tests.

created from scratch). Therefore, it is reasonable to expect (and it
is indeed the case) that the fault-free round executes without expe-
riencing any failure. However, we still observe a subset of failures
(7.5%) that propagate their effects to the fault-free round. These
failures must be considered critical, since they are affecting service
requests that are supposed to be independent but are still exposed to
temporal failure propagation through shared state and resources.
We remark that the failures in the fault-free round are caused by
the injection in the faulty round. Indeed, we assured that previous
injections do not impact on the subsequent experiments by restoring
all the persistent state of OpenStack before every experiment.

Figure 10b shows the propagation graph for the fault-free round.
The most cases, the Nova sub-system was unable to create new in-
stances, even after the injected bug is removed from Nova. A similar
persistent issue happens for a subset of failures caused by injections
in Neutron. These sub-systems both manage a relational database
which holds information on the virtual instances and networks, and
we found that the persistent issues are solved only after that the
databases are reverted to the state before fault injection. This recov-
ery action can be very costly since it can take a significant amount of
time, during which the cloud infrastructure may become unavailable.
For this reason, we remark the need for detecting failures as soon
as they occur, such as using end-to-end checks at the end of service
API calls. Such detection would support quicker recovery actions,
such as to revert the database changes performed by an individual
transaction.

4.4 Discussion and Lessons Learned

The experimental analysis pointed out that software bugs often cause
erratic behavior of the cloud management system, hindering detec-
tion and recovery of failures. We found failures that were notified to
the user only after along delay when it is more difficult to trace back
the root cause of the failure, and recovery actions are more costly
(e.g., reverting the database); or, the failures were not notified at all.
Moreover, our analysis suggests the following practical strategies
to mitigate these failures.

> Need for deeper run-time verification of virtual resources.
Fault injections pointed out OpenStack APIs that leaked resources
on failures, or left them in an inconsistent state, due to missing or
incorrect error handlers. For example, the server-create API failed
without creating a new VM, but it did not deallocate virtual resources
(e.g., instances in “dead” state, unused virtual NICs) created before
the failure. These failures can be prevented through fault injection.
Moreover, residual faults should be detected and handled by means
of run-time verification strategies, which perform redundant, end-
to-end checks after a service API call, to assert whether the virtual
resources are in the expected state. For example, these checks can be
specified using temporal logic and synthesized in a run-time monitor
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[8,13, 64, 79], e.g., alogical predicate for a traditional OS can assert
that a thread suspended on a semaphore leads to the activation of an-
other thread [2]. In the context of cloud management, the predicates
should test at run-time the availability of virtual resources (e.g., vol-
umes and connectivity), similarly to our assertion checks (Table 1).
> Increasing the logging coverage. The logging mechanisms in
OpenStack reported high-severity error messages for many of the
failures. However, there were failures with late or no API errors that
would benefit from logs to diagnose the failure, but such logs were
missing. In particular, fault injection identified function call sites in
OpenStack where the injected wrong return values were ignored by
the caller. These cases are opportunities for developers to add logging
statements and to improve the coverage of logs (e.g., by checking the
outputs produced by the faulty function calls). Moreover, the logs
can be complemented with the run-time verification checks.

> Preventing corruptions of persistent data and shared state.
The experiments showed that undetected failures can propagate
across several virtual resources and sub-systems. Moreover, we
found that these propagated failures can impact on shared state
and persistent data (such as databases), causing permanent issues.
Fault injection identified failures that were detected much later after
their initial occurrence (i.e., with high API error latency, or no API er-
rors at all). In these cases, it is very difficult for operators to diagnose
which parts of the system have been corrupted, thus increasing the
cost of recovery. Therefore, in addition to timely failure detection
(using deeper run-time verification techniques, as discussed above),
itbecomes important to address the corruptions as soon as the failure
is detected, since the scope of recovery actions can be smaller (i.e.,
the impact of the failure is limited specific resources involved by
the failed service API call). One potential direction of research is on
selectively undoing recent changes to the shared state and persistent
data of the cloud management system [69, 75].

4.5 Threats to Validity

The injection of software bugs is still a challenging and open research
problem. We addressed this issue by using code mutations to gen-
erate realistic run-time errors. This technique is widespread in the
field of mutation testing [28, 32, 60, 61] to devise test cases; moreover,
it is also commonly adopted by studies on software dependability
[9, 16, 20, 48, 74] and on assessing bug finding tools [15, 68]. In our
context, bug injection is meant to anticipate the potential conse-
quences of bugs on service availability and resource integrity. To
strengthen the connection between the real and the experimental
failures, we based our selection of code mutations on past software
bugs in OpenStack. The injected bug types were consistent with code
mutations typically adopted for mutation testing and fault injection
(e.g., the omission of statements). Moreover, the analysis of Open-
Stack bugs gave us insights on where to apply the injections (e.g., on
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method calls for controlling Nova, for performing SQL queries, etc.).
Even if some categories of failures may have been over- or under-
represented (e.g., the percentages for failures that were not detected
or that propagated), our goal is to point out the existence of potential,
critical classes of failures, despite possible errors in the estimates of
the percentages. In our experiments, these classes were large enough
to be considered a threat to cloud management platforms.

5 RELATED WORK

> Analysis of bugs and failures of cloud systems. Previous stud-
ies on the nature of outages in cloud systems analyzed the failure
symptoms reported by users and developers, and the bugs in the
source code that caused these failures. Among these studies Li et al.
[36] analyzed failures of Amazon Elastic Compute Cloud APIs and
other cloud platforms, by looking at failure reports on discussion
forums of these platforms. They proposed a new taxonomy to cat-
egorize both failures (content, late timing, halt, and erratic failures)
and bugs (development, interaction, and resource faults). One of the
major findings is that the majority of the failures exhibit misleading
content and erratic behavior. Moreover, the work emphasizes the
need for counteracting “development faults” (i.e., bugs) through “se-
mantic checks of reasonableness” of the data returned by the cloud
system. Musavi et al. [44] focused on API issues in the OpenStack
project, by looking at the history of source-code revisions and bug-
fixes of the project. They found that most of the changes to API are
meant to fix APIissues and that most of the issues are due to “program-
ming faults”. Gunawi et al. analyzed outage failures of cloud services
[25], by inspecting headline news and public post-mortem reports,
pointing out that software bugs are one of the major causes of the
failures. In a subsequent study, Gunawi et al. analyzed software bugs
of popular open-source cloud systems [24], by inspecting their bug
repositories. The bug study pointed out the existence of many “killer
bugs” that are able to cause cascades of failures in subtle ways across
multiple nodes or entire clusters; and that software bugs exhibit a
large variety, where “logic-specific” bugs represent the most frequent
class. Most importantly, the study remarks that cloud systems tend
to favor availability over correctness: that is, the systems attempt
to continue running despite the bugs cause data inconsistencies,
corruptions, or low-level failures are detected, in order to avoid that
users could perceive outages, but putting at risk the correctness of the
service. These studies give insights into the nature of failures in cloud
systems and point out that software bugs are a predominant cause
of failures. While these studies rely on evidence that was collected
“after the fact” (e.g., the failure symptoms reported by the users), we
analyze failures in a controlled environment through fault injection,
to get more detailed information on the impact on the integrity of
virtual resources, error logs, failure propagation, and API errors.

> Fault injection in cloud systems. The fault injection is widely
used for evaluating fault-tolerant cloud computing systems. Well-
known solutions in this field include Fate [23] and its successor Pre-
Fail [29] for testing cloud software (such as Cassandra, ZooKeeper,
and HDFS) against faults from the environment, by emulating at
APT level the unavailability of network and storage resources, and
crashes of remote processes. Similarly, Ju etal. [31] and ChaosMonkey
[46] test the resilience of cloud infrastructures by injecting crashes
(e.g., by killing VMs or service processes), network partitions (by
disabling communication between two subnets), and network traf-
fic latency and losses. Other fault models for fault injection include
hardware-induced CPU and memory corruptions, and resource leaks
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(e.g., induced by misbehaving guests). CloudVal [62] and Cerveira et
al. [7] applied these fault models to test the isolation among hypervi-
sors and VMs. Pham et al. [63] applied fault injection on OpenStack
to create signatures of the failures, in order to support problem diag-
nosis when the same failures happen in production. The fault model
is the main difference that distinguishes our work from previous
studies. Most of them assess software robustness with respect to
external events (e.g., a faulty CPU, disk or network). In other studies,
fault injection has been simulating software failures through process
crashes and API errors, but this is a simplistic form of software bugs,
which can cause generate more subtle effects (such as incorrect logic
and data corruptions, as pointed out by bug studies). In this work, we
injected software bugs inside components by mutating their source
code, to deliberately force their failure, and to assess what happens
in the worst case that a bug eludes the QA process and gets into the
deployed software.

We remark that previous work on mutation testing [27] also adopted
code mutation, but with a different perspective than ours, since we
leverage mutations for evaluating software fault tolerance. Our work
contributes to this research field by showing new forms of analysis
based on the injection of software faults (fail-stop behavior, logging,
failure-propagation). The same approach is also suitable to other
systems of similar size and complexity of OpenStack (e.g., where the
need for coordination among large subsystems raises the risk for
non-fail-stop behavior and failure propagation).

6 EXPERIMENTAL ARTIFACTS

We release the following artifacts to support future research on
mitigating the impact of software bugs: (i) the analysis of Open-
Stack bug reports (https://doi.org/10.6084/m9.figshare.7731629), (ii)
raw logs produced by the experiments (https://doi.org/10.6084/m9.
figshare.7732268), and (iii) tools for reproducing our experimen-
tal environment in a virtual machine (https://doi.org/10.6084/m9.
figshare.8242877).

7 CONCLUSION

In this work, we proposed a methodology to assess the severity of
failures caused by software bugs, through the deliberate injection
of software bugs. We applied this methodology in the context of the
OpenStack cloud management system. The experiments pointed
out that the behavior of OpenStack under failure is not amenable to
automated detection and recovery. In particular, the system often
exhibits a non-fail-stop behavior, in which it continues to execute
despite inconsistencies in the state of the virtual resources, without
notifying the user about the failure, and without producing logs for
aiding system operators. Moreover, we found that the failures can
spread across several sub-systems before being notified and that they
can cause persistent effects that are difficult to recover. Finally, we
point out areas for future research to mitigate these issues, including
run-time verification techniques to detect subtle failures in a more
timely fashion and to prevent persistent corruptions.
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