
Enhancing Failure Propagation Analysis
in Cloud Computing Systems

Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella
Università degli Studi di Napoli Federico II

Naples, Italy
{cotroneo, luigi.desimone, pietro.liguori, roberto.natella}@unina.it

Nematollah Bidokhti
Futurewei Technologies, Inc.

USA
nbidokht@futurewei.com

Abstract—In order to plan for failure recovery, the designers
of cloud systems need to understand how their system can
potentially fail. Unfortunately, analyzing the failure behavior
of such systems can be very difficult and time-consuming, due
to the large volume of events, non-determinism, and reuse of
third-party components. To address these issues, we propose a
novel approach that joins fault injection with anomaly detection
to identify the symptoms of failures. We evaluated the proposed
approach in the context of the OpenStack cloud computing
platform. We show that our model can significantly improve
the accuracy of failure analysis in terms of false positives and
negatives, with a low computational cost.

Index Terms—Fault Injection; Failure Analysis; Anomaly
Detection; Cloud Computing Systems; OpenStack; Debugging

I. INTRODUCTION

Cloud computing is becoming an attractive solution for running
services with high-reliability requirements, such as in the telecom
and healthcare domains [1]–[4]. However, cloud computing
systems are often exposed to unpredictable failure conditions [5].
These failures can propagate across several components or layers
of the system (e.g., storage, virtual network, compute instances,
etc.) in complex ways, leading to cascading effects (failure
propagation) that make recovery actions more problematic.

Therefore, identifying and analyzing failure propagation is an
important activity to design more effective recovery actions. Fault
injection is a relevant approach, which emulates faults to antic-
ipate worst-case scenarios, such as network partitions, high net-
work latency, replica crashes, and I/O exceptions [6]–[11]. Fault
injection has reached a level of maturity that it is routinely used to
reveal failures in real-world systems, including cloud computing
software such as key-value data stores and distributed computing
frameworks (e.g., Cassandra, ZooKeeper) [9], entire cloud com-
puting services (e.g., streaming services deployed by Netflix) [12]
and infrastructures (e.g., IaaS providers such as Amazon) [13].

Nevertheless, there are still open issues for its adoption in cloud
systems. Indeed, as the scale and the complexity of these systems
increase, it becomes harder for developers to identify (and to
analyze) failures that are triggered by fault injection. Furthermore,
failure propagation analysis too often relies on the knowledge,
the experience, and the intuition of human analysts since existing
fault injection solutions provide limited support to the analyst
for understanding what happened during an experiment [14].

The current state of practice is to detect failures (e.g.,
service unavailability, performance degradation) by monitoring
the quality of service during the fault injection test; more
sophisticated solutions detect failures by monitoring properties
expressed with formal specifications, such as finite state

machines [15], relational logic [9], and special-purpose
languages [16]. However, once a service failure has been
triggered by fault injection and detected by monitoring
mechanisms, a human analyst still needs to analyze the chain of
events (e.g., messages) that occurred among the location where
the fault/error is injected and the component that experiences the
service failure. Yet, this failure analysis still relies on intuition
and manual effort of the human analyst [17]. Unfortunately,
manual analysis is too difficult and time-consuming, because of:

• The high volume of messages generated by large dis-
tributed systems that the human analyst needs to scrutinize;

• The non-determinism in distributed systems, in which
the timing and the order of messages can unpredictably
change even if there is no failure, which introduces noise in
the analysis, and increases the effort of the human analyst
to pinpoint the failure (i.e., to discriminate the anomalies
caused by a fault from genuine variations of the system);

• The use of “off-the-shelf” software components, either
proprietary or open-source (such as application frameworks,
middleware, data stores, etc.), whose events and protocols
can be difficult to understand and to manually analyze.

This work aims to provide automated support for analyzing
failures triggered by fault injection in cloud computing systems.
We aim to avoid the human analyst to manually inspect
thousands of events, by automatically identifying the few
relevant events that are related to the injected fault, while
discarding noisy, uninteresting events. To this goal, we propose
an approach that extends fault injection, by combining it with
black-box tracing and anomaly detection for failure analysis.
The driving idea is to train a probabilistic model of the events
in the distributed system under test under fault-free conditions,
by using variable-order Markov Models for analyzing event
sequences. Afterward, the system is tested with fault injection,
and event traces are collected under these faulty conditions. The
faulty event traces are analyzed with anomaly detection by using
the probabilistic model, and the anomalous events are reported
to the human analyst for understanding how to avoid failures.

We experimentally evaluate the proposed approach in the
context of the OpenStack cloud management platform, which is
the basis for many commercial cloud management products [18],
and it is widespread both among public cloud infrastructure
providers and private users [19]. Our experiments show that
the proposed approach can be applied to event traces that are
generated by a large, “off-the-shelf” distributed system, without
relying on knowledge of its internals, with a low rate of false

139

2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)

978-1-7281-4982-0/19/$31.00 ©2019 IEEE
DOI 10.1109/ISSRE.2019.00023

positives (i.e., genuine variations are not mistaken for failure
symptoms) and of false negatives (i.e., actual anomalies caused
by a fault are not missed), and with a low computational cost.

In the following of this paper, Section II elaborates on the
problem addressed by this paper, and provides a motivating ex-
ample; Section III presents the proposed methodology for failure
analysis; Section IV experimentally evaluates the methodology;
Section V discusses related work; Section VI concludes the paper.

II. PROBLEM STATEMENT

To better understand the research problem addressed by this
paper, we discuss an example of fault-injection experiment on the
OpenStack cloud computing platform. OpenStack is a cloud man-
agement system that controls large pools of computing, storage,
and networking resources in a data center. It provides a dashboard
and APIs that can be used both by cloud operators to manage the
infrastructure, and by end-users to offer resources as-a-service.

In our fault-injection experiments, we inject faults into the
three most important services of OpenStack [20], [21]: (i) the
Nova subsystem, which provides services for provisioning
instances (VMs) and handling their life cycle; (ii) the Cinder
subsystem, which provides services for managing block storage
for virtual instances; and (iii) the Neutron subsystem, which
provides services for provisioning virtual networks, including
resources such as floating IPs, ports and subnets for instances.
In turn, these subsystem includes several components (e.g., the
Nova sub-system includes nova-api, nova-compute, etc.), which
interact through message queues internally to OpenStack. The
Nova, Cinder, and Neutron sub-systems provide external REST
API interfaces to cloud users.

A simple graphical representation of a fault-injection
experiment is shown in Fig. 1. This representation shows
remote procedure calls that are made for communication in the
distributed system. These calls are displayed as intervals over the
timeline of the experiment. We consider both API calls between
the client and the OpenStack REST APIs (the topmost sequence
of calls), and internal API calls within OpenStack, which are
performed by Nova, Neutron, and Cinder using message queues
(the other three sequences of calls). In order to see the effects
of the injected fault, we show two subplots: the former shows a
normal execution of the system (fault-free execution), in which
no fault is injected; the latter shows the execution of the system
when a fault is injected in the Nova subsystem (faulty execution).
Since both executions are performed under the same conditions
(i.e., same software and hardware configuration, same workload,
etc.), any deviation between the faulty and the fault-free
execution is considered an anomaly due to the injected fault.

The workload used in this example first creates several
resources (i..e, networks, instances, volumes, etc.), then it
performs basic operations in order to stimulate the different
components of the system (e.g., attaching a volume to an
instance, check the connectivity, reboot an instance, etc.) before
cleaning up the created resources. All these operations are
performed by invoking the OpenStack APIs.

One of these API calls is an asynchronous request for creating
a new VM instance. After the API call ends, OpenStack Nova
takes a few minutes for creating and initializing the instance.
During these operations, we inject a Python exception in order
to force a failure (A).

Fig. 1. A graphical representation of a fault-injection experiment.

Fig. 1 points out that there are several API calls in the fault-
free execution that are missing in the faulty execution (B) since
the injected fault causes a failure that affects several OpenStack
subsystems over a relatively long time period. Indeed, Nova does
not complete the initialization of the VM instance due to the fault,
leaving the VM in an inactive state. Moreover, the OpenStack
Neutron subsystem was also unable to attach the virtual network
to the VM instance. Later on (i.e., after about five minutes) the
workload client experienced a service exception when calling the
API of the Cinder subsystem, which manages storage volumes in
OpenStack (C). Consequently, the workload could not attach the
volume to the VM instance. Both Nova and Neutron do not raise
any API exception, but the failure only became apparent to the
client when invoking the API of the Cinder subsystem. Therefore,
the issue propagates both across subsystems (from Nova to
Neutron and Cinder) and across time, since the client perceives
the failure only after a relatively long time. This behavior is
problematic from the point of view of high-availability, and thus
of defining proper recovery actions, as the propagation delay also
increases the time-to-detect and the time-to-recover the failure.
Furthermore, the longer the propagation chain the more difficult
will be for a developer reasoning about how to best tolerate
the fault, e.g., whether to manage the fault in Nova, Neutron
and/or Cinder and at which time to manage the fault during
the workload. For example, the API could return a more timely
notification of the failure to the client, either by introducing a
callback mechanism in the Nova API that creates the instance or
by returning an error from other API calls to Nova or Neutron.

The analysis of a fault-injection experiment can be inaccurate
due to the non-determinism of the API calls in distributed
systems. For example, the Neutron subsystem uses asynchronous
messages and polling for distributing state updates across its
components, thus such messages could be easily misclassified as
anomalies. Moreover, due to the asynchronous nature of several
APIs, it is difficult to properly identify whether API calls order
does not matter (i.e., is due to non-determinism) or should
be carefully taken into account because of the failure. In this

140

Fig. 2. Overview of the proposed approach.

point, Fig. 1 also highlights events that could be false positives
(D), both among the fault-free and the faulty execution. Thus,
we need to understand if the differences among such two
executions are due to the non-determinism in the system (i.e.,
they are not related to the failure) or not (i.e., they are actually
anomalies). Considering the false positives makes the debugging
more difficult and cumbersome for the human analyst, as each
execution may include hundreds of API calls to analyze with
only a few ones relevant for understanding the failure.

In this work, we propose an algorithm for enhancing the
failure propagation analysis of the fault-injection experiments,
by adopting a rigorous probabilistic approach to pinpoint
unlikely messages that are related to the failure, with the goal
of achieving high accuracy in identifying the true anomalies.

III. PROPOSED METHODOLOGY

Fig. 2 shows an overview of the approach. Firstly, we
instrument the communication APIs of the system (step 1). We
consider a distributed system as a set of black-box components
that interact with each other via public service interfaces (e.g.,
REST APIs, message queues). Therefore, we exercise the
system by applying a workload without injecting any fault (step
2). We record all messages exchanged among the components,

and between the components and the workload client. These
messages constitute the fault-free trace. Several fault-free traces
are collected by executing the same workload several times,
to take into account the natural variability of such traces.

In order to have an accurate model of fault-free system
behavior, we define a probabilistic model that is trained by
the fault-free traces (step 3). Due to non-determinism, this
model considers the “benign” variability of the interactions (e.g.,
different ordering, type, or duration of events) that can occur
under fault-free conditions. After training the model, a fault injec-
tion experiment is performed in the distributed system (step 4),
for each fault encompassed in the analysis. This step will produce
the so-called fault-injected traces (also faulty traces), i.e., one per
experiment. The faulty traces are then analyzed by the proposed
probabilistic model in order to detect the actual deviation(s), i.e.,
the anomaly (ies), from the normal behavior (step 5).

In order to emphasize messages that were omitted because of
the injected fault (i.e. only occurring in fault-free conditions), and
new messages that were caused by the injected fault (i.e., only oc-
curring under faulty conditions), the results of anomaly detection
are visualized by presenting to the human analyst the messages
of both the fault-injected and of a fault-free execution (step 6).

Figure 3 shows a detailed flowchart of the proposed approach.
In the following of this section, we discuss the individual steps
of the workflow.

A. Instrumentation and pre-processing
The proposed approach records and analyzes messages

that occur in the distributed system. Messages are the key
observation point for debugging and verification of distributed
systems, as they reflect well the activity of the distributed
system [22]. For example, nodes perform work when they
receive message requests (e.g., through remote procedure calls),
and reply with messages for providing responses and results;
moreover, nodes use messages to asynchronously notify a new
state to other nodes in the distributed system.

Thus, the first step of our approach consists in instrumenting
the distributed system under test, in order to keep track of
the messages that are sent between nodes during a test. In
general, it is possible to get traces of the communication among
components leveraging run-time tracing techniques, which allow
us to instrument the source- or binary-code and record the
execution of specific points in the software. In particular, our
approach gets information about messages by collecting traces
of communication API invocations made by the distributed
software. For example, in our approach we instrument the calls
to APIs of popular middleware technologies such as REST
frameworks (e.g., Django [23] and Spring [24]) and message
queueing (e.g., AMQP [25] and RabbitMQ [26]). Example
of tracing toolkits are Zipkin [27] (used in this paper), Jaeger
[28], and Appdash [29]. These monitoring tools are familiar
to developers of distributed systems, as they are already used
for debugging, performance monitoring and optimization, root
cause analysis, and service dependency analysis [30], [31].

This instrumentation is a form of “black-box tracing” since
it does not require any knowledge about the internals of the
system under test, but only which are the communication APIs
used by the system. This approach is suitable when testers
do not have a full and detailed understanding of the entire
distributed system; this is the case of distributed systems
developed by large teams (in which testers and developers
might be distinct people), and distributed systems that embed
components developed by third-parties.

The approach records the beginning and the end of every call to
the communication APIs by inserting a probe using the distributed
tracing system. The tracer records all information about the ex-
changed messages, such as the time at which the communication

141

Fig. 3. Detailed workflow of the proposed approach.

API has been called and its duration, the component that invoked
the API (message sender), and the remote service that has been
requested through the API call (called service). We refer to the
calls to communication APIs as events; thus, the execution of the
distributed system generates an event trace. The approach orders
the events in the trace with respect to the timestamp of the event
collector. Our anomaly detection technique is designed to be
tolerant to the non-determinism (e.g., due to random messaging
delays) of the events by using a probabilistic technique, which
will be discussed in the section III-D.

This lightweight approach for event collection allows us
to deploy tracing with low intrusiveness and does not require
more detailed information about the internals of the system.
For example, the tracer within the components does not need
to collect and propagate a session identifier across messages
related to the same session, which would require the human
analyst to customize the data collection according to the specific
application [32] or to collect more extensive information at the
OS- and network-level [33], [34].

B. Data collection

Once the distributed system has been instrumented, it is
executed several times to perform fault injection tests. The
distributed system is monitored during test execution; at the same
time, the system is stimulated with a workload (e.g., by generating
client requests), and a fault is injected into the system. Each test
injects a different fault, and only one fault is injected per test.
For each test, we collect a message trace (fault-injected trace).

In addition to fault-injected traces, we also execute the system
and collect traces without fault injection (fault-free traces).
In general, collecting fault-free traces (also known as golden
runs or reference runs) is a common practice in fault injection
experiments since they are used as a reference to understand how
the system derailed from a correct execution due to the injected
fault [14], [35], [36]. While previous studies used this approach

for the analysis of non-distributed systems (such as embedded
systems), we extend this approach to distributed systems, by
addressing the problems of non-determinism and scalability of
the analysis. To collect fault-free traces, the approach executes
the system N times, by running the same workload used in fault
injection tests, but without injecting any fault. The messages
exchanged in each execution are stored in a fault-free trace, i.e.,
one fault-free trace per workload execution. These N fault-free
traces are then used for training the model of “normal” behavior
of the distributed system. The model will be used as a reference
for analyzing failures. We use more than one fault-free trace
since the model needs to reflect the variability of the execution
that characterizes distributed systems (e.g., the relative ordering
of messages). We expect that the larger is the number of training
traces, the more accurate is the model that represents the normal
behavior. The use of the fault-free traces is discussed more in
detail in the next subsections, and the impact of the number
of training traces is empirically evaluated in Section IV.

Finally, during data collection, we need to take into account
the messages that are not due to the workload but they are
independently generated by background and asynchronous
activities in the system at arbitrary times. For example, these
messages represent events that are internally produced by garbage
collection, resource monitoring, updating database indexes, etc..
Since these messages are not strictly related to the workload,
they can (mistakenly) appear as anomalies during fault injection
tests. For this reason, our approach properly removes such
unrelated events. Therefore, we perform a preliminary analysis
of the system in which no workload is applied. The approach
keeps the system idle for a few minutes before and after a
fault-free execution of the workload and records any background
message into a trace (idle trace). Then, we use the idle trace to
create a dictionary of background events that will be ignored in
the subsequent analysis of the fault-free and fault-injected traces.

142

C. Trace comparison

Internally, the approach represents the events within a trace
with unique identifiers (i.e., symbols), so that two events of the
same type are identified by the same symbol. In particular, we
assign a unique symbol to every distinct pair <message sender,
called service> (e.g., <Cinder, attach volume>). Thus, the
event traces are converted into sequences of symbols.

In order to identify the differences between the faulty and
the normal execution of the system, the approach performs a
string comparison on the fault-injected sequence and one of the
fault-free sequences. In particular, the approach looks for the
longest common subsequence (LCS) of such sequences [37]. The
LCS is a subset of symbols that are present in both sequences
in the same order, and that can be obtained by removing (a
minimal number of) symbols from the original sequences. This
kind of problem is recurrent in computer science, such as in
bioinformatics and in source code versioning (e.g., in the diff
Unix tool), and can be solved with efficient algorithms [38], [39].

To perform the comparison, the approach selects one fault-free
trace among the ones collected at the beginning of the workflow
(Fig. 3). In particular, the approach selects the fault-free trace
most similar to the fault-injected trace since we want to identify
and to filter out from the failure analysis as much common
events as possible (i.e., the approach aims to discard the subset
of messages that also happen with the same type and order in at
least one fault-free sequence), in order to focus the attention of
the human analyst on the anomalous events (i.e., the differences
between the faulty and the most similar fault-free sequence).

The similarity between two strings x and y is measured by
considering the length of the LCS (|LCS(x,y)|) [40], i.e., the
number of symbols that appear in both strings while preserving
the order of symbols. In particular, we compute the normalized

length of the LCS (nLCS), where nLCS(x,y) = |LCS(x,y)|√
lx·ly

and where lx and ly are the lengths of the individual strings
x and y. The approach uses this metric to identify the fault-free
trace of the training set most similar to the fault-injected trace
(selected fault-free trace).

D. Probabilistic modeling

The analysis performed with LCS is still prone to inaccuracies
since there may be differences between the fault-injected
trace and the selected fault-free trace that are caused by
non-deterministic reorderings, and thus are not related to
failures. These differences lead to false positives that may divert
the attention of the human analyst. To overcome this problem,
the approach uses a Markov model to estimate the probability
of an event, in order to evaluate whether the event is anomalous
in a probabilistic sense. Markov modeling is a popular approach
for the probabilistic analysis of sequences of symbols (e.g.,
to predict the probability of a future symbol), such as in
bioinformatics [41], data compression [42], and text and speech
recognition [43]. In our context, we evaluate the probability
of the events marked as anomalies in the previous comparison
performed with LCS. Thus, we use the probabilistic model as
a further reference to analyze the anomalous events. Such a
model takes into account the “benign” variations in the ordering
and type of messages that happen in fault-free conditions.

We opt for a Markov model where the states are a direct
representation of the observed events. However, a simple Markov
chain still does not suffice for our purposes, since the probability
of the next state (i.e., the next event of the sequence) would only
depend on the current state (i.e., the memoryless property). In
general, this is not the case for a sequence of events that can be
generated by a distributed system; in practice, the probability of
an event is correlated with the history of the previous events. For
example, in the case of the OpenStack platform, the occurrence
of an event representing a “volume attach” operation must be
preceded by a sequence of several preliminary operations on
the volume and on the instance to be attached (e.g., an instance
must be created and initialized before attaching volume).

Ultimately, we decide to use higher-order Markov models,
where the probability of events takes into account the history
of the previous states of a sequence. In particular, since
conditioning random variables could vary based on the specific
observed realization, we adopt Variable-order Markov Models
(VMMs). VMMs estimate the probability that a symbol σ can
appear after a sequence s (named context), by counting the
joint occurrences of σ and s in the training sequence to build
the predictor P̂ , for variable cardinalities of s [44].

In this work, we use the notation defined by Begleiter et al.
[44]. Let Σ be a finite alphabet. A learner is given a training
sequence xn

1 = x1x2...xn, where xi ∈ Σ and xixi+1 is the
concatenation of xi and xi+1. Based on xn

1 , the goal is to learn

a model P̂ that provides a probability assignment for any future
outcome given the past. Specifically, for any context s ∈ Σ
and symbol σ ∈Σ, the learner should generate a conditional
probability P̂ (σ|s). The accuracy of the predictor P̂ (·|·) is

typically measured by its average log-loss l(P̂ ,xT
i) with respect

to a test sequence xT
1 =x1...xT :

�(P̂ ,xT
i)=−

1

T

T∑

i=1

logP̂ (xi|x1...xi−1) (1)

There exist many algorithms in the scientific literature for
training and applying VMMs [44]. Our approach uses the
Prediction by Partial Matching - Method C (PPM-C) lossless
compression algorithm [45], which is a variant of the original
PPM algorithm published in 1984 by Cleary and Witten [46]
that includes a set of improvements proposed by Moffat [47].
PPM is a finite-context statistical modeling technique that builds
a predictor by combining several fixed-order context models
[45], with different values of the order, ranging from zero to an
upper bound D (i.e., the maximal order of the Markov model)
[48]. For more detailed information on PPM and the Method C
variant, we refer the reader to the work of Begleiter et al. [44].

In this work, we set the maximum order of the VMMs, i.e.
D, by measuring the number of events that can be triggered
by an individual request from a client of the distributed system.
In response to a client request, the distributed system generates
a sequence of messages among its internal components, until
it reaches again a quiescent state, or it returns a reply to the
client. Since an event is most likely influenced by the previous
events in the context of the same client request, we set D to
the maximum number of events triggered by a client request.
This choice is conservative since this number (e.g., several tens
of events in our case study) tends to be much higher than the
context length chosen in previous studies on VMMs [45].

143

E. Classification procedure

The ultimate result of the proposed approach is to classify
the events into:

• Common events: Events that occurred both in the
fault-injected trace and in at least one of the fault-free
traces, with the same type and order.

• Anomalous events: Differences between the fault-injected
trace and all of the fault-free traces. These events are
further classified into:

– Spurious events: Events that would normally not
happen under fault-free conditions.

– Missing events: Events that happen in fault-free
conditions, but do not happen under fault injection.

The approach trains the VMM by using a set of n − 1
fault-free traces (i.e., all the fault-free traces, except the selected
fault-free trace with the highest similarity to the fault-injected
trace). Then, we apply the VMM to compute the probabilities
of events, in order to determine whether they are anomalous.
Specifically, the approach performs two steps:

� Analysis of LCS differences that only appear in the fault-
injected trace. In the first step, the fault-injected trace takes the
role of the test sequence for the VMM. We focus on symbols of
the test sequence that were highlighted as differences in the previ-
ous LCS analysis. The goal is to confirm whether these symbols
are actually unlikely events, not only with respect to the selected
fault-free trace (i.e., the one used for determining the LCS) but
also according to the whole set of fault-free traces in the training
set. For each event not included in the LCS, we compute the
probability of the event according to the VMM. If the probability
is lower than a threshold εSPURIOUS, then the symbol has a low
likelihood to appear in that position of the sequence; thus, the
VMM confirms that the symbol represents a spurious anomalous
event. Otherwise, the event is considered non-anomalous.

� Analysis of LCS differences that only appear in the selected
fault-free trace. In the second step, the selected fault-free trace
takes the role of the test sequence for the VMM. As for the previ-
ous step, we focus on symbols of the test sequence that were high-
lighted as differences in the previous LCS analysis. In this case,
we consider the events that only appear in the selected fault-free
trace: therefore, from the point of view of the fault-injected trace,
these events represent omissions. This step confirms whether
these omissions are indeed likely, and thus should be considered
anomalies. The approach applies the VMM to the events that only
appear in the fault-free trace, by computing the probabilities of
such events according to remaining fault-free traces in the dataset.
If the probability of the event is higher than a threshold εMISSING,
then there is a high likelihood for the symbol to be in that position
of the sequence. Therefore, the fact that the event is missing
in the fault-injected trace should be considered an anomaly, and
thus it is marked as a missing anomalous event. Otherwise, if
the probability of the event is not high, then the lack of the
event from the fault-injected trace is considered non-anomalous.

We remark that even if the two steps perform similar
comparisons, the results obtained by them are different and
complementary. If the fault-injected trace contains an anomalous
event with a low probability value according to the VMM,
then it is confirmed as spurious. Similarly, if the fault-injected

trace does not contain an event with a high probability value
in the selected fault-free trace, then the event is confirmed to
be an omission. A practical approach is to select conservative
thresholds (e.g., εSPURIOUS=20% and εMISSING=80%), so that
the VMM can filter out most of the LCS differences that are
not actually spurious/missing events; and to leave to the human
analyst the decision about the uncertain events. Therefore, the
accuracy of the probabilistic model is an important factor that
makes this approach suitable in practice. The accuracy of our
approach is further analyzed in the rest of the paper.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the approach in the context of fault
injection experiments in the OpenStack platform. In § IV-A, we
present the experimental setup, and in § IV-B and § IV-C we
report on the accuracy and performance of the proposed approach.

A. Experimental Setup

In our fault-injection experiments, we targeted OpenStack
version 3.12.1 (release Pike), deployed on Intel Xeon servers
(E5-2630L v3 @ 1.80GHz) with 16 GB RAM, 150 GB of disk
storage, and Linux CentOS v7.0, connected through a Gigabit
Ethernet LAN.

We injected faults during the execution of OpenStack
components, by simulating exceptional conditions during the
interactions between components. We targeted the internal APIs
used by OpenStack components for managing instances, volumes,
networks, and other resources. For example, we injected faults
during calls to the nova-compute component within the Nova
subsystem to manage new instances. The injected faults represent
exceptional cases, e.g., a resource that is not found or unavailable,
a processing delay when retrieving a resource, or an incorrect
value caused by the user, the configuration, or a bug inside Open-
Stack. In particular, we considered the following kind of faults:

• Throw exception: An exception is raised on a method
call, according to pre-defined, per-API list of exceptions;

• Wrong return value: A method returns an incorrect value.
In particular, the returned value is corrupted according to its
data type (e.g., we replace an object reference with a null
reference, or replace an integer value with a negative one);

• Wrong parameter value: A method is called with an
incorrect input parameter. Input parameters are corrupted
according to the data type, as for the previous fault type;

• Delay: A method is blocked for a long time before
returning a result to the caller. This fault can trigger
timeout mechanisms inside OpenStack or can cause a stall.

We performed three distinct fault injection campaigns, in which
we applied three different workloads described in the following.

� New deployment workload (DEPL): This workload config-
ures a new virtual infrastructure from scratch, by stimulating all
of the target subsystems (i.e., Nova, Neutron, and Cinder) in a
balanced way. This workload creates VM instances, along with
key pairs and a security group; attaches the instances to an exist-
ing volume; creates a virtual network consisting in a subnet and
a virtual router; assigns a floating IP to connect the instances to
the virtual network; reboots the instances, and then deletes them;

� Network management workload (NET): This workload
includes network management operations, in order to stress

144

more the Neutron subsystem and virtual networking. The
workload initially creates a network and a VM, then generates
network traffic via the public network. After that, it creates
a new network with no gateway, brings up a new network
interface within the instance, and generates traffic to check
whether the interface is reachable. Finally, it performs a router
rescheduling, by removing and adding a virtual router resource;

� Storage management workload (STO): This workload
performs storage management operations on instances and
volumes, in order to stress more the Nova and Cinder subsystems.
In particular, the workload creates a new volume from an image,
boots an instance, then rebuilds the instance with a new image
(e.g., as it would happen for an update of the image). Finally,
it performs a cleanup of the resources.

All of these workloads invoke the OpenStack APIs, which
are provided by the Nova, Cinder, and Neutron subsystems. We
implemented the workloads by reusing integration test cases
from the OpenStack Tempest project [49], since these tests are
already designed to trigger several subsystems and components
of OpenStack and their virtual resources. We selected this kind
of workload in order to point out propagation effects across
subsystems that may be caused by fault injection.

In-between calls to service APIs, our workload generator
performs assertion checks on the status of the virtual resources,
in order to reveal failures of the cloud management system.
In particular, these checks assess the connectivity of the
instances through SSH and query the OpenStack API to ensure
that the status of the instances, volumes, and the network is
consistent with the expectation of the tests. In the context of our
methodology, assertion checks serve as ground truth about the
occurrence of failures during the experiments (i.e., a reference
for evaluating the accuracy of the proposed approach). We
consider an experiment as failed if at least one API call returns
an error (API error) or if there is at least one assertion check
failure (assertion check failure). Before every experiment,
we clean-up any potential residual effect from the previous
experiment, in order to ensure that the potential failure is only
due to the current injected fault. To this end, we re-deploy
the cloud management system, remove all temporary files and
processes, and restore the OpenStack database to its initial state.

In order to find all the injectable locations in Nova, Neutron,
and Cinder, we performed a full scan of the source code
according to the fault types described above. Then, for each
workload, we identified the injectable locations that were
covered by the workloads (i.e., we run the workload without
injecting anything), and we performed one fault injection
test per covered location. In total, we performed 2,137 fault
injection tests, and we observed failures in 1,432 tests (67%).
In the remaining tests (33%), there were neither API errors nor
assertion failures, since the fault did not affect the behavior
of the system (e.g., the corrupted state is not used in the rest of
the experiment). This is a typical phenomenon that often occurs
in fault injection experiments [50], [51]; yet, the experiments
provided us a large and diverse set of failures for our analysis.

Table I shows, for each workload, the number of unique
events (i.e., the events with different pair <message sender,
called service>) observed in the distributed system during the
execution of the workloads, the average length of the fault-free

TABLE I
WORKLOAD CHARACTERISTICS

Workload Num.
unique
events

Avg. num.
of events per

fault-free trace

Num.
of total

exps.

Num. of
failed
exps.

DEPL 53 243 945 449
NET 37 212 290 206
STO 34 85 902 777

sequences (in term of number of events in the trace), the total
number of fault injection experiments for the workload, and
the number of experiments that experienced at least one failure.
The number of unique events and the total number of events
reflects the extent and diversity of the work put on the system.
We notice that DEPL is the most extensive workload in terms
of both distinct operations and the total number of operations,
followed by NET and by STO. These differences among the
workloads are meant to evaluate the approach under different
levels of complexity and non-determinism.

We used the distributed tracer Zipkin for collecting message
traces. We instrumented the following communication points:

• The OSLO Messaging library, which uses a message queue
library, by exchanging messages with an intermediary
queuing server (RabbitMQ) through RPC messages. These
messages are used for communication among OpenStack
subsystems;

• The RESTful API libraries of each OpenStack subsystem,
i.e., the novaclient for Nova (it implements the OpenStack
Compute API [52]), the neutronclient for Neutron (it
implements the OpenStack Network API [53]), and the
cinderclient for Cinder (it implements the OpenStack
Block Storage API [54]). These interfaces are used for
communication between OpenStack and its clients.

In total, we instrumented only 5 selected functions of these
components (e.g., the cast method of OSLO to broadcast
messages), by adding very simple annotations only at the
beginning of these methods, for a total of 20 lines of code. We
neither added any further instrumentation to the subsystems
under test nor used any knowledge about OpenStack internals.

B. Accuracy evaluation

We evaluated the accuracy of the proposed approach in
terms of false positives and false negatives. False positives are
non-anomalous events that are mistakenly labeled as anomalous
(either spurious or missing) by the proposed approach. False
negatives are anomalous events that are not identified by the
approach (i.e., they are labeled as non-anomalous).

Our experiments generated about half a million events across
more than two thousands of execution traces. A key concern
for evaluating anomaly detection is the need for a reliable
ground truth about the actual label of the events (anomalous
or non-anomalous). Unfortunately, manually assigning labels
to such a large set of data is prone to errors and unfeasible
in practice. Thus, we adopt an automated approach. In order
to understand which suspicious event (i.e., spurious or missing
events) is not actually anomalous, we performed an analysis
using an increasing number of sequences of distinct fault-free
executions. Since such executions represent the normal behavior

145

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of training traces

0

1

2

3

4

5

6

7

%
 F

al
se

 P
o

si
ti

ve
s

(a) New deployment workload (DEPL).

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of training traces

0

1

2

3

4

5

6

7

%
 F

al
se

 P
o

si
ti

ve
s

(b) Network management workload (NET).

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of training traces

0

1

2

3

4

5

6

7

%
 F

al
se

 P
o

si
ti

ve
s

(c) Storage management workload (STO).

Fig. 4. False positives analysis.

TABLE II
FALSE NEGATIVES ANALYSIS.

Workload type LCS LCS with VMM

DEPL 6.35% 7.00%
NET 0% 0.91%
STO 0.88% 1.37%

of the system, every anomaly identified by the approach should
be considered as a false positive.

As a term of comparison, we consider both the full approach,
denoted as “LCS with VMM”, and a baseline approach denoted
as “LCS”. The “LCS” approach represents a simplistic approach
to failure analysis that just aligns and compares traces without
using a probabilistic model to account for non-deterministic
variations. In this way, we can separately evaluate the relative
impact on the accuracy of LCS and of the VMM.

For each workload, we collect a set of fault-free traces an
order of magnitude larger than the set of trace used to train
the model. Then, we randomly choose n traces to train the
model before evaluating the approach with other m distinct
fault-free traces. The n training traces and the m test traces are
always disjoint sets. We vary the number of training traces (i.e.,
n=5,6,...,20) in order to evaluate the impact of the size of the
training set on the accuracy of the approach. Furthermore, we
perform tens of repetition for each fixed value of n, with different
random selections of the training traces and of the test traces.
For each repetition, we compute the percentage of anomalies
(either spurious or missing events) with respect to the length of
the compared sequences. This provides us a metric to evaluate
the ratio of the false alarms over the total number of events.

Figure 4 shows, for each workload, how the average
percentage of false positives varies with the number n of
training traces. For each data point, the sub-figures show a
vertical error bar representing the standard deviation of the
percentage of false positives across repeated evaluations. We
found that increasing the number n of training traces brings an
incremental reduction of the percentage of false positives. In all
cases, the percentage settles around 1% on average for “LCS with
VMM”. The simpler “LCS” approach has a higher percentage
of false positives, which exceeds the 6% in the case of the first
two workloads, and 4% in the case of the third workload.

We can also see that the “LCS with VMM” approach is less
sensitive to the size of the set of training traces when the workload

is very extensive (i.e., DEPL and NET). Indeed, the average
percentage of false positives is reduced by at most 1% with
respect to the case of a small training set (n=5), while the “LCS”
exhibits a wider variation. Our approach provides a percentage of
false positives almost stable for all the number of training traces,
regardless of the workload; moreover, the uncertainty intervals
are overlapping for all values of n. The lower sensitivity to the
size of the training set makes the “LCS with VMM” approach
more predictable and easier to apply in practice.

Overall, the curves point out that the VMM can improve
accuracy, especially for lower sizes of the training set. The
difference of accuracy between the VMM and the plain LCS
is wider when the number of events in the workload is higher
(DEPL and NET): in fact, in these cases, the LCS string
comparison technique generates a high percentage of false
positives due to the difficulty at aligning a large number of
events with several differences in the middle of the traces. In
the case of a workload with a shorter number of events (STO),
the LCS analysis provides a lower percentage of false positives
and, thus, the gap with the VMM is less pronounced.

To evaluate false negatives, we focus on the experiments that
experienced at least a failure. We remark that we consider an
experiment as failed if at least one API returns an error or if
there is at least an assertion check failure during the execution
of the workload. Since the VMM is applied in pipeline after the
LCS, there is a risk that the VMM misclassifies an anomalous
event as non-anomalous, thus neglecting the failure-related
events (i.e., a false negative). In the ideal case, the percentage
of false negatives for the VMM matches the LCS. We expect
that, if the VMM is accurate enough, the percentages of false
negatives for the VMM and for the LCS should be very close.

Before applying the LCS and VMM approaches, we
conservatively remove all the uncertain event types that were
marked as false positives in the previous analysis in at least
one case. Afterward, if at least one of the remaining events
is identified as an anomaly, then we consider such an event as a
true anomaly. Otherwise, if there is no true anomaly, we consider
the experiment as a case of a false negative. We evaluate the false
negatives by measuring the percentage of failures with no anoma-
lies reported over all the experiment that experienced a failure.

This method of evaluation is very conservative since we are
entirely removing event types that could lead to false positives.
Even if these events could have represented true anomalies in

146

5 10 15 20 25 30 35 40
Number of training traces

0

100

200

300

400

T
im

e
(s

)

(a) Training time while increasing the
number of the training traces.

0 2000 4000 6000 8000 10000
Number of experiments

0

50

100

150

200

250

300

350

T
im

e
(s

)

(b) Classification time while increasing
the number of the experiments.

0 500 1000 1500 2000 2500
Number of events per trace

0

100

200

300

400

500

600

T
im

e
(s

)

(c) Training time while increasing the
size of the traces.

0 500 1000 1500 2000 2500
Number of events per trace

0

200

400

600

800

T
im

e
(s

)

(d) Classification time while increasing
the size of the traces.

Fig. 5. Computational cost of the proposed approach.

some experiments, we ignore anomalies raised for these events,
thus restricting the chances of the VMM to point out the failure.
However, this approach assures that we do not over-estimate
the ability of the VMM at identifying true anomalies since we
only take into account anomalies for events that were never
affected by false alarms in our previous extensive analysis.

We executed this analysis for each workload and for different
choices of the number n of training traces (n= 5,10,15,20).
Table II shows the percentage of experiments that experienced a
failure, and where the failure was not detected by the approach.
This metric is computed by evaluating the number of failed
tests in which the algorithm points out no true anomalies
for the experiment. The metric is not necessarily 1 for the
“LCS” approach since there were failures in our fault injection
experiments in which there were neither omitted nor spurious
messages (e.g., 6.35% of experiments in DEPL). This behavior
happened in the case of “local” failures of individual OpenStack
components, which did not perform the expected job, but still
sent and received the same set of messages of fault-free runs.

We found that the percentage does not vary for different values
of n (therefore, the table only reports one value per configuration).
Moreover, we found that “LCS” and “VMM” provide similar
results (the differences is always lower than 1% for all the
workloads). It is important to recall that this is an ideal case: since
VMM is applied in cascade after LCS, the VMM cannot identify
new failures beyond the “suspect” events pointed out by LCS. In-
stead, there is a risk that the VMM filters out some of these events,
potentially causing false negatives. However, this is never the case,
as the “VMM” always raises at least one true positive, even if few
anomalies are mistaken as false negatives. This result highlights
that the proposed approach can avoid many false positives with
a negligible risk of missing a test with a failure. This result is
valuable for human analysts since they can focus their debugging
activities on a few, specific events that are actually failure-related.

Moreover, we looked in detail at the log messages that were
generated by the tests for which we had false negatives. We found
that false negatives only occur in failures with no propagation
across components. For example, a failure during the cleanup of
a resource at the end of the workload typically does not affect
any other subsequent operation. For this reason, there is a higher
percentage of false negatives in the DEPL workload, since this
workload creates (and, thus, deletes) more resources. Conversely,
the approach reveals 0.91% cases of false negatives in the NET
workload since it does not contain any cleanup operation, suggest-
ing that the approach is very accurate in terms of false negatives.

C. Performance evaluation

We evaluated the computational cost of the proposed
approach, by measuring the time taken for analyzing the event
traces, both at training and at classifying them. We performed
the analysis with respect to increasing volumes of data, i.e., by
varying the number of traces to analyze and the number of the
events per-trace (i.e., the length of the sequences of symbols).

Figure 5a shows how the time to train the model grows
with the number of training traces. As described in the
Subsection IV-B, when the number of training traces increases,
the accuracy of the training model improves. However, a large
number of fault-free traces increases both the time for executing
more fault-free runs, as well as the computational time for the
data analysis, with an approximately linear trend. However, the
computational cost imposed by VMM seems small enough for
practical purposes, since the duration of the data analysis is
close to 5 minutes for up to 40 training traces.

Figure 5b shows the time for processing an increasing number
of fault injection tests (up to 10,000 fault injection tests), for a
fixed number and size of training traces (N=10). The duration
increases linearly, but with a lower trend than the previous
cases. This is due to the fact that most of the computational
cost of the VMM algorithm comes from the training phase,
while the estimation phase takes a relatively small amount of
time. Therefore, the VMM approach can scale well for high
numbers of fault injection tests.

Figure 5c gives an indication of the time to train the model
when the number of events per trace increases, for a fixed
number of training traces (N = 10). The computational cost
also grows linearly with the length of the traces, with a slope
similar to the previous analyses. In the worst case of thousands
of events per trace, the duration of the training can grow up
to about 6 minutes, which is still a reasonable duration.

Finally, Figure 5d shows the duration of event classification,
when the number of events per trace increases, for a fixed
number of traces to analyze (2,000 traces). In the worst case,
the duration of the training can grow up to about 13 minutes.

V. RELATED WORK

Research studies on debugging distributed systems lead to a
variety of profiling techniques to pinpoint bugs and performance
bottlenecks. Aguilera et al. [55] collect black-box network traces
of communications between hosts, in order to analyze requests
as they move through the system (e.g., web requests across the
tiers of a web application). Their approach infers causal paths
of the requests, by tracing call pairs (i.e., request messages,

147

and their corresponding responses), and by analyzing statistical
correlations. However, this approach focuses on synchronous
(RPC-style) interactions between components, and it is not
meant to analyze asynchronous interactions (i.e., the server
immediately replies to a request, before issuing causally-related
requests and performing more work) and rare events (as the
approach focus on the most frequent interactions).

Magpie [34] and Pinpoint [56] reconstruct causal paths by
using more sophisticated tracing infrastructures, by tracing
detailed events at the OS-level and at the application server
level. The tracing tags incoming requests with a unique path
identifier, and associates resource usage throughout the system
with that identifier. This fine-grain tracing approach does not
rely on statistical inference and can provide high accuracy, but
it also brings considerable complexity, which makes it difficult
to deploy it in practice, especially when considering cloud
computing infrastructures with many heterogeneous components
(e.g., OSes, middleware, interpreters, etc.).

Gu at al. [33] proposes a methodology to extract knowledge on
distributed system behavior of request processing without source
code or prior knowledge. The authors construct the distributed
system’s component architecture in request processing and
discover the heartbeat mechanisms of target distributed systems.

Pip [16] is a system for automatically checking the behavior
of a distributed system against programmer-written expectations
about the system. Pip provides a domain-specific expectations
language for writing declarative descriptions of the expected
behavior of large distributed systems and relies on user-written
annotations of the source code of the system to gather events
and to propagate path identifiers across chains of requests. This
approach provides flexibility for the analysis but requires access
to the source code, and non-negligible efforts to annotate it.

More recent studies contributed to tools resembling debuggers,
but for distributed systems. Pensieve [57] is an approach
for producing the path to failure, in a similar way to delta
debugging: it combines static analysis, and re-execution of the
system with iteratively-refined logging, in order reconstruct the
intermediate path backward from the failure to the user inputs
and events that cause the failure. Friday [58] is a distributed
debugger that allows developers to replay a failed execution
of a distributed system, and to inspect the execution through
breakpoints, watchpoints, single-stepping, etc., at the global-state
level. ShizViz [59] is an interactive tool for visualizing execution
traces of distributed systems, which allows developers to
intuitively explore the traces and to perform searches; moreover,
the tool provides support for comparing distributed executions
with a pairwise comparison, even if without probabilistic
techniques to filter-out benign variations due to non-determinism.

Recent fault injection solution addressed cloud computing sys-
tems. The Fate [9] tool, and its successor PreFail [10], simulate
disk failures, network partitions, and crashes of nodes, by explor-
ing multiple occurrences of faults during the same experiment,
to test recovery procedures more thoroughly (e.g., at tolerating
further network/disk faults occurring during recovery). To address
the combinatorial explosion of experiments, these tools adopt
user-programmable policies to prune redundant experiments
(e.g., injections in symmetric states or in paths that were already
covered). Ju et al. [6], ChaosMonkey [12], and Jepsen [60] test
the resilience of cloud infrastructures by injecting crashes (e.g.,

by killing VMs or service processes), network partitions (by dis-
abling communication between two subnets), and network traffic
latency and losses. CloudVal [7] and Cerveira et al. [11] use fault
injection (CPU and memory corruptions, resource leaks) to test
the isolation among hypervisors and VMs. Pham et al. [8] applied
fault injection on OpenStack to create signatures of the failures,
in order to support problem diagnosis when the same failures
happen in production. Once fault injection reveals a failure, in
most cases it is the tester’s responsibility to look at what happened
during the test, and come up with an interpretation of the issue
and of a potential solution to make the system more fault-tolerant.

Our approach differs from anomaly detection solutions using
ML models or employing self-adapted monitoring [61]–[63], and
it is unique in the design space of distributed debugging tools.
To the best of our knowledge, this is the first approach that
applies distributed debugging techniques for interpreting the fault
injection experiments. In the context of fault injection, the fault-
free executions are used as a reference for identifying anomalies
in fault-injected executions performed under the same conditions
(same workload, same node deployment, etc.): therefore, the ap-
proach does not rely on programmer-written specifications to iden-
tify failures (even if such specifications could cooperate with our
approach to gain further insights); moreover, our approach does
not rely on inferring causal relationships (which requires more
intrusive instrumentation and may be inaccurate for asynchronous
and rare interactions). Since the approach only relies on modeling
the observed sequences of events, it can be easily deployed and
integrated into interactive tools for debugging and visualization,
to provide more robust trace comparison and analysis abilities.

VI. CONCLUSION

In this paper, we propose a technique for analyzing execution
traces of distributed systems under fault injection, by comparing
the executions to fault-free ones in order to point out anomalies.
To address the problem of non-determinism (which may lead to
“benign” anomalies not actually related to failures) we develop
a sequence comparison approach supported by a probabilistic
model. The probabilistic model is built from a group of several
fault-free execution traces, in order to reflect “benign” variations
that normally occur in the distributed system. Moreover, to make
the approach applicable to black-box systems and not reliant on
intrusive instrumentation, we base our probabilistic model only on
externally-observable traces of messages, which are analyzed as
sequences of symbols using Variable-order Markov Models. We
evaluated the approach within the OpenStack cloud computing
platform: we found that the VMM limits the false positives
compared to a non-probabilistic comparison of execution
sequences, without significant loss in terms of false negatives.
Moreover, the VMM is lightweight enough to be applicable with
a low computational cost. Future development is to integrate the
approach with tools for fault injection and debugging, such as
for reporting the anomalies to the users and for clustering fault
injection tests to better support the human analysts.

ACKNOWLEDGMENTS

This work has been partially supported by the PRIN
2015 project “GAUSS” funded by MIUR (Grant n.
2015KWREMX 002) and by UniNA and Compagnia di
San Paolo in the frame of Programme STAR.

148

REFERENCES

[1] N. Sultan, “Making use of cloud computing for healthcare provision:
Opportunities and challenges,” International Journal of Information
Management, vol. 34, no. 2, pp. 177–184, 2014.

[2] M.-H. Kuo, “Opportunities and challenges of cloud computing to improve
health care services,” Journal of medical Internet research, vol. 13, no. 3,
p. e67, 2011.

[3] C. Doukas and I. Maglogiannis, “Bringing iot and cloud computing
towards pervasive healthcare,” in Proc. of the 6th International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing.
IEEE, 2012, pp. 922–926.

[4] Z. Yin, F. R. Yu, S. Bu, and Z. Han, “Joint cloud and wireless networks
operations in mobile cloud computing environments with telecom operator
cloud,” IEEE Transactions on Wireless Communications, vol. 14, no. 7,
pp. 4020–4033, 2015.

[5] P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu, R. Buyya, and
R. Ranjan, “Emergent failures: Rethinking cloud reliability at scale,” IEEE
Cloud Computing, vol. 5, no. 5, pp. 12–21, Sep. 2018.

[6] X. Ju, L. Soares, K. G. Shin, K. D. Ryu, and D. Da Silva, “On fault
resilience of OpenStack,” in Proc. SoCC, 2013.

[7] C. Pham, D. Chen, Z. Kalbarczyk, and R. K. Iyer, “CloudVal: A framework
for validation of virtualization environment in cloud infrastructure,” in
Proc. DSN, 2011.

[8] C. Pham, L. Wang, B.-C. Tak, S. Baset, C. Tang, Z. T. Kalbarczyk, and R. K.
Iyer, “Failure diagnosis for distributed systems using targeted fault injection,”
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 503–516, 2017.

[9] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C.
Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen, and D. Borthakur, “FATE
and DESTINI: A Framework for Cloud Recovery Testing,” in Proc. NSDI,
2011, pp. 238–252.

[10] P. Joshi, H. S. Gunawi, and K. Sen, “Prefail: A programmable tool for
multiple-failure injection,” in Proc. OOPSLA, 2011.

[11] F. Cerveira, R. Barbosa, H. Madeira, and F. Araujo, “Recovery for
Virtualized Environments,” in Proc. EDCC, 2015, pp. 25–36.

[12] Netflix, “The Chaos Monkey,” 2017. [Online]. Available:
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey

[13] T. Limoncelli, J. Robbins, K. Krishnan, and J. Allspaw, “Resilience
engineering: learning to embrace failure,” Communications of the ACM,
vol. 55, no. 11, pp. 40–47, 2012.

[14] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability with
software fault injection: A survey,” ACM CSUR, vol. 48, no. 3, p. 44, 2016.

[15] P. Deligiannis, M. McCutchen, P. Thomson, S. Chen, A. F. Donaldson, J. Er-
ickson, C. Huang, A. Lal et al., “Uncovering bugs in distributed storage sys-
tems during testing (not in production!).” in Proc. FAST, 2016, pp. 249–262.

[16] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and
A. Vahdat, “Pip: Detecting the unexpected in distributed systems,” in Proc.
NSDI, vol. 6, 2006, pp. 9–9.

[17] D. Cotroneo, L. De Simone, A. Di Martino, P. Liguori, and R. Natella,
“Enhancing the analysis of error propagation and failure modes in cloud
systems.” in ISSRE Workshops, 2018, pp. 140–141.

[18] OpenStack project, “The OpenStack marketplace,” 2018. [Online].
Available: https://www.openstack.org/marketplace/distros/

[19] ——, “User stories showing how the world #RunsOnOpenStack,” 2018.
[Online]. Available: https://www.openstack.org/user-stories/

[20] J. Denton, Learning OpenStack Networking. Packt Publishing Ltd, 2015.
[21] M. Solberg, OpenStack for Architects. Packt Publishing, 2017.
[22] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, “TaxDC: A

taxonomy of non-deterministic concurrency bugs in datacenter distributed
systems,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 517–530, 2016.

[23] Django. Home page of Django. [Online]. Available:
https://www.djangoproject.com

[24] Spring. Home page of Spring Framework. [Online]. Available:
https://spring.io/projects/spring-framework

[25] AMPQ. Home page of AMPQ. [Online]. Available: https://www.amqp.org/
[26] Pivotal. Home page of RabbitMQ. [Online]. Available:

https://www.rabbitmq.com/
[27] Zipkin. Home page of Zipkin. [Online]. Available: https://zipkin.io
[28] Jaeger. Home page of Jaeger. [Online]. Available:

https://www.jaegertracing.io
[29] Appdash. Home page of Appdash. [Online]. Available:

https://github.com/sourcegraph/appdash
[30] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mystery

machine: End-to-end performance analysis of large-scale internet services.”
in Proc. OSDI, 2014, pp. 217–231.

[31] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in Proc. DSN.
IEEE, 2002, p. 595.

[32] OpenStack. osprofiler. [Online]. Available: https:
//docs.openstack.org/osprofiler/latest/user/background.html

[33] J. Gu, L. Wang, Y. Yang, and Y. Li, “Kerep: Experience in extracting
knowledge on distributed system behavior through request execution path,”
in Proc. ISSREW. IEEE, 2018, pp. 30–35.

[34] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: Online mod-
elling and performance-aware systems.” in Proc. HotOS, 2003, pp. 85–90.

[35] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[36] M. Leeke and A. Jhumka, “Evaluating the use of reference run models
in fault injection analysis,” in Proc. PRDC. IEEE, 2009, pp. 121–124.

[37] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common
subsequence algorithms,” in Proc. SPIRE. IEEE, 2000, pp. 39–48.

[38] J. W. Hunt and M. MacIlroy, An algorithm for differential file comparison.
Bell Laboratories Murray Hill, 1976.

[39] E. W. Myers, “An O (ND) difference algorithm and its variations,”
Algorithmica, vol. 1, no. 1, pp. 251–266, 1986.

[40] S. Budalakoti, A. N. Srivastava, M. E. Otey et al., “Anomaly detection
and diagnosis algorithms for discrete symbol sequences with applications
to airline safety,” IEEE Trans. on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 39, no. 1, p. 101, 2009.

[41] M. Stanke and S. Waack, “Gene prediction with a hidden markov model
and a new intron submodel,” Bioinformatics, vol. 19, no. suppl 2, pp.
ii215–ii225, 2003.

[42] J. Rissanen, “A universal data compression system,” IEEE Transactions
on information theory, vol. 29, no. 5, pp. 656–664, 1983.

[43] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proc. of the IEEE, vol. 77, no. 2,
pp. 257–286, 1989.

[44] R. Begleiter, R. El-Yaniv, and G. Yona, “On prediction using variable
order markov models,” Journal of Artificial Intelligence Research, vol. 22,
pp. 385–421, 2004.

[45] J. G. Cleary and W. J. Teahan, “Unbounded length contexts for ppm,”
The Computer Journal, vol. 40, no. 2 and 3, pp. 67–75, 1997.

[46] J. Cleary and I. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE Trans. on Communications, vol. 32, no. 4,
pp. 396–402, 1984.

[47] A. Moffat, “Implementing the ppm data compression scheme,” IEEE
Trans. on Communications, vol. 38, no. 11, pp. 1917–1921, 1990.

[48] S. M. Mavadati, H. Feng, A. Gutierrez, and M. H. Mahoor, “Comparing
the gaze responses of children with autism and typically developed
individuals in human-robot interaction,” in Proc. HUMANOIDS. IEEE,
2014, pp. 1128–1133.

[49] OpenStack, “Tempest Testing Project,” 2018. [Online]. Available:
https://docs.openstack.org/tempest

[50] J. Christmansson and R. Chillarege, “Generation of an error set that
emulates software faults based on field data,” in Fault Tolerant Computing,
1996., Proceedings of Annual Symposium on. IEEE, 1996, pp. 304–313.

[51] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri, “An empirical
study of injected versus actual interface errors,” in Proc. International
Symposium on Software Testing and Analysis. ACM, 2014, pp. 397–408.

[52] OpenStack. Home page of OpenStack Compute API. [Online]. Available:
https://developer.openstack.org/api-ref/compute/

[53] ——. Home page of OpenStack Network API. [Online]. Available:
https://developer.openstack.org/api-ref/network/v2/

[54] ——. Home page of OpenStack Block Storage API. [Online]. Available:
https://developer.openstack.org/api-ref/block-storage/

[55] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen, “Performance debugging for distributed systems of black boxes,”
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 74–89, 2003.

[56] Y.-Y. M. Chen, A. J. Accardi, E. Kiciman, D. A. Patterson, A. Fox, and
E. A. Brewer, “Path-based failure and evolution management,” in Proc.
NSDI, 2004, pp. 309–322.

[57] Y. Zhang, S. Makarov, X. Ren, D. Lion, and D. Yuan, “Pensieve:
Non-intrusive failure reproduction for distributed systems using the event
chaining approach,” in Proc. of the SOSP. ACM, 2017, pp. 19–33.

[58] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica, “Friday:
Global comprehension for distributed replay,” in Proc. NSDI, vol. 7, 2007,
pp. 285–298.

[59] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging
distributed systems,” Queue, vol. 14, no. 2, p. 50, 2016.

[60] K. Kingsbury, “Jepsen: A framework for distributed systems
verification, with fault injection,” 2018. [Online]. Available:
https://github.com/jepsen-io/jepsen

[61] J. Alonso, L. Belanche, and D. R. Avresky, “Predicting software
anomalies using machine learning techniques,” in Proc. of the IEEE 10th
International Symposium on Network Computing and Applications. IEEE,
2011, pp. 163–170.

149

[62] C. Sauvanaud, K. Lazri, M. Kaâniche, and K. Kanoun, “Anomaly detection
and root cause localization in virtual network functions,” in Proc. of the
IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2016, pp. 196–206.

[63] J. Ehlers, A. van Hoorn, J. Waller, and W. Hasselbring, “Self-adaptive
software system monitoring for performance anomaly localization,” in
Proc. of the 8th ACM international conference on Autonomic computing.
ACM, 2011, pp. 197–200.

150

