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Abstract—A promising approach for designing critical embed-
ded systems is based on virtualization technologies and multi-
core platforms. These enable the deployment of both real-time
and general-purpose systems with different criticalities in a
single host. Integrating virtualization while also meeting the
real-time and isolation requirements is non-trivial, and poses
significant challenges especially in terms of certification. In
recent years, researchers proposed hardware-assisted solutions
to face issues coming from virtualization, and recently the use
of Operating System (OS) virtualization as a more lightweight
approach. Industries are hampered in leveraging this latter type
of virtualization despite the clear benefits it introduces, such as
reduced overhead, higher scalability, and effortless certification
since there is still lack of approaches to address drawbacks. In
this position paper, we propose the usage of Intel’s CPU security
extension, namely SGX, to enable the adoption of enclaves based
on unikernel, a flavor of OS-level virtualization, in the context of
real-time systems. We present the advantages of leveraging both
the SGX isolation and the unikernel features in order to meet
the requirements of safety-critical real-time systems and ease the
certification process.

Index Terms—Real-time, Intel SGX, Unikernel, Virtualization

I. INTRODUCTION

In recent years, Critical Real-Time Embedded Systems
(CRTES) are shifting towards an integrated paradigm, in which

multiple applications share the same physical platform resources

[1]. Such an approach allows running applications with different

level of criticality on the same embedded platform. The enabling

technologies have been multi-core processors and virtualization.

The former enhances performance by reducing the overall costs,

size, weight, and energy consumption [2]. While the latter is

typically adopted to create separate domains of CRTES tasks.

Despite promises given by these technologies, there are several

drawbacks to be addressed [3]. More precisely, the temporal,

spatial, fault, and I/O isolations between virtual domains are at

risk in hypervisors’ hands. Additionally, the design of CRTESs

is still bounded to a rigorous certification process, in which

developers must provide evidence about a huge amount of

software and its level of partitioning, showing documented

proofs about, e.g., fault containment between a virtual domain

to another, absence of temporal interferences between critical

and non-critical functions. In order to increase the isolation of

virtual domains, the research community explored the possibility

of leveraging hardware-assisted solutions. The most explored

approach has been to use security features provided by ARM,

i.e., the ARM TrustZone technology [4], indeed enabling a

more powerful form of isolation assisted by the hardware.

ARM TrustZone, in fact, supports a so-called “dual world”

execution [5]–[15]. Usually, the non-secure world is used as

an environment for running VMs, which are managed by the

hypervisor software that runs in the secure world. Researchers

used the TrustZone dual-guest configuration for running a general-

purpose OS (GPOS) within the non-secure world, while a real-

time OS (RTOS) runs in the secure-world having a full view of

the entire system. In this way, the critical tasks running on top

of the RTOS are isolated by non-critical tasks.

Another emerging trend in real-time applications is exploiting OS-
level virtualization (also named container-based virtualization)

[16], which —unlike fully emulating a hardware machine— it

abstracts OS processes (called containers) by extending the (host)

OS kernel. The main reason behind the usage of containers in

real-time domains [17]–[20] is to reduce the overhead affecting

VMs and better scale when a larger number of applications of

different criticalities are in place. Indeed, the container approach

does not require to replicate the entire OS environment for

every system. However, the performance benefits introduced by

containers come at the cost of reduced isolation, threatening

the practicability of OS-level virtualization under real-time and

safety requirements. In the context of OS-level virtualization, the

sole approach to somehow face isolation issues may be to run a

single application in its virtual domain. Such model is known

as unikernel or library OSes [21], in which the full software

stack of a system, including OS components, libraries, language

runtime, and applications, is compiled into a single VM that

runs directly on a general-purpose hypervisor. This approach

introduces benefits such a small code base, low attack surface,

and an effortless certification process due to the low amount of

software to be verified [21]. However, stronger isolation proofs

to be reported to certifiers are still lacking.

In this position paper, we propose a hardware-assisted solution

for leveraging OS virtualization in the field of CRTES. In

particular, we discuss the potential adoption of the well estab-

lished Intel Software Guard eXtension (SGX) extension [22] to

enable powerful isolation when OS-level virtualization is pursued

in CRTES applications having certification requirements. The

SGX is the technological implementation of hardware-assisted

trusted execution, as conceived from Intel. SGX belongs to the
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same category of ARM TrustZone since its Trusted Execution
Environment (TEE) is internal to the CPU perimeter. Intel SGX

provides capabilities for securing user space applications without

the need of calling privileged OS code. Basically, SGX provides

tools for creating memory areas called enclaves, which protect

application code and data from accesses by other software,

including higher-privileged software. Memory pages which are

within an enclave can not be accessed by code outside of the

enclave. The proposed approach is intended for executing an

RTOS based on unikernels into an SGX enclave. Besides the

advantages for CRTES, unikernels represent also one of the best

ways to bypass the impossibility of issuing syscalls (normally

executed at ring0) from within an enclave that only supports ring3
functions [23]–[26]. Unfortunately, nowadays, the availability of

unikernel-based RTOSes are still poor. MirageOS [27] is the sole

example. Finally, we examine the impact that such an approach

could entail during the certification process, by focusing on the

isolation properties that must be fulfilled.

II. OS-LEVEL VIRTUALIZATION IN REAL-TIME DOMAIN

Virtualization technologies are the core enabler of several com-

puter engineering applications, ranging from cloud computing

to real-time embedded systems. In contrast to cloud computing,

in CRTES development there is a need for specific mechanisms

that guarantee and enforce the execution of applications to meet

timing and safety requirements [3]. In years, several techniques

were developed to abstract physical resources in virtual, from

the classical full-virtualization and para-virtualization, to more

recent OS-level virtualization [28], [29].

OS-level virtualization, allows running multiple appliances

without hardware virtualization. The idea behind container-based

virtualization is to enhance the abstractions of OS processes

(called containers), by extending the (host) OS kernel, in order

to have a virtual domain with its own virtual CPU and virtual

memory like in traditional OS processes, a virtual filesystem,

virtual network, IPCs, PIDs, and users management. These virtual

resources are distinct for each container in the system. Currently,

the most used container-based virtualization technologies are

LXC [30], Docker [31], and OpenVZ [32].

As mentioned before, virtualization has to address the critical

problem of guarantee the isolation among virtual instances [33]–

[35]. In the more general sense, isolation means the fact that

something is independent and disentangled to the behaviors of

other things. Thus, the virtualization layer has to be in complete

control of virtualized resources, and applications running on a

virtual domain must have the illusion to be completely isolated

from others. In general, in the virtualization context, we consider

two main isolation properties that are mandatory.

The temporal isolation (also known as performance isolation
or temporal segregation), is the capability of isolating or limiting

the impact of resource consumption (e.g., CPU, network, disk)

of a virtual domain on the performance degradation of the

other virtual domains, but also against the host. This means

that a critical task running on a virtual domain (e.g., task on

a VM or within a container) must not cause severe delays of

other critical and non-critical tasks, leading to a phenomenon

like starvation, reduction of throughput, and increased latency.

Temporal isolation is crucial in embedded systems when critical

tasks within containers need to assure SLA guarantees about

performance. In the context of safety-critical applications, some

standards (e.g., IEC 61508-3 Annex F [36], ISO 26262-6 Annex-

D [37], ARINC-653 [38], DO 178 6.3.3f [39], CAST-32A [40])

suggest to exploit a cyclic scheduling among virtual domains.

The other crucial isolation property is the spatial isolation
(also known as memory isolation or spatial separation). Such

property describes the capability of isolating code and data

between virtual domains, and between virtual domains and

the host kernel. This means that a task should not be able to

alter private data belonging to other tasks, including the devices

allocated to a specific task. Break spatial isolation will likely lead

to unexpected behaviors or worse a system crash [41]. Usually,

spatial isolation is enforced by hardware memory protection like

Memory Management Unit (MMU), which protects the task’s

virtual memory space. Furthermore, by considering the case

of shared devices, we need to focus also on the I/O isolation
property. Often, the IOMMU is exploited to properly address

the isolation of memory-mapped devices, and in some cases, the

access on hardware devices from a different virtual domain is

serialized.

Finally, another kind of isolation property that must be ad-

dressed is fault isolation (also known as fault/error containment).
Fault isolation means that potential faults that occur in one

virtual domain should not be propagated towards hypervisor

and/or other partitions, leading to hangs or even halting the

entire system.

Bearing in mind the needs of a virtualization approach that is

both lightweight and provide the isolation properties mentioned

above, unikernels are recently gaining a significant attention

[42]. The unikernel is an approach of linking an application

with OS components. In particular, such components include the

core services of a kernel like memory management, scheduler,

network and disk stack, and device drivers. Thus, the application

and the kernel have a unique address space, creating a standalone

binary image that is bootable directly on physical and/or virtual

hardware [43]. The big advantage that unikernels provide is that

the kernel functionalities can be specialized to fit the needs of

the target application. For example, the developer would want to

increase a specific aspect of performance of its application (e.g.,

the network throughput) or to improve isolation. Since unikernel

is a lightweight solution for virtualization, it could be a promising

solution to be adopted in the context of safety-critical embedded

systems, where the needs of having a well-defined software

component would facilitate the certification process. Another

example of the potential of unikernel in the embedded systems

is the predictability. Indeed, since moment by moment, only one

task/process is running on the unikernel, we can say with good

confidence that if an operation is completed in a specific amount

of time, it will take the same amount of time every time will

be executed. If we compare such behavior against the Linux

kernel, for example, there are various factors of unpredictability,

like page faults, internal locks, scheduling jitter, and so on.

Thus, unikernels would be also a promising solution for the
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measurement of the worst-case execution time (WCET), which

is mandatory and usually is a non-trivial task both in single- and

multi-core platforms. Naturally, we need to consider that the

predictability of unikernels is valid in the real-time domain as

long as the underlying hypervisor schedules the task to the CPU

always in the same way. Thus, we need to take into account

the possibility of using real-time hypervisors for solving the

problem of determinism.

Fig. 1. Virtualization deployments.

Fig. 1 summarizes potential virtualization approaches that

could be used in the development of CRTES, from the classical

hypervisor-based, passing through the container-based to the

unikernel model.

III. ENHANCING ISOLATION VIA INTEL SGX

Leveraging OS virtualization for CRTES is non-trivial as the

confinement of containers’ domains is more difficult to enforce

and demonstrate, due to the weak isolation that LXC namespace
and cgroup create [44]. In this sense, a unikernel could represent

a solution. Its properties of an extra lightweight OS can certainly

facilitate the certification process in terms of software verification.

However, unikernels are still subjected to isolation problems

that could lead to interferences among critical tasks of CRTES.

In this paper, we propose the adoption of Intel SGX-enabled

unikernels in the context of CRTES to provide guarantees on

the isolation for real-time tasks running in dedicated domains.

In fact, the hardware-assisted security isolation features of Intel

SGX can be leveraged to this end as other researchers similarly

did with ARM TrustZone to segregate VM domains [5]–[15].

SGX is a security technology that is catching on in both

research and industrial communities. It is a set of new hardware

instructions that isolate sensitive code and data processing, even

from users with root privileges. SGX enables a confined region

of execution, namely secure enclave, whose access is supervised

by the hardware that enforces isolation of processes. The SGX

threat model assumes that most of the host stack is untrusted.

Thus, the CPU ensures that the enclave memory is not accessible

by any part of the system, except for the code running inside

the enclave itself. For the purpose of this paper, it is important

to notice that there are two main drawbacks of SGX to be taken

into account. That is, i) the physical memory size dedicated

to all the instantiated enclaves is limited to 128MB, ii) the

execution of syscalls is forbidden in the enclave as the OS is

considered untrusted.

Currently, there are solutions where SGX was used to enhance

the security of unmodified applications basically by running

them in SGX-secured domains [23]–[26]. These studies pursued

two different approaches for providing syscall support to the

application into an enclave [45]. In particular, in a first case

Arnautov et al. [23] use an SGX-extended libc library to expose

an external (and optimized) syscall interface, which is SGX-

shielded. In a second case [24]–[26], researchers leverage the

single-address space property of unikernels (i.e., Linux-Kernel-
Library, Graphene, and Drawbridge, respectively) to execute

syscalls directly inside the SGX enclave. Essentially, the latter

category of studies port an entire unikernel into an enclave to

provide lightweight OS support to the application. Contrariwise,

Sfyrakis et al. [46] propose the adoption of SGX to secure only

some computations of a MirageOS unikernel [27].

In this position paper, we lay the foundations for a solution

where unikernels —of different or same typology— run tasks of

distinct criticality in SGX enclaves. Figure 2 shows a possible

architecture of our proposal.

Native Linux OS

SGX Enclave

KVM-SGX

Unikernel

Non-
Critical 

Task

Critical 
Task 1

SGX Enclave

Unikernel

Critical 
Task 2

Hardware SGX-Enabled

Fig. 2. Architecture of CRTES based on Intel SGX

The proposed approach is intended for only running critical

tasks in SGX and the non-critical in the “normal” world. Another

approach would have been to launch all the tasks in as many

enclaves. However, unlike solutions based on ARM TrustZone,

we need to take into account the memory limitation imposed

by SGX technology, i.e., 128MB, which is shared by all the

enclaves. Hence, we believe that one enclave per critical task

is the only feasible approach. Even in this case, launching

too many critical tasks could entail that the memory bounds

would be exceeded. A more accurate number highly depends

on the unikernel solution adopted. For example, IncludeOS
is a unikernel with one of the lowest memory footprint (i.e.,

≈ 10MB). Currently, unikernels footprints are approximately

of 8MB on average [47]. This means that we could have a

number of about 16 running critical tasks, which are in many

cases above the real need for a CRTES.

Moreover, the adoption of SGX for CRTES can not disregard

an analysis on the isolation properties. The spatial and temporal
isolation are essentially ensured by SGX. The CPU realizes

architectural isolation by monitoring the accesses to enclave-

owned physical memory pages. The mechanism of enclave
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isolation is mainly provided through the Enclave Page Cache Map
(EPCM). The EPCM is the table where the SGX processor checks

the correctness of the system software’s allocation decisions,

and refuse to perform any action that would compromise SGX

isolation. An EPCM entry identifies the enclave that owns the

Enclave Page Cache (EPC) page, that is, the enclaves’ content and

the related data structures information. Since the EPCM identifies

one specific owning enclave for each EPC page, enclaves can not

communicate via shared memory using EPC pages. Enclaves only

share untrusted non-EPC memory. SGX also prevents attempts

from the Direct Memory Access (DMA) devices to get access to

the enclave. This is of importance as current memory isolation

techniques for CRTES are usually based on the MMU, which

prevents applications running in one partition to read/write into

address space allocated to other partitions. However, such an

isolation as-is is threatened by the DMA that could bypass the

checking procedure of the MMU. In a nutshell, the isolation may

be put at risk when, e.g., the unikernel running in the enclave

needs support from the external world or needs to communicate

with another critical task executing in another enclave. In fact,

there are some unikernel syscalls that must necessarily demand

to the external OS. The implemented solution of an SGX-enabled

CRTES should take into account the previous considerations.

Solving mechanisms might be designed and developed to face

the isolation of tasks and provide further guarantees in the

certification phase.

IV. CERTIFICATION IMPLICATIONS

Regardless of the specific domain, the developing of safety-

critical applications in industries raises several concerns from

the certification point of view. In order to reach a specific

level of safety, indicated as Safety Integrity Level (SIL) (but

depending on the standards, SIL appears also as Automotive

Safety Integrity Level (ASIL), Software Safety Integrity Level

(SSIL), Design Assurance Level (DAL)), standards require

performing burdensome tasks that include verification, perfor-

mance testing, impact analysis, use of coding standards, on both

the hardware and software components within the developed

systems. Notwithstanding the cost and effort of certifying CRTES

increases significantly with the SIL level, the problem is more

exacerbated due to the integration of commercial off-the-shelf

(COTS) hardware and software in the products. In general,

compared to the bare-metal solutions, the use of virtualization

brings additional software layers and components in the overall

architecture, and this lead to further complicate the certification.

Thus, providing evidence for isolation properties is far from to

be effortless.

Considering the hardware and software stacks in the de-

velopment process, we need to address the different level of

safety required by the certification process, which lead to

analyze isolation properties at different layers. For example,

according to the EN 50128 standard that provides guidelines

for the certification of the software employed in the railway

domain [48], [49], focusing on the temporal and spatial

isolation guarantees, the requirements D.45 Response Timing
and Memory Constraints specifies that is needed an analysis

aimed to estimate the resource usage and the latency for each

system functionalities, which include all software modules (from

the hypervisor to the kernel).

The strategy for developing CRTES based on virtualization and

multi-core platform should be based on the guidelines provided

by standards. The safety standards impose a precise development

process (e.g., the IEC 61508 recommends using the V-model

development process for designing safety-related software and

hardware [36]), where we need to comply with further steps

and requirements for covering safety and certification needs.

Normally, such process should be based on the management

of systems hazards, meaning that such hazards are eliminated

or at least mitigated enough up to tolerable rates for the safety

levels assigned to the identified safety functions. A potential

approach for identifying the possible threats to safety is an

analysis of the failure modes. For example, according to our

proposal, we could apply the Failure Mode and Effect Analysis

(FMEA), and try to identify the potential causes of failures by

introducing disturbances (e.g., faults, anomalous loads) at the

different levels of the CRTES software stack. Actually, many

studies in literature [50]–[55] and various international standards

for software reliability and safety [37], [39], [48], [56], [57]

exploit the injection of faults in complex systems in order

to assess their behavior and unveil potential bottlenecks and

critical components under these abnormal inputs and conditions.

Furthermore, fault injection technique is often used to measure

the efficiency (e.g., coverage, latency, etc.) of fault tolerance

mechanisms, including fault detection and recovery. For example,

in the EN 50128 document is clearly stated that for the maximum

level of safety (i.e., SIL 4) is highly recommended using Software

Error Effect Analysis (SEEA) for identifying the criticality of

each software component and improve the overall robustness of

the software.

In combination with our proposal, there is a clear need

for developing systematic approaches for testing the degree

of isolation required by certification. In particular, by leveraging

fault injection technique, an approach would be identifying

and enumerating all the interfaces and resources involved at

different levels of the CRTES software stack (e.g., hypervisor-

and unikernel-level), to find suitable locations for injecting faults.

Furthermore, it would be necessary defining measures of spatial

and temporal isolation that could point out isolation issues;

for example, a developer could use the existing performance

isolation metrics [58], or adapt other metrics in the context of

isolation [59].

Independently from the above considerations, it is important

to underline that safety standards do not oblige developers or

practitioners to use some particular measure or procedure for

evaluating the fault tolerance, because they are not meant for

exactly this or that target system. Instead, they suggest general

guidelines that apply to a more wide family of systems.

V. CONCLUSION

In this position paper, we have discussed the adoption of both

the Intel SGX hardware extension and the unikernel lightweight

virtualization in the context of safety-critical real-time embedded
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systems. Our proposed idea is to leverage the isolation properties

provided by SGX —typically used for security reasons in

untrusted systems— in order to provide temporal and spatial
isolation guarantees for critical tasks executing in the trusted

execution environment of SGX. Potentially, our work could

introduce the following advantages to CRTES:

i) the isolation among critical tasks is stronger thanks to the

boundaries checks enforced by SGX hardware;

ii) the reliability increases as the risk of faults (e.g., memory

leak) with unikernel is much more reduced, which is crucial

for safety-related systems;

iii) the performance is higher as the unikernel model indeed

offers performance improvements;

iv) the software certification process is facilitated thanks to

unikernels’ lightweight properties.

We want to remark that a fundamental requirement is the

availability of the SGX hardware. Currently, the ARM architec-

ture is widely used as 32b/64b RISC multi-core processors in

embedded systems. However, we are witnessing the trend in the

real-time embedded world of adopting virtualization to support

multi-purpose OSes. In this regard, the most comprehensive

virtualization support comes from Intel’s architecture. Hence,

the future usage of these CPUs is very likely, as witnessed by

Intel itself [60].
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