
A Configurable Software Aging Detection and
Rejuvenation Agent for Android

Domenico Cotroneo, Luigi De Simone, Roberto Natella, Roberto Pietrantuono, Stefano Russo
DIETI - Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy

{cotroneo, luigi.desimone, roberto.natella, roberto.pietrantuono, stefano.russo}@unina.it

Abstract—This paper presents the design of ADaRTA, an
aging detection and rejuvenation tool for Android. The tool is a
software agent which i) performs selective monitoring of system
processes and of trends in system performance indicators; ii)
detects the aging state and estimates the time-to-aging-failure,
through heuristic rules; iii) schedules and applies rejuvenation,
based on the estimated time-to-aging-failure. The agent rules
and parameters have been defined for ease of configuration
and tuning by device designers. A stress testing experiment
is discussed, showing ADaRTA’s configurability for the device
under test, and the ability of detecting the aging state to prevent
device enter a failure state.

Index Terms—Software Aging; Software Rejuvenation; An-
droid operating system.

I. INTRODUCTION

Software aging has been shown to affect many complex sys-

tems, such as such as web servers [1], operating systems [2],

middleware [3] and cloud systems [4], due to issues such as

memory and resource leaking known as aging-related bugs
[5], [6]. The Android mobile operating system (OS) makes

no exception, as it has become one of the largest open-

source projects with millions of lines of Java and C++ code1,

and it is modified by manufacturers to adapt mobile devices

to specific hardware and peripherals, as well as to deliver

customized features. Empirical research showed that Android

can experience a gradual decay in terms of responsiveness

and resource utilization, and that it is prone to failures under

stressful conditions [8]–[11].

In order to counteract software aging in Android devices,

recent studies have investigated how to apply rejuvenation

techniques in a mobile context. Qiao et al. [12] and Xiang et

al. [13] proposed models (using Markov chains and Stochastic

Petri Nets) for time-based detection and rejuvenation at the

application or OS level, by taking into account the lifecycle

of mobile applications. Other studies by Huo et al. [14],

Qiao et al. [15], and Weng et al. [16] have pursued aging

detection from a measurement-based perspective, by applying

time series analysis and machine learning (e.g., ARIMA,

SVM, neural networks) to forecast aging in resource utilization

and performance metrics.

1Lines of code (LOC) computed with the SLOCCount tool [7] on the
Android Open Source Project (AOSP) – the baseline version of Android v.
5.0 - not including further LOC from external open-source projects (such as
the Linux kernel and SQLite) and from vendor customizations.

This paper presents the design of a configurable ag-

ing detection and rejuvenation agent for the Android OS,

named ADaRTA (Aging Detection and Rejuvenation Tool for

Android), developed in the context of an R&D project with

Huawei Technologies Co., Ltd. ADaRTA is designed based

on the findings of own previous empirical study on Android

aging [8]. The agent performs selective monitoring of Android

processes (e.g., System Server) and performance indicators

(e.g., free memory, garbage collection times) correlated to

aging phenomena, as well as of workload indicators (e.g.,

applications’ activation time). Then, it applies trend estimation

techniques to such aging indicators. Finally, it computes a

run-time indicator of the aging state of the Android device

through heuristic rules, which can be easily interpreted and

tuned by device designers. Based on such a “global” indicator,

rejuvenation could be triggered. We also present a stress

testing experiment on a real Android Huawei device, showing

ADaRTA’s configurability and its effectiveness in detecting

aging and computing the time-to-aging-failure. While there are

several techniques and tools that can be adopted for individual

tasks in OS aging detection and rejuvenation (e.g., the Monkey

tool [17], used to perform stress tests [18]), we are not aware

of any other such comprehensive software agent providing

automated system and load monitoring, aging detection and

rejuvenation triggering for Android.

The rest of the paper is organized as follows. Section II

provides background definitions. Section III describes the ar-

chitecture of ADaRTA, while Section IV presents the monitor-

ing and detection process. Section V describes the parameters

which can be tuned by practitioners to tailor ADaRTA to a

specific platform. Section VI describes the experiment. Section

VII provides final remarks.

II. DEFINITIONS

ADaRTA monitors the following aging indicators:

• Launch time of activities: An activity in Android is

related to all the interactions that a user can perform [19].

Indeed, this is a fundamental user-perceived performance

metric, which we use to assess the system performance

degradation. More specifically, the launch time is the time

to complete the initialization of a launched activity;

• Aging KPIs: When user-perceived performance, in terms

of launch time, is not directly measurable – because

the user might not perform multiple launches and the

239

2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)

978-1-7281-5138-0/19/$31.00 ©2019 IEEE
DOI 10.1109/ISSREW.2019.00078

number of launch time samples may be insufficient to

reveal aging - aging is detected by means of several

OS key performance indicators (aging KPIs). There are

empirical evidence that these indicators are related to

the launch time. We selected aging KPIs, described in

Section IV-A, based on our previous empirical analysis

of Android aging [8].

From the aging perspective, we define five different system

operating states. These are typically used in aging models.

• Failure state: The state in which Android actually ex-

hibits a user-perceived failure, typically in the form of a

crash or hang (namely, the device is not responding to

any input within a defined timeout);

• Aging Failure state: A state where Android is certainly
affected by aging and from which it will eventually enter

a Failure state, unless rejuvenation is performed;

• Aging state: A state in which Android is suspected to

be affected by software aging. This is also known as

a failure-probable state in the literature [20]. In such a

state, an aging alert is raised when an individual aging

indicator is recognized (with a configurable confidence

value C%) to exhibit a trend. From such a state, the aging

phenomenon will continue (if it is not transient), leading

to an Aging Failure state;

• Healthy state: A state where Android is unsuspected
to be affected by aging. In a healthy state, monitored

indicators do not show significant aging trends. We

consider significant a trend if it can be assessed with

a (configurable) confidence value C% (by default set

to 95%). Not significant trends are likely to be due to

transient phenomena;

• Rejuvenation state: A state in which a rejuvenation

action has been triggered, aimed at leading Android back

to a Healthy state (from an Aging state).

Clearly, it is desirable to trigger rejuvenation only when the

OS is actually aged, yet while it is still in an Aging state,

to prevent it to enter an Aging Failure state. To this aim, an

aging alarm is raised in an Aging state when multiple alerts

occur. This process is described in detail in Section IV-C
We define the Time To Aging Failure (TTAF) as the

predicted time lapse from the time of detection of an Aging
state until the device enters an Aging Failure state, an event

that ADaRTA aims to prevent.

III. ARCHITECTURE OF ADARTA

Figure 1 shows the architecture of the proposed agent. It

entails the following modules:

• Aging KPIs and Load Monitors: The responsibilities of

this module are to collect periodically (with configurable

sample period), to pre-process, and to store the i) aging

KPIs, and ii) the information about the current load (mea-

sured by workload indicators, WI), such as the number

and type of running applications/processes/activities, the

percentage of CPU usage, detailed in the following). The

output of this module is the time series to be used by the

Aging Detector module;

Fig. 1. Architecture of the ADaRTA agent

• Aging Detector: The responsibilities of this module are:

i) assessment of trend significance and slope in each

time series; ii) based on the previous step, detection of

the occurrence of an aging state, i.e., a state in which

there is a progressive degradation of performance with

an established (configurable) degree of confidence that

it will persist. Besides the confidence levels configured

for each KPI, the aging detector will provide in output

i) an estimation of the severity of the aging in terms

of TTAF; ii) an assigned global confidence level to the

detected aging, based on how many and which KPIs

concur to determine it; iii) the load level, discretized

into 5 levels: very high, high, medium, low, very low.

These three outputs will be the base for determining the

best rejuvenation policies, according to the notification

process described in Section IV-C;

• Rejuvenation Module: This module uses the information

provided by the aging detector (confidence, TTAF, and

load level), in order to decide when to rejuvenate the

system. For example, a policy could be to trigger an

immediate rejuvenation if the TTAF is short regardless

the current load, or if the TTAF is longer, the rejuvenation

could be postponed as soon as the current load will

be low. Rejuvenation is performed by restarting key

services found to be the main responsible for aging in our

previous study; a finer grain action is under investigation,

which cleans the single Java containers within the critical

processes; its details are left to future work.

IV. MONITORING AND DETECTION

A. Aging Metrics

User-level aging is measured in terms of responsiveness,

i.e., in terms of launch time of activities during experiments

(and the same will be done during validation). As anticipated,

we may not detect aging directly through launch time since the

user might not request multiple launches of activities. Indeed,

the system could be aging, but the number of samples related

to the launch time may be insufficient to detect the aging state.

240

Thus, the best aging indicators to be used during monitoring

and detection are the aging KPIs, which we have observed to

be strongly related to the launch time [8]. These indicators

can be measured at any time, thus allowing a prompt reaction

in case of aging. We also collect launch times every time an

activity is launched from scratch, so as we can use them, when

they are available, together with the other indicators. Besides

launch times, the following aging KPIs will be recorded and

stored periodically within a sampling period denoted as T :

• Proportional Set Size (PSS) of the processes

system server, systemui, surfaceflinger,

mediaserver. The PSS indicates the portion of main

memory occupied by a process;

• Free and Cached memory, which are the amount of

memory left unused and the amount of physical RAM

used as cache memory respectively;

• ZRAMinSWAP, ZRAMPhysicalUsed, KSM-Saved,

KSM-Shared, KSM-Unshared, KSM-Volatile, LostRAM,

Used PSS, Used Slab, Used Buffers. The ZRAM KPIs

are related to the usage of zram exploited for creating a

compressed block device in RAM with on-the-fly “disk”

compression. The KSM (Kernel Samepage Merging)

KPIs are related to the memory-saving de-duplication
feature of the kernel that merges anonymous pages.

• Garbage collector pause time (GC-paused) and total time

(GC-total) of the processes system server, systemui
and huawei.systemManager.

It is worth noting that this is a conservative set, i.e., there are

more indicators than strictly needed. The indicators related to

system server have a heavier weight to determine whether

aging is occurring or not, as they are strongly related to the

activities launch time [8].

The aging detection strategy based on these metrics is

described in Section IV-C.

B. Characterizing the Healthy State

In order to properly compute the TTAF when aging is

detected, and to select the best rejuvenation time, the aging

detector needs to characterize the healthy state first. In this

phase, the aging detector “learns” the average values of the

indicators (including both launch times, and KPIs) when the

system is in a state where no aging has been detected yet.

These averages are used to characterize the healthy state.

Let us refer to a generic indicator KPIi of the ones listed

before. Let us indicate with t0 the system start-up time or

the time soon after a rejuvenation action has been applied.

We assume that at this time the system is in a healthy state.

The aging detector starts sampling and recording, for each

KPIi, the current value at each sample period T . After a

minimum value of S samples, the aging detector computes

the average (we opt for the median as the average indicator)

and the confidence interval of the average Cavg = 95% over

the set of S samples. The aging detector checks whether the

average is accurate within R = 5% of error (i.e., it verifies

that the confidence interval is less than the interval [avg −
5%avg; avg + 5%avg]). If it is not the case, it adds further

samples to the set S and keeps on computing the average

on S until the condition is satisfied (i.e., until the average is

accurate within 5% of error). If the average is accurate, the

aging detector stores the value (let us denote it as S̄1), discard

the S samples, starts recording new S samples, and repeating

the process described above.

This process goes on until: i) either a maximum number N
of storable average value or a maximum time Z is reached (i.e.,

the history is too long to be stored entirely, in which case the

oldest S̄i values are discarded), or ii) an aging detection alarm

is raised (i.e., aging has been detected, see subsection IV-C),

i.e., the system is no longer in a healthy state. If aging is

detected before the condition on the accuracy of the average

is met, the aging detector stores the average of the current set

of samples and use that one as a healthy state indicator. The

parameters S, R, Cavg , N , and Z are configurable, in order

to tune the aging detector for the specific platform.

The described process provides, for each KPI, a series of

values S̄i, which are the medians of values observed over time

in the healthy state. The agent considers the 95th percentile

of these values as upper bound, denoted as UKPIi . For each

indicator, a threshold of acceptable performance is computed

as a percentage of its upper bound value. Specifically, the

threshold for the indicator KPIi is set as ThrKPIi =
UKPIi+x%UKPIi , or, equivalently, as ThrKPIi = UKPIi ·s,

with s being the slowing down factor (e.g., 50% is equivalent

to s = 1.5 as slowing down factor). This means that, if the

decision were based only on the i-th KPI, the rejuvenation

module should rejuvenate as soon as the value of KPIi is

expected to exceed the threshold ThrKPIi . In that case, the

TTAF is the expected time to achieve ThrKPIi .

We remark that, for the launch time metric, we can not

establish if and when a new sample will be available for a

given activity. Thus, it is likely that the collected samples

(which are averaged and stored, similarly to the S̄i samples for

KPIs), will be insufficient for trend analysis. In this scenario, if

an accurate average can be computed, we use it to determine

the average launch time in the healthy state. If the average

is not enough accurate, or insufficient samples are available

to raise an aging alarm, then this indicator is not used until

the next rejuvenation (or device restart) occurs. This choice

is adopted since there would be no baseline to decide what

is the average launch time in the healthy state. Consequently,

aging detection could be based only on aging KPIs. In that

case, ADaRTA still tries to detect aging by sampling every T
seconds all the configured KPIs, which are strongly correlated

to the aging on the launch time metric as demonstrated in [8].

C. Detecting the Aging State

Given the time series of each metric and their thresholds,

the task of the aging detector is to notify when the device

enters an aging state. The process is illustrated in Figure 2

and explained hereafter.

1) Monitoring: Starting from t0, the aging detector moni-

tors, for each aging KPI , the value at each sample period T .

After a window W1 = {s1, s2, . . . sw} of W samples (we set

241

Fig. 2. Aging detection process

W = 50), the detector applies the Mann-Kendall (MK) test

with a given confidence C% (e.g., C% = 95%) and the Sen
procedure to the samples in the current window W1. The test

will give an outcome MK1 = YES/NO for the MK test, and

a value of the trend slope, Slope1, through the Sen procedure

(if MK1 = NO, then Slope1 is set to 0). At the subsequent

sample, after T seconds, the window slides of one position,

so as to obtain W2 = {s2, s3, . . . sw+1}. The MK and Sen

procedures are applied again (in other words, the test is applied

always to the last W samples). Alternatively, the MK and Sen

tests can be applied every n ·T samples with n > 1 to reduce

the overhead, at the price of increasing the detection time.

For the i-th time series for the j-th KPI, there are:

• a series MKi,j of YES/NO outcomes indicating if there

was a trend or not at each T ;

• a series Slopei,j of values indicating the slope (if any,

otherwise it is 0) of the trends computed at each T .

Besides the KPIs, the monitor collects and stores the launch

time of any activity. The MK test and Sen procedure are

applied each time a new activity is launched. This will make

available two additional series (MKi and Slopei) for launch

times, having a different size for KPIs series.
2) Detection: In order to be robust to noise, we adopt a

mechanism based on counting. For the i-th series of the j-th

KPI, MKi,j , there could be, at some time (e.g., at time t1
in Figure 2), an outcome YES (i.e., there is a trend on the

last W samples). The user can select the confidence level to

claim that there is aging (for instance, C = 95%), and this

means that in C% of cases the detected trend has not occurred

randomly, but it is a systematic trend. Despite the already high

confidence level, we adopt an additional criterion to further

increase it. Specifically, we check for the persistence of the

detected trend over time, which is revealed if the following

conditions are jointly met:

• the outcome MKi,j is YES (with C% of confidence) for

at least k (e.g., we choose default value equal to k=5)

consecutive times2, and;

2The value k is a trade-off between the prompt and correct detection of
aging and the likelihood of raising false alarms.

• the Slopei,j is always positive in this k times (of course,

for indicators where “positive” means more severe aging,

like PSS, while “always negative” for the opposite cases,

e.g., Free Memory).

In both conditions hold, we say that there is an aging alert
that refers to the KPI j (time t2 in Figure 2).

Given the information about the MK test and the slope of

the computed trend by means of Sen’s procedure, the TTAF

for the i-th KPI, is estimated according to the equation:

TTAFKPIi =
ThrKPIi − interceptKPIi

slopeKPIi

− tagingKPIi
(1)

where ThrKPIi is the threshold of acceptable performance,

the slopeKPIi and interceptKPIi are the output of the Sen’s

procedure [21], and tagingKPIi
is the aging detection time.

The aging alerts on KPIs do not cause any rejuvenation

action yet. To trigger rejuvenation, we consider all the KPIs

together and define the following criteria. Based on the ex-

perimental evidence in [8], we claim that there is an aging
alarm, which will be notified to the rejuvenation module that

will activate the rejuvenation, if:

• There is an aging alert on the Launch Time indicator,
and no aging alerts on KPIs. The TTAF is computed

with respect to the threshold of the Launch Time. The

shorter the time to reach the threshold, the more severe is

the aging. This scenario is very unlikely since whenever

there was aging on launch time, we observed aging in

some KPIs before (especially in the system server
PSS, where it was observed in every case);

• There is an aging alert on Launch Time indicator and
on other KPIs. The OS TTAF is computed as the shortest

among the KPIs’ TTAF and the launch time TTAF;

• There is no aging alert on Launch Time, but there
is an aging alert only on system server PSS. “No

aging alert in Launch Time” means either that there

is no aging at all at the user level, or that there are

not enough launch time samples to detect it. In this

scenario, the alarm is raised and the TTAF is the one

computed on the system server PSS. Note that from

results of experiments in [8], we know that whenever

there is aging in the system server PSS, there is a

very high likelihood that there is aging on launch times:

thus, system server PSS is treated as a very important

indicator for aging detection.

• There is no aging alert on Launch Time, but there
is an aging alert on system server PSS and some
other KPIs too. In this case, the alarm is raised and the

TTAF is the minimum among the KPIs TTAF;

• There is no aging alert on Launch Time and on
system server PSS, but an aging alert on at least
one of specific KPIs combinations. The considered

combinations of KPIs are the following:

– Free memory, cached memory, Lost Ram;

– Used PSS, ZRAMinSWAP, ZRAMPhysicalUsed;

242

TABLE I
SETS OF AGING INDICATORS, AND CORRESPONDING CONFIDENCE LEVEL

Aging indicators Global confidence
level

system server PSS and Launch Time VERY HIGH

system server PSS and GC Paused or Total Time VERY HIGH

Launch Time HIGH

system server PSS HIGH

Free Memory, Cached Memory, Lost RAM MEDIUM

Used PSS, ZRAMinSWAP, ZRAMPhysicalUsed MEDIUM

systemui, huawei.systemManager GC Paused/Total
Time

LOW

One of KSM-*, Used slab, Used buffers LOW

One of systemui, surfaceflinger, mediaserver PSS VERY LOW

– GC paused and total time of systemui and

huawei.systemManager processes.

The estimated TTAF is computed as the minimum among

the TTAF of all indicators.

Besides the KPI pre-defined confidence levels, we assign

a global confidence level to the detected aging, based on

how many and which KPIs concur to determine the alert.

The higher the global confidence level, the more likely an

ongoing aging phenomenon is heavily affecting the entire

system. ADaRTA provides this further mechanism to allow

finding the trade-off between the ability to timely detect aging

and the number of false alarms.

To this aim, ADaRTA builds on the findings of own past ex-

perimental analysis: Table I reports the sets of aging indicators

identified experimentally in [8], and the corresponding global

confidence level. This list is used by the rejuvenation module,

along with the TTAF estimation, to decide if rejuvenation is

needed. Note that anomalies in the sets of aging indicators in

the left column represent a sufficient condition to mark the

confidence with the level in the right column. For instance,

an aging alert on Launch Time is sufficient by itself to mark

the aging with a HIGH confidence; if there is also a corre-

sponding aging on system server PSS, then the OS can be

declared to be in an aging state with a VERY HIGH confidence

(regardless of whether other indicators exhibit aging trends or

not).

D. Workload Monitoring

Assessing the current workload allows the rejuvenation

module to decide when to perform rejuvenation based on

the current aging state. Specifically, ADaRTA includes a

load monitor, which periodically collects (within time T) the

following workload indicators (WIs):

• Percentage of foreground processes over all processes;

• Percentage of visible processes over all processes;

• Percentage of service processes over all processes;

• Percentage of background processes over all processes;

• Percentage of CPU usage;

• Average PSS of running applications over the RAM size;

• Percentage of the sum of PSS of running applications

over the RAM size.

These indicators are treated separately. Each indicator is

discretized into five classes (VERY LOW: 0%-20%; LOW: 20%-

40%; MEDIUM: 40%-60%; HIGH: 60%-80%; VERY HIGH: 80%-

100%). In ADaRTA, the overall workload level is computed

as follows: i) counting the number of workload indicators

(WI) that fall into each level; ii) choosing the level with the

maximum number of WIs. For instance, if two WIs are in

the LOW level, four WIs in the MEDIUM, and one WI in the

HIGH level, the overall workload level is said to be MEDIUM.

Such an indication on the current load is further used by the

rejuvenation module as a triggering factor for rejuvenation

action.

V. CONFIGURABILITY

The proposed ADaRTA agent allows users (typically, soft-

ware engineers customizing the Android installation for a

specific device type) to tune the following parameters:

• Enable/disable rejuvenation (default value is disabled);

• Sample period T , default is 30 seconds. The longer

is this period, the longer the latency between aging

occurrence and aging detection, but the less will be the

overhead in terms of memory usage, collection time, and

energy consumption;

• Enable/disable the collection of some KPIs. The follow-

ing default KPIs cannot be disabled: system server,

Launch time, Free memory. The more KPIs are enabled

the more accurate the detection can be, but the more

overhead is caused in terms of memory usage, collection

time, and energy consumption;

• The minimum confidence threshold of the Mann-
Kendall test to state that there is a trend in data (it

indicates how much likely the trend will persist). It is

configurable to four levels: 80%, 90%, 95%, 99% (the

last three values are commonly used in statistics). If the

result of the test is greater than the set confidence, a trend

is said to be present in that time series;

• Threshold of acceptable performance for each KPIs.

As described in Section IV-B, the thresholds will be

computed as the percentage of the upper bound value

UKPIi experienced in the healthy state, to be indepen-

dent of the device where they are applied (ThrKPIi =
UKPIi + x%UKPIi). The x value is configurable.

Further configurable parameters are:

• Minimum number of samples S, after which the aging

detector computes the average to determine the healthy

state after time t0. For the computation of the average

in the healthy state, the confidence of the average Cavg

and accuracy of the average R are configurable (default

values respectively 95% and 5%). Also the maximum

“history”, i.e. the number of storable averages, N , and/or

maximum time Z, are configurable (see Section IV-B);

• The window size W , namely the number of collected

samples over which the MK test and the Sen procedure

are performed every T seconds. We prefer short windows

(e.g., W ≤ 50) for reacting as fast as possible whenever

aging occurs. As stated in Section IV-C, to reduce false

alarms, the aging detector raises an alert only when there

243

is an aging trend for at least k consecutive times, with k =
5 by default. Note that samples within W are deleted once

the MK test and Sen’s procedure are over. The outcome

of these tests, namely the series MKi,j , Slopei,j , are

discarded unless an aging alarm occurs (in which case

the last k results are kept).

The agent parameters need to be tuned to the specific

Android device under test. These will determine the trade-off

between accuracy/performance of the solution and the incurred

overhead, as shown for the experiment in the next section.

VI. EXPERIMENT

This Section presents an experiment showing how to config-

ure ADaRTA to effectively detect aging in an Android device

and to rejuvenate its state.

The mobile device selected for the experiment is a P8

smartphone by Huawei. It is equipped with an Android
Open Source Project (AOSP) OS, version 6.0.1, and

with third party applications chosen by Huawei for the

aging analysis conducted in [8], i.e., com.tencent.mm,

com.sina.weibo, com.qiyi.video, com.youku.phone,

com.taobao.taobao, com.tencent.mobileqq,

com.baidu.searchbox, com.baidu.BaiduMap,

com.UCMobile, and com.moji.mjweather. The Huawei

device is stressed via the Monkey tool [17], started by using

the Android Debug Bridge (adb) command-line tool [22].

The experiment assumes the manufacturer’s software engi-

neer wishes to configure ADaRTA to monitor the total PSS
KPI of the system server process, which is demonstrated

in our previous work to be one of the best indicators of aging

in Android [8]. The aging detector module is configured with

the following parameters:

• Sampling period (T): 30 s;

• Upper KPI ratio value (i.e., the slowing down factor for

acceptable performance): 1.3;

• Confidence for computing threshold: 95%;

• Minimum number of samples (the window size W): 50;

• Minimum number of samples on which calculate health

state (i.e., S): 10;

• Maximum storable medians (i.e., N): 15.

Figure 3 shows an overview of the experiment result,

plotting the total PSS of the system server over time

(hours). In the initial phase (marked with 1), the aging

detector computes the healthy state of the device, and in

particular the “healthy” total PSS (see section IV-B), that is,

the memory consumption of the device when there is still no

aging effect. We assume that at the start of the experiment

the device has just been rebooted or freshly booted, hence

there is no aging. The aging detector computes the thresholds

for the total PSS among the other KPIs; these thresholds will

be adopted for the computation of the TTAF. According to

the set slowing down factor, the device is considered aging-

failed when the total PSS of the system server process will

exceed +30% of the “healthy” total PSS (threshold marked

with 2). After about 2.5 hours, the device already exhibits a

1.38723x105

Fig. 3. Overview of experiment result.

degradation of performance, and the memory consumption of

the system server grows anomalously (see 3).

Figure 4 shows the output of the aging detector (stored in the

device at a predefined location) of the last five-time windows

of PSS samples from the time when the first aging alert is

detected and the alarm is raised (instant 4 in Figure 3). In

particular, the aging detector checks the presence of a trend

periodically, every 50 samples of the total PSS, according to

the minimum number of samples set. Figure 4 shows that 5

consecutive aging trends are detected (i.e., the field Trend:
yes in the MannKendall section), and the estimated slope

(i.e., the value TheilSen slope) of the aging trend is updated

over time, in order to follow the system behavior. The output

in Figure 4 reports also the (abbreviated) list of 50 samples

in the time windows indicating both the timestamp and the

sampled total PSS value. Furthermore, the output includes also

the computation of the Mann-Kendall test and the Sen’s slope

procedure, the statistical confidence of the trend detection (for

example, 98% confidence), and the slope and the intercept of

the aging trend (aging trend curve 5 in Figure 3). Finally, in

the (i+5)-th window the device experiences five consecutive

trends and positive slopes, and according to criteria described

in Section IV-C, the aging detector raises an aging alarm due

to an aging alert on the total PSS KPI. At this point, the

aging detector computes the estimate of TTAF (expressed in

milliseconds). We obtain the TTAF equal to approximately 8

hours. This means that starting from the time the aging alarm

is raised, in about 8 hours the device will reach a Aging Failure
state after which the performance will be degraded to such an

extent that leads it to be unresponsive and eventually to crash.

In the current implementation of ADaRTA and the con-

ducted experiment, rejuvenation is performed by restarting

key services found to be the main responsible for aging

244

i+5
KPI: Total Pss
Process: system_server
Timestamp: 1476480931071
MannKendall:

Samples: 50

Timestamp Value
1.476479458488E12 107817.0
.................
1.476480929079E12 107571.0

S : 295
Var: 14291.666666666666
Sum: 0.0
Z : 2.4592681838303037
Confidence : 0.99305
Trend: yes
TheilSen:

Z: 2,459

Desired confidence:0,050000
Confidence: 0,993050

TheilSen Intercept (yI):
-1.782547049711633E9
TheilSen slope:
0.001207367320485422
Threshold: 138723.0
MK trend count: 1
Aging alert: no
.........................

i
KPI: Total Pss
Process: system_server
Timestamp: 1476481050804
MannKendall:

Samples: 50

Timestamp Value
1.476479579049E12 106740.0
.................
1.476481048808E12 107333.0

S : 275
Var: 14291.666666666666
Sum: 0.0
Z : 2.291971028467698
Confidence : 0.98899
Trend: yes
TheilSen:

Z: 2,292

Desired confidence:0,050000
Confidence:0,988990

TheilSen Intercept (yI):
-1.53614535862527E9
TheilSen slope:
0.0010404827248449901
Threshold: 138723.0
MK trend count: 5
Aging alert: yes
.........................

Fig. 4. Aging detector output.

in our previous study, namely the WiFi service and the

Activity manager. We are currently implementing a finer

grain rejuvenation action, which aims at cleaning the single

Java containers (e.g., Heap, ArrayLists, etc.) within the se-

lected critical services of the system server process. The main

idea behind our approach is to profile processes and services

for understanding how the memory usage of objects evolves.

Subsequently, we apply some heuristics for identifying and

cleaning-up the Java containers without causing side effects

on the application. The used heuristics could indicate only

containers whose size grows over time or containers that have

at least one object with a long lifetime. Details are left to

future work.

VII. CONCLUSION

We have presented ADaRTA, a software agent for aging

detection and rejuvenation in Android platforms. It is de-

signed to automate the whole process from monitoring system-

and workload-related aging indicators, to detecting unhealthy

system states, up to scheduling and triggering a rejuvenation

action for the operating system, preventing it to enter a failure

state perceivable by the device user.

We believe the configurable features of the proposed agent

will support practitioners in tailoring it for manufacturer’s

specific needs. Indeed, we demonstrated that ADaRTA is ef-

fective to predict average TTAF against real software. We hope

this will contribute to fill the gap between the many results

made available by the research on mobile software aging and

rejuvenation in the very last years, and their incorporation into

the engineering practices of future mobile devices based on the

popular Android operating system.

ACKNOWLEDGMENTS

This work has been partially supported by the Italian

PRIN 2015 project “GAUSS” funded by MIUR (Grant n.

2015KWREMX 002) and by Programme STAR, funded by

UniNA and Compagnia di San Paolo, under project “To-

wards Cognitive Security Information and Event Management”

(COSIEM).

REFERENCES

[1] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of
software aging in a web server,” IEEE Transactions on Reliability,
vol. 55, no. 3, pp. 411–420, Sep. 2006.

[2] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software Aging
Analysis of the Linux Operating System,” in Proc. ISSRE. IEEE, 2010,
pp. 71–80.

[3] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo,
“Memory leak analysis of mission-critical middleware,” Elsevier Journal
of Systems and Software, vol. 83, no. 9, pp. 1556–1567, 2010.

[4] R. Pietrantuono and S. Russo, “A survey on software aging and reju-
venation in the cloud,” Springer Software Quality Journal, pp. 1–32,
2019.

[5] D. Cotroneo, R. Natella, and R. Pietrantuono, “Predicting aging-related
bugs using software complexity metrics,” Elsevier Performance Evalu-
ation, vol. 70, no. 3, pp. 163–178, 2013.

[6] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A Survey of
Software Aging and Rejuvenation Studies,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 10, no. 1, p. 8, 2014.

[7] David A. Wheeler, “SLOCCount HomePage,” 2019. [Online]. Available:
https://dwheeler.com/sloccount/

[8] D. Cotroneo, F. Fucci, A. K. Iannillo, R. Natella, and R. Pietrantuono,
“Software Aging Analysis of the Android Mobile OS,” in Proc. ISSRE.
IEEE, 2016, pp. 478–489.

[9] C. Weng, J. Xiang, S. Xiong, D. Zhao, and C. Yang, “Analysis of
Software Aging in Android,” in Proc. ISSREW. IEEE, 2016, pp. 78–83.

[10] F. Qin, Z. Zheng, X. Li, Y. Qiao, and K. S. Trivedi, “An empirical
investigation of fault triggers in Android operating system,” in Proc.
PRDC. IEEE, 2017, pp. 135–144.

[11] Y. Qiao, Z. Zheng, and F. Qin, “An empirical study of software aging
manifestations in Android,” in Proc. ISSREW. IEEE, 2016, pp. 84–90.

[12] Y. Qiao, Z. Zheng, Y. Fang, F. Qin, K. S. Trivedi, and K.-Y. Cai, “Two-
level rejuvenation for Android smartphones and its optimization,” IEEE
Transactions on Reliability, vol. 68, no. 2, pp. 633–652, 2018.

[13] J. Xiang, C. Weng, D. Zhao, J. Tian, S. Xiong, L. Li, and A. Andrzejakb,
“A new software rejuvenation model for Android,” in Proc. ISSREW.
IEEE, 2018, pp. 293–299.

[14] S. Huo, D. Zhao, X. Liu, J. Xiang, Y. Zhong, and H. Yu, “Using
machine learning for software aging detection in Android system,” in
Proc. ICACI. IEEE, 2018, pp. 741–746.

[15] Y. Qiao, Z. Zheng, and Y. Fang, “An empirical study on software aging
indicators prediction in Android mobile,” in Proc. ISSREW. IEEE,
2018, pp. 271–277.

[16] C. Weng, D. Zhao, L. Lu, J. Xiang, C. Yang, and D. Li, “A rejuvenation
strategy in Android,” in Proc. ISSREW. IEEE, 2017, pp. 273–279.

[17] Android Open-Source Project, “UI/Application Exerciser Monkey,”
2019. [Online]. Available: https://developer.android.com/studio/test/
monkey

[18] J. Araujo, V. Alves, D. Oliveira, P. Dias, B. Silva, and P. Maciel, “An
Investigative Approach to Software Aging in Android Applications,” in
Proc. Intl. Conf. SMC. IEEE, 2013, pp. 1229–1234.

[19] Android Open-Source Project, “Android Documentation,” 2017.
[Online]. Available: https://developer.android.com/reference/android/
app/Activity

[20] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in Proc. ISSREW. IEEE, 2008.

[21] R. O. Gilbert, Statistical methods for environmental pollution monitor-
ing. John Wiley & Sons, 1987.

[22] Android Open-Source Project, “Android Debug Bridge,” 2019. [Online].
Available: https://developer.android.com/studio/command-line/adb

245

