
FailViz: A Tool for Visualizing
Fault Injection Experiments in Distributed Systems

Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella
Università degli Studi di Napoli Federico II

Naples, Italy,

{cotroneo, luigi.desimone, pietro.liguori, roberto.natella}@unina.it

Nematollah Bidokhti
Futurewei Technologies, Inc.

USA

nbidokht@futurewei.com

Abstract—The analysis of fault injection experiments can be a
cumbersome task. These experiments can generate large volumes
of data (e.g., message traces), which a human analyst needs to in-
spect to understand the behavior of the system under failure. This
paper introduces the FailViz tool for visualizing fault injection
experiments, which points out relevant events for interpreting
the failures. We also present a motivating example in the context
of OpenStack, and point out future research directions.

Index Terms—Anomaly detection; Fault injection; OpenStack;
Visualization

I. INTRODUCTION

Fault injection is a fundamental technique to ascertain the

fault-tolerance properties of distributed systems. This technique

has been applied in the context of many safety- and business-

critical domains, including railways [1], telecommunications [2],

automotive [3], and air traffic control [4]. One key advantage of

fault injection is that experiments can be automated and scale well.

However, human intuition is still fundamental to turn the experi-

mental results into insights to make a system more fault-tolerant.

In particular, understanding the behavior of distributed systems

under failure can be a difficult task. The typical practice of

looking for failure predicates over events and outputs [1] may not

suffice to understand failures. If the distributed system is large and

complex enough, it can fail in unexpected ways not anticipated at

design time [5], [6], and the effects of the failure can be missed by

the predicates. For example, even if the system is still available, it

can provide an incorrect service to the users, by returning wrong

data, exhibiting poor performance, or corrupting the internal state

of resources. Moreover, human analysts need to scrutinize the

experimental data to reconstruct the chain of events between the

injected fault and the failure, so that they can break the chain to

make the system more robust. Unfortunately, this can be a cumber-

some task due to the large volume of data (logs, message traces,

instruction traces, etc.) generated by complex systems. This issue

is further exacerbated by the extensive use of “off-the-shelf” soft-

ware components, either proprietary or open-source (such as ap-

plication frameworks, middleware, datastores, etc.), whose events

and protocols can be difficult to analyze and understand [7].

In this work, we develop a tool (FailViz) to aid human

analysts at investigating failures in distributed systems under fault

injection. The goal of the tool is to relieve the human analyst

from manually inspecting thousands of events, by only pointing

out events that are relevant for interpreting the failure. FailViz in-

struments the distributed system before fault injection, in order to

be able to trace the messages exchanged within the system. Then,

after the experiment, it analyzes the trace of messages during

fault injection, by comparing the trace to a reference fault-free
run, and by visualizing any divergent event to the human analyst.

Therefore, the tool can be used by analysts to get a simplified

overview of the experiments and to better understand the results.

Moreover, we plan to use the tool as a basis for future research on

automated debugging of failures in the distributed systems. Fail-
Viz complements previous state-of-the-art tools for the analysis of

distributed systems (such as Magpie [8], Pinpoint [9], Pip [10],

and ShizViz [11]) as it is specifically designed to analyze failures

from fault injection, instead of failures occurred in production.

In the following of this paper, we provide the design rationale

for the FailViz tool (Section II), and present a motivating

example of failure analysis (Section III) in the context of

OpenStack, a popular cloud management platform [12]. We

conclude with directions for future research work (Section IV).

II. DESIGN

The driving idea is to analyze the distributed system as a

set of black-box components interacting through public service

interfaces (e.g., REST APIs, message queues), in order to be

applicable in large systems that include third-party software; and

to use an anomaly detection algorithm on these interactions in

order to pinpoint how the system behaves in the case of failures.

The tool records and analyzes the messages that occur in the dis-

tributed system during fault injection. In general, messages are the

key observation point for debugging and verification of distributed

systems, as they reflect well the activity of the distributed system

[13]. For example, nodes perform work when they receive mes-

sages to provide a service to another node (e.g., through remote

procedure calls), and reply with messages to provide the response

and results; moreover, nodes use messages to asynchronously

notify a new state to other nodes in the distributed system.

Therefore, developers need to look at messages to understand

how the behavior of a system degenerated into a failure (e.g., it

becomes unavailable to users), and how to mitigate the failure.

Fig. 1 shows the design of the tool. We first instrument

communication APIs (step 1). Then, we exercise the system by

applying a workload, and without fault injection (step 2). The

tool records all messages exchanged among the components,

and between the components and the clients. All these messages

145

2019 15th European Dependable Computing Conference (EDCC)

978-1-7281-3929-6/19/$41.00 ©2019 IEEE
DOI 10.1109/EDCC.2019.00036

Fig. 1. The workflow of the FailViz tool.

are recorded into a fault-free trace. Several fault-free traces

are generated by repeating the workload several times.

After recording the fault-free traces, we perform a series

of fault injection tests against the distributed system (step

3). This step will produce fault-injected traces (also faulty
traces), one per test. The fault-injected traces are analyzed

by looking for anomalies by using a configurable anomaly

detection component (step 4). See II-C for details about anomaly

detection component. Since all executions (both the fault-free and

fault-injected ones) are performed under the same conditions (i.e.,

same software and hardware configuration, same workload, etc.),

we look into deviations (anomalies) between the fault-injected

trace and the fault-free trace, since these deviations include the

effects of the injected fault. The results of anomaly detection are

visualized by presenting to the human analyst the message trace

of an experiment (step 5). The tool emphasizes messages that

were omitted because of the injected fault (i.e. only happening

in fault-free conditions), and new messages that were caused by

the injected fault (i.e., only happening under faulty conditions).

Moreover, FailViz supports the inspection of the anomalies by

summarizing detailed information about the messages.

A. Instrumentation

The first step of FailViz consists of instrumenting the

distributed system under test, in order to keep track of messages

sent between nodes during a test. In particular, the tool

records information by collecting traces of communication API
invocations made by the distributed software. We designed the

tool for providing a set of pre-instrumented communication

libraries to trace messages. This design choice is motivated by

the fact that developers seldom create new communication APIs

from scratch, but they often re-use already available ones such as

REST frameworks (e.g., Django [14], Spring [15]) and message
queueing (e.g., AMQP [16], RabbitMQ [17]). Therefore, we

collect message traces by installing pre-instrumented libraries

(shipped with FailViz) in the target application. During the

experiments, the libraries will send traces to a collector.

The tool adopts distributed tracing techniques to record

every call to communication APIs, by using probes inserted

in their source- or binary-code. This instrumentation is a form

of “black-box tracing”, since it does not require any knowledge

about the internals of the distributed system under test, but

only the knowledge about which communication APIs are

used by the system. This approach is especially suitable when

the testers may not have a full and detailed understanding of

the entire distributed system. For example, this is the case of

distributed systems developed by large teams (and in which

testers and developers are distinct people), or distributed

systems that embed components developed by third-parties.

Moreover, distributed tracing is already familiar to developers

for debugging, performance monitoring and optimization, root

cause analysis, and service dependency analysis [18], [19].

In our implementation, we trace the application by using a

context manager/decorator mechanism of the Zipkin distributed

tracing system [20]. The instrumented application sends data

via HTTP to the collector, which stores trace data. We record

information about the exchanged messages, such as the sender

of the message, the name of the service API that is being called,

the timestamp of the message and its duration. We refer to the

traced calls as events, and to the sets of events as traces. The tool

assigns an identifier (symbol) to each recorded event, such that

two events are identified by the same symbol if they have the

same pair <sender of the message, name of the called service
API>. Therefore, traces are represented as sequences of symbols.

B. Data collection

Once the distributed system has been instrumented, it is

executed several times to perform fault injection tests. The

distributed system is monitored during the execution; at the

same time, the system is stimulated with a workload (e.g., by

generating client requests), and a fault is injected into the system.

Each test injects a different fault, and only one fault is injected per

test. For each test, we collect a trace (fault-injected trace) of the

messages that are generated in the system during the execution

of the workload. Therefore, we obtain several traces, one per test.

In addition to fault-injected traces, we also execute the

workload and collect traces without injecting any fault (fault-
free traces). Such fault-free traces (also known as golden runs or

reference runs) have been adopted in the past for fault injection

experiments in small systems (e.g., embedded ones), by using the

traces as a reference to understand how the fault-injected system

derailed from a proper execution [21]–[23]. In order to collect

146

fault-free traces, the tool executes the same workload (also used

in fault injection tests) N times, but without injecting any fault.

The messages sent in each execution are saved in a fault-free trace,

with one fault-free trace per workload execution. We use more

than one fault-free trace since we need to take into account the

variability of the execution that can occur in distributed systems

(e.g., the relative ordering of messages during execution).

C. Anomaly detection

In order to analyze failures during a fault injection test, the

tool looks for “anomalies” in the fault-injected execution, and

points them out to the human analyst. The analysis compares

the fault-injected execution with the reference execution (i.e.,

the “golden run”) and identifies the differences between them.

The ultimate result of the tool is a classification of the events

of the fault-injected trace into:

• Common events: Events that occurred both in the

fault-injected trace and in at least one of the fault-free

traces, with the same type and order.

• Anomalous events: Differences between the fault-injected

trace and all of the fault-free traces. These events are

further classified into:

– Spurious events: Events that would normally not

happen under fault-free conditions.

– Missing events: Events that happen in fault-free

conditions, but do not happen under fault injection.

The component that deals with anomaly detection can be

configured by the user, which may choose among different

algorithms. In the initial version of FailViz, we identify

anomalies by using a simple algorithm, which we will extend in

future work. The anomaly detection component performs a string

comparison of two sequences (respectively the fault-injected

sequence, and one of the fault-free sequences), by looking for

the longest common subsequence (LCS) of the strings [24]. The

LCS is a subset of symbols that are present in both sequences in

the same order, and that can be obtained by removing (a minimal

number of) symbols from the original sequences. This kind of

problem is recurrent in computer science, like in bioinformatics

and in source code versioning (e.g., in the diff Unix tool), and

can be solved with efficient algorithms [25], [26].

In order to perform the comparison, the tool selects one

fault-free trace among the ones collected at the beginning of the

workflow. In particular, the tool selects the fault-free trace most
similar to the fault-injected trace, since we want to identify

and to filter out from the failure analysis as much common
events as possible (i.e., the tool aims to discard the subset of

messages that also happen with the same type and order in at

least one fault-free execution), in order to draw the attention

of the human analyst on anomalous events.

The similarity between two strings x and y is measured by

considering the length of the LCS (|LCS(x,y)|) [27], that is, the

number of symbols that appear in both strings while preserving

the order of symbols. In particular, we compute the normalized

length of the LCS (nLCS), where nLCS(x,y)= |LCS(x,y)|√
lx·ly

,

and lx and ly are the lengths of the individual strings x and

Fig. 2. Graphical visualization of a fault injection experiment in OpenStack.

y. The tool uses this metric to identify the fault-free trace of

the training set most similar to the fault-injected trace.

III. EXAMPLE

In this section, we present an example of a fault injection

experiment on the OpenStack cloud computing platform. We

instrumented the following communication points:

• The RESTful API libraries of the OpenStack subsystems

(e.g., Nova, Neutron, Cinder) used for communication

between OpenStack and its clients. Each OpenStack

subsystem includes a client component, which includes

API bindings for communication.

• The OSLO Messaging library, which uses a message queue

library, by exchanging messages with an intermediary

queuing server (RabbitMQ) through RPC messages. These

messages are used for communication among OpenStack

subsystems.

We instrumented only 5 selected functions of these components,

by adding a total of 20 lines of Python code.

This experiment injected a fault in the Nova subsystem, which

manages VM instances in OpenStack. During the experiment,

OpenStack was exercised by a workload, which emulated a

system administrator or customer that deploys a new virtual

infrastructure, by calling the OpenStack REST APIs. One of

these API calls is an asynchronous request to create a new VM

instance. After the API call ends, Nova takes a few minutes

to create and initialize the instance. During these operations,

we injected a Python exception to force a failure.

Fig. 2 shows the output provided by FailViz for the selected

experiment. The graphical representation is oriented to a human

analyst that needs to understand what happened during the

experiment. This representation shows the events between the

OpenStack clients and the OpenStack subsystems (labeled as

REST API), and the inter- and intra- subsystems API calls

events (labeled using the name of the subsystem).

In order to point out how the fault impacted on the system,

this representation divides the events among common, missing,

147

and spurious ones. The groups are obtained by applying an

anomaly detection algorithm (§ II-C).

FailViz provides an interactive visualization of the experiment.

A user can investigate a specific event by pointing the mouse on it:

the tool displays a table with information about the event, which

is important to facilitate the analysis of the failure. Our implemen-

tation uses mpld3 [28], a library that brings together Matplotlib,

the popular Python-based graphing library, and D3js, the popular

JavaScript library for creating interactive data visualizations for

the web. In the figure, we notice a large number of missing events.

The failure affected several OpenStack subsystems over a rela-

tively long time period. These events include several internal calls

to initialize the instance and to attach it to its virtual resources (the

“propagation chain” of the failure). The spurious events, instead,

include the exceptions of two REST API calls to the client.

In our example, due to the injected fault, Nova did not

complete the initialization of the VM instance, leaving it in

an inactive state. Later on, after 5 minutes, the workload client

experienced a service exception when calling the API of the

Cinder subsystem, which manages storage volumes in OpenStack.

By investigating on the event pointed by the mouse, we notice

that the event <cinder-volume, attach-volume> did not occur in

the faulty execution (i.e., a missing event). Thus, FailViz helps

the analyst in understanding that the workload did not attach

a volume to the VM instance during the faulty execution.

Moreover, the OpenStack Neutron subsystem was also unable

to attach the VM instance to the virtual network. Both Nova

and Neutron did not raise any API exception, but the failure

only became apparent to the client when invoking the API

of the Cinder subsystem. Therefore, the problem propagated

both across subsystems (from Nova to Neutron and Cinder)

and across time, since the client perceived the failure only after

a relatively long time. This behavior is problematic from the

point of view of high-availability, as the propagation delay also

increases the time-to-detect and the time-to-recover the failure.

Moreover, the longer the propagation chain, the more difficult

will be for a developer to reason about how to best tolerate

the fault, e.g., whether to manage the fault in Nova, Neutron

and/or Cinder and at which time to manage the fault during

the workflow. For example, the API could return a more timely

notification of the failure to the client, either by introducing a

callback mechanism in the Nova API that creates the instance or

by returning an error from other API calls to Nova or Neutron.

IV. CONCLUSION AND FUTURE WORK

We presented FailViz, a novel tool for analyzing fault injection

experiments in distributed systems. We designed FailViz to be

non-intrusive, highly portable, and configurable with several

anomaly detection algorithms. In this paper, we applied FailViz
with a basic anomaly detection algorithm in OpenStack. We aim

to add new approaches for anomaly detection (e.g., approaches

based on probabilistic models, neural networks, combined

models, etc.), in order to enable the possibility to configure the

anomaly detection component. This will allow us to compare

several approaches for anomaly detection on different targets

and with several workloads. In particular, we will evaluate the

robustness of anomaly detection algorithms with respect to

non-determinism effects in distributed systems.

ACKNOWLEDGMENT

This work has been partially supported by Critiware s.r.l. and

by Huawei Technologies Co. Ltd.

REFERENCES

[1] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, “Fault
injection and dependability evaluation of fault-tolerant systems,” IEEE
TC, vol. 42, no. 8, pp. 913–923, 1993.

[2] K. R. Joshi, W. H. Sanders, M. A. Hiltunen, and R. D. Schlichting,
“Automatic recovery using bounded partially observable markov decision
processes,” in Proc. DSN. IEEE, 2006, pp. 445–456.

[3] T. Piper, S. Winter, N. Suri, and T. E. Fuhrman, “On the effective use
of fault injection for the assessment of AUTOSAR safety mechanisms,”
in Proc. EDCC. IEEE, 2015, pp. 85–96.

[4] R. Natella and D. Cotroneo, “Emulation of transient software faults for
dependability assessment: A case study,” in Proc. EDCC. IEEE, 2010,
pp. 23–32.

[5] P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu, R. Buyya, and
R. Ranjan, “Emergent failures: Rethinking cloud reliability at scale,” IEEE
Cloud Computing, vol. 5, no. 5, 2018.

[6] K. J. Hole and C. Otterstad, “Software systems with antifragility to
downtime,” IEEE Computer, vol. 52, no. 2, 2019.

[7] D. Cotroneo, L. De Simone, A. Di Martino, P. Liguori, and R. Natella,
“Enhancing the analysis of error propagation and failure modes in cloud
systems,” in Proc. ISSREW. IEEE, 2018, pp. 140–141.

[8] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: Online mod-
elling and performance-aware systems.” in Proc. HotOS, 2003, pp. 85–90.

[9] Y.-Y. M. Chen, A. J. Accardi, E. Kiciman, D. A. Patterson, A. Fox, and
E. A. Brewer, “Path-based failure and evolution management,” in Proc.
NSDI, 2004, pp. 309–322.

[10] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and
A. Vahdat, “Pip: Detecting the unexpected in distributed systems,” in Proc.
NSDI, vol. 6, 2006, pp. 9–9.

[11] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging
distributed systems,” Queue, vol. 14, no. 2, p. 50, 2016.

[12] OpenStack project, “User stories showing how the world #RunsOnOpen-
Stack,” 2018. [Online]. Available: https://www.openstack.org/user-stories/

[13] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, “TaxDC: A
taxonomy of non-deterministic concurrency bugs in datacenter distributed
systems,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 517–530, 2016.

[14] Django. [Online]. Available: https://www.djangoproject.com
[15] Spring. [Online]. Available: https://spring.io/projects/spring-framework
[16] AMPQ. [Online]. Available: https://www.amqp.org/
[17] RabbitMQ. [Online]. Available: https://www.rabbitmq.com/
[18] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mystery

machine: End-to-end performance analysis of large-scale internet services.”
in Proc. OSDI, 2014, pp. 217–231.

[19] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in Proc. DSN.
IEEE, 2002, p. 595.

[20] Zipkin. [Online]. Available: https://zipkin.io
[21] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and

tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.
[22] M. Leeke and A. Jhumka, “Evaluating the use of reference run models

in fault injection analysis,” in Proc. PRDC. IEEE, 2009, pp. 121–124.
[23] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability with

software fault injection: A survey,” ACM CSUR, vol. 48, no. 3, p. 44, 2016.
[24] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common

subsequence algorithms,” in Proc. SPIRE. IEEE, 2000, pp. 39–48.
[25] J. W. Hunt and M. MacIlroy, An algorithm for differential file comparison.

Bell Laboratories Murray Hill, 1976.
[26] E. W. Myers, “An O (ND) difference algorithm and its variations,”

Algorithmica, vol. 1, no. 1, pp. 251–266, 1986.
[27] S. Budalakoti, A. N. Srivastava, M. E. Otey et al., “Anomaly detection

and diagnosis algorithms for discrete symbol sequences with applications
to airline safety,” IEEE Trans. on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 39, no. 1, p. 101, 2009.

[28] mpld3 Library. [Online]. Available: http://mpld3.github.io/

148

