2010.06607v1 [cs.SE] 13 Oct 2020

arxXiv

Towards Runtime Verification via Event Stream
Processing in Cloud Computing Infrastructures

Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella, and
Angela Scibelli

DIETI, University of Naples Federico 11, Italy
{cotroneo,luigi.desimone,pietro.liguori,roberto.natella}@unina.it
ang.scibelli@studenti.unina.it

Abstract. Software bugs in cloud management systems often cause erratic
behavior, hindering detection, and recovery of failures. As a consequence,
the failures are not timely detected and notified, and can silently propagate
through the system. To face these issues, we propose a lightweight approach to
runtime verification, for monitoring and failure detection of cloud computing
systems. We performed a preliminary evaluation of the proposed approach
in the OpenStack cloud management platform, an “off-the-shelf” distributed
system, showing that the approach can be applied with high failure detection
coverage.

Keywords: Runtime Verification - Runtime Monitoring - Cloud Computing
Systems - OpenStack - Fault injection

1 Introduction

Nowadays, the cloud infrastructures are considered a valuable opportunity for running
services with high-reliability requirements, such as in the telecom and health-care
domains [I3/35]. Unfortunately, residual software bugs in cloud management systems
can potentially lead to high-severity failures, such as prolonged outages and data losses.
These failures are especially problematic when they are silent, i.e., not accompanied by
any explicit failure notification, such as API error codes, or error entries in the logs.
This behavior hinders the timely detection and recovery, lets the failures to silently
propagate through the system, and makes the traceback of the root cause more difficult,
and recovery actions more costly (e.g., reverting a database state) [T1I12].

To face these issues, more powerful means are needed to identify these failures at
runtime. A key technique in this field is represented by runtime verification strategies,
which perform redundant, end-to-end checks (e.g., after service API calls) to assert
whether the virtual resources are in a valid state. For example, these checks can be
specified using temporal logic and synthesized in a runtime monitor [TA7I36/30], e.g., a
logical predicate for a traditional OS can assert that a thread suspended on a semaphore
leads to the activation of another thread [2]. Runtime verification is now a widely
employed method, both in academia and industry, to achieve reliability and security
properties in software systems []. This method complements classical exhaustive
verification techniques (e.g., model checking, theorem proving, etc.) and testing.

In this work, we propose a lightweight approach to runtime verification tailored
for the monitoring and analysis of cloud computing systems. We used a non-intrusive

2 D. Cotroneo et al.

form of tracing of events in the system under test, and we build a set of lightweight
monitoring rules from correct executions of the system in order to specify the desired
system behavior. We synthesize the rules in a runtime monitor that verifies whether the
system’s behavior follows the desired one. Any runtime violation of the monitoring rules
gives a timely notification to avoid undesired consequences, e.g., non-logged failures,
non-fail-stop behavior, failure propagation across sub-systems, etc. Our approach
does not require any knowledge about the internals of the system under test and
it is especially suitable in the multi-tenant environments or when testers may not
have a full and detailed understanding of the system. We investigated the feasibility
of our approach in the OpenStack cloud management platform, showing that the
approach can be easily applied in the context of an “off-the-shelf” distributed system. In
order to preliminary evaluate the approach, we executed a campaign of fault-injection
experiments in OpenStack. Our experiments show that the approach can be applied in
a cloud computing platform with high failure detection coverage.

In the following of this paper, Section [2| discusses related work; Section [3| presents
the approach; Section [4] presents the case study; Section [5] experimentally evaluates the
approach; Section [f] concludes the paper.

2 Related Work

Promptly detecting failures at runtime is fundamental to stop failure propagation and
mitigate its effects on the system. In this work, we exploit runtime verification to state
the correctness of a system execution according to specific properties. In literature,
some studies refer to runtime verification as runtime monitoring or dynamic analysis.
Runtime monitoring consists of the observation of behaviors of the target system during
its operation instead of verifying the system according to a specific model.

Over the last decades, several efforts have been spent on methodologies and tools
for debugging and monitoring distributed systems. Aguilera et al. [1] proposed an
approach to collect black-box network traces of communications between nodes. The
objective was to infer causal paths of the requests by tracing call pairs and by analyzing
correlations. Magpie [3] and Pinpoint [8] reconstruct causal paths by using a tracing
mechanism to record events at the OS-level and the application server level. The tracing
system tags the incoming requests with a unique path identifier and links resource usage
throughout the system with that identifier. Gu at al. [2I] proposes a methodology to
extract knowledge on distributed system behavior of request processing without source
code or prior knowledge. The authors construct the distributed system’s component
architecture in request processing and discover the heartbeat mechanisms of target
distributed systems. Pip [31] is a system for automatically checking the behavior of a
distributed system against programmer-written expectations about the system. Pip
provides a domain-specific expectations language for writing declarative descriptions of
the expected behavior of large distributed systems and relies on user-written annotations
of the source code of the system to gather events and to propagate path identifiers across
chains of requests. OSProfiler [25] provides a lightweight but powerful library used
by fundamental components in OpenStack cloud computing platform [24]. OSProfiler
provides annotation system that can be able to generate traces for requests flow (RPC
and HTTP messages) between OpenStack subsystems. These traces can be extracted
and used to build a tree of calls which can be valuable for debugging purposes. To use

Towards Runtime Verification via Event Stream Processing 3

OSProfiler, it is required deep knowledge about OpenStack internals, making it hard to
use in practice.

Research studies on runtime verification focused on formalisms for describing
properties to be verified. Typically, a runtime verification system provides a Domain
Specification Language (DSL) for the description of properties to be verified. The DSL
can be a stand-alone language or embedded in an existing language. Specification
languages for runtime verification can be regular, which includes temporal logic, regular
expressions, and state machines, but also non-regular, which includes rule systems,
stream languages.

In the runtime verification literature, there is an established set of approaches for
the specification of temporal properties, which include Linear Temporal Logic (LTL)
[28], Property Specification Patterns (PSP) [16], and Event Processing Language (EPL)
[18]. Linear Temporal Logic is the most common family of specification languages.
This approach supports logical and temporal operators. LTL is extensively used as
specification language in many model checkers [9I6I22]. The Property Specification
Patterns consist of a set of recurring temporal patterns. Several approaches use PSP
and/or extend original patterns used in [5]. Event Processing Language is used to
translate event patterns in queries that trigger event listeners whether the pattern is
observed in the event stream of a Complex Event Processing (CEP) environment [33].
The most interesting characteristic of CEP systems is that can be used in Stream-based
Runtime Verification or Stream Runtime Verification (SRV) tools. SRV is a declarative
formalism to express monitors using streams; the specifications are used to delineate
the dependencies between streams of observations of the target systems and the output
of the monitoring process.

In [36], Zhou et al. propose a runtime verification based trace-oriented monitoring
framework for cloud computing systems. The requirements of the monitoring can
be specified by formal specification language, i.e. LTL, Finite State Machine (FSM).
The tracing adopted in this approach is fine-grained, in which traces are a collection
of events and relationships: every event records the details of one execution step in
handling the user request (function name, duration), every relationship records the
causal relation between two events. Using both the events and the relationships, it is
possible to represent a trace into a so-called trace tree. In a trace tree, a node represents
an event and an edge represents a relationship between events. This approach is
generalizable at the cost of accessing the target source code to get the knowledge needed
for instrumenting the code and gaining information about events relationships. However,
this is not always the case, leading this approach difficult to exploit in practice. In [29],
Power and Kotonya propose Complex Patterns of Failure (CPoF), an approach that
provides reactive and proactive Fault-Tolerance (FT) via Complex Event Processing
and Machine Learning for IoT (Internet of Things). Reactive-FT support is used to
train Machine Learning models that proactively handle imminent future occurrences of
known errors. Even if CPoF is intended for IoT systems, it inspired us in the use of
Complex Event Processing to build the monitor.

The proposed approach presents several points of novelty compared to state-of-
the-art studies and tools in runtime verification literature. In particular, the proposed
methodology relies on black-box tracing, instead of regular tracing, avoiding knowing
about system internals and the collection of information about the relationships between
events (i.e., uncorrelated events). Further, we provide a new set of monitoring rules
that well fit distributed systems and cloud computing infrastructure requirements, in

4 D. Cotroneo et al.

Node A Node B
‘\\ // @ Runtime Verification Process

Communication Runtime
APIs (REST APIs, p Bl - B2 - A2 - Al Verification
MQs) Engine

.//' @ Instrumentation

P @ Monitor Synthesis

\ ‘\ ———‘\\
R Fault-free Lightweight
@ Collection of ~ traces Monitoring Rules
correct executions .
Analysis

Fig. 1. Overview of the proposed approach.

which we need to face peculiar challenges like multi-tenancy, complex communication
between subsystems, lack of knowledge of system internals. Based on the analysis of
the events collected during system operation, we can specify the normal behavior of the
target system and perform online anomaly detection.

3 Proposed Approach

Figure [1| shows an overview of the proposed approach. Firstly, we instrument the system
under test to collect the events exchanged in the system during the experiments (step
(D). Our instrumentation is a form of black-box tracing since we consider the distributed
system as a set of black-box components interacting via public service interfaces. To
instrument the system, we do not require any knowledge about the internals of the
system under test, but only basic information about the communication APIs being
used. This approach is especially suitable when testers may not have a full and detailed
understanding of the entire cloud platform. Differently from traditional distributed
system tracing [25], this lightweight form of tracing does not leverage any propagation
of the event IDs to discriminate the events generated by different users or sessions.

In the step (2), we collect the correct executions of the system. To define its normal
(i.e., correct) behavior, we exercise the system in “fault-free” conditions, i.e., without
injecting any faults. Moreover, to take into account the variability of the system, we
repeat several times the execution of the system, collecting different “fault-free traces”,
one per each execution. We consider every fault-free trace a past correct execution of
the system.

Step (3) analyzes the collected fault-free traces to define a set of failure monitoring
rules. These rules encode the expected, correct behavior of the system, and detect a
failure if a violation occurs. This step consists of two main operations. Firstly, the
approach extracts only the attributes useful for expressing the monitoring rules (e.g.,
the name of the method, the name of the target system, the timestamp of the event,
etc.). Then, we define the failure monitoring rules by extracting “patterns” in the event
traces. We define a “pattern” as a recurring sequence of (not necessarily consecutive)
events, repeated in every fault-free trace, and associated with an operation triggered by
a workload. In this work, we identify patterns by manually inspecting the collected
traces. In future work, we aim to develop algorithms to identify patterns using statistical
analysis techniques, such as invariant analysis [I7/34120].

Towards Runtime Verification via Event Stream Processing 5

In general, we can express a monitoring rule by observing the events in the traces.
For example, suppose there is an event of a specific type, say A, that is eventually
followed by an event of a different type, say B, in the same user session (i.e., same ID).
The term event type refers to all the events related to a specific API call. This rule can
be translated into the following pseudo-formalism.

a—b and id(a)=1id(b), with ac A, beB (1)

The rules can be applied in the multi-user scenario and concurrent systems as long as
the information on the IDs is available. However, introducing an ID in distributed tracing
requires both in-depth knowledge about the internals and intrusive instrumentation of
the system. Therefore, to make our runtime verification approach easier to apply, we
propose a set of coarse-grained monitoring rules (also known as lightweight monitoring
rules) that do not require the use of any propagation ID. To apply the rules in a
multi-user scenario, we define two different sets of events, A and B, as in the following.

A={all distinct events of type “A” happened in [t, t+A]}
B={all distinct events of type “B” happened in [t, t+A]}

2)
with |A|=|B|=n. Our monitoring rule for the multi-user case then asserts that there
should exist a binary relation R over A and B such that:

R={(a,b)c AxB | a—b,
ﬁ ai,aj EA, bk;EB | (ai7bk)7(aj7bk)7 (3)
ﬁ bi,bj GB, ay cA | (ak,bi),(ak,bj) }

with 4,7,k € [1,n]. That is, every event in A has an event in B that follows it, and every
event a is paired with exactly one event b, and viceversa. These rules are based on
the observation that, if a group of users performs concurrent operations on shared
cloud infrastructure, then a specific number of events of type A is eventually followed
by the same number of events of type B. The idea is inspired by the concept of flow
conservation in network flow problems. Without using a propagation ID, it is not
possible to define the couple of events a; and b; referred to the same session or the
same user ¢, but it is possible to verify that the total number of events of type A is
equal to the total number of events of type B in a pre-defined time window. We assume
that the format of these rules can detect many of the failures that appear in cloud
computing systems: if at least one of the rules is violated, then a failure occurred.
Finally, we synthesize a monitor from failure monitoring rules, expressed according
to a specification language (step (4)). The monitor takes as inputs the events related to
the system under execution, and it checks, at runtime, whether the system’s behavior
follows the desired behavior specified in the monitoring rules (step (8)). Any (runtime)
violation of the defined rules alerts the system operator of the detection of a failure.

4 Case Study

In this paper, we investigated the feasibility of the proposed approach in the context of
a large-scale, industry-applied case study. In particular, we applied the approach in

6 D. Cotroneo et al.

the OpenStack project, which is the basis for many commercial cloud management
products [26] and is widespread among public cloud providers and private users [27].
Moreover, OpenStack is a representative real-world large software system, which includes
several sub-systems and orchestrates them to deliver rich cloud computing services. The
most fundamental services of OpenStack [I5J32] are (i) the Nova subsystem, which
provides services for provisioning instances (VMs) and handling their life cycle; (ii) the
Cinder subsystem, which provides services for managing block storage for instances;
and (iii) the Neutron subsystem, which provides services for provisioning virtual
networks for instances, including resources such as floating IPs, ports and subnets. Each
subsystem includes several components (e.g., the Nova sub-system includes nova-api,
nova-compute, etc.), which interact through message queues internally to OpenStack.
The Nova, Cinder, and Neutron sub-systems provide external REST API interfaces
to cloud users. To collect the messages (i.e., the events) exchanged in the system, we
instrumented the OSLO Messaging library, which uses a message queue library and it is
used for communication among OpenStack subsystems, and the RESTful API libraries
of each OpenStack subsystem, which are used are used for communication between
OpenStack and its clients. In total, we instrumented only 5 selected functions of these
components (e.g., the cast method of OSLO to broadcast messages), by adding very
simple annotations only at the beginning of these methods, for a total of 20 lines of
code. We neither added any further instrumentation to the subsystems under test nor
used any knowledge about OpenStack internals.

We collected one hundred correct executions by running the same workload in
fault-free conditions. This workload configures a new virtual infrastructure from scratch,
by stimulating all of the target subsystems (i.e., Nova, Neutron, and Cinder) in a
balanced way. The workload creates VM instances, along with key pairs and a security
group; attaches the instances to an existing volume; creates a virtual network consisting
in a subnet and a virtual router; assigns a floating IP to connect the instances to the
virtual network; reboots the instances, and then deletes them. We implemented this
workload by reusing integration test cases from the OpenStack Tempest project [23],
since these tests are already designed to trigger several subsystems and components of
OpenStack and their virtual resources.

After the fault-free traces collection, we extract the information associated with every
event within the trace. In particular, we record the time at which the communication
APT has been called and its duration, the component that invoked the API (message
sender), and the remote service that has been requested through the APT call (called
service). Internally, the approach associates an event name to every collected event
within a trace, so that two events of the same type are identified by the same name.
In particular, we assign a unique name to every distinct pair <message sender, called
service> (e.g., <Cinder, attach volume>).

4.1 Monitoring Rules

To determine the monitoring rules, we manually identified common patterns, in terms
of events, in the fault-free traces. In particular, we determined a set of patterns for
all the operations related to the workload execution (e.g., operations related to the
instances, volumes, and networks). For example, the analysis of the events related to
the attach of a volume to an instance pointed out common three different patterns in
the fault-free traces. We derived failure monitoring rules for each pattern. Listing

Towards Runtime Verification via Event Stream Processing 7

shows three different monitoring rules, expressed in a pseudo-formalism, related to the
Volume Attachment operation.

Listing 1.1. Volume Attachment monitoring rules

Rule#1: event(name = "compute_reserve_block_device_name") is eventually
followed by event (name = "compute_attach_volume")

Rule#2: event(name = "compute_attach_volume") is eventually followed by
event(name = "cinder-volume.localhost.

localdomain@lvm_initialize_connection")

.localhost.localdomain@lvm_attach_volume")

Rule#3: Pattern of Rule#2 is eventually followed by event(name="cinder-volume

We derived the first rule by observing that, during the attachment of a volume, the
<compute, reserve _block device name> event is always followed by the <compute,
attach_volume> event in every fault-free trace. Indeed, to perform such an operation,
the reserve_block_device name method, a synchronous RPC call, is called before
the attach_volume nova-compute API to get and reserve the next available device
name. Rule#2 follows the same structure of the Rule#1. Rule#3 shows the possibility
to write more complex rules, involving more than just two events.

In the same way, we derived rules for all further operations related to the volumes
and the instances. Instead, the identification of the rules for network operations is
different and more complex. Indeed, network operations are performed by the Neutron
sub-system in an asynchronous way, such as by exchanging periodic and concurrent
status polls among agents deployed in the datacenter and the Neutron server. This
behavior leads to more non-deterministic variations of the events in the traces. Given
the high source of non-determinism affecting the network operations, it is not possible
to create rules based on event ordering. Therefore, to find these patterns, we observed
the repetitions of the Neutron-associated events both in the fault-free and the faulty
traces (i.e., with a fault injected in the Neutron subsystem). We found that, when the
injected fault experiences a failure in the Neutron component, some network-related
events occurred a much higher number than their occurrences in the fault-free traces.

For example, in several experiments targeting the Neutron component and that
experienced a failure during the network operations, we found cases in which the event
<g-plugin, release_dhcp_port> occurred more than 500 times. However, analyzing
all the fault-free executions, this specific event occurred at most 3 times. Indeed, in
such faulty experiments, the system repeatedly performed the same operation since
it was unable to complete the request. Based on these observations, we defined the
monitoring rules related to the network operations by checking, at runtime, if a specific
event type occurred in a number higher than a threshold. Thus, for each event type, we
defined a threshold as the higher number of times that the event type occurred during
the fault-free executions. Fig. [2| shows the logic adopted for the rules related to the
network operations.

After identifying the rules, it is necessary to translate the rules in a particular
specification language. We select EPL (Fuvent Processing Language) as specification
language. EPL is a formal language provided by the Esper software [18], that allows
expressing different types of rules, such as temporal or statistical rules. It is a SQL-
standard language with extensions, offering both typical SQL clauses (e.g., select,

8 D. Cotroneo et al.

= CEw | [[[[|=>GaD

Events from Events with name = A
System under test

Failure Detection
Message

Fig. 2. Example of Neutron SSH failure monitoring rules.

from, where) and additional clauses for event processing (e.g, pattern, output). In
EPL, streams are the source of data and events are the basic unit of data. The typical SQL
clause insert into is used to forward events to other streams for further downstream
processing. We use the insert into clause for translating network operation rules
using three interconnected statements, as shown in Listing |1.2

Listing 1.2. EPL rules for the network operations

@name(’S1’) insert into EventNetworkStream select *

from Event where name=’q-plugin_release_dhcp_port’;

@name(’S2’) insert into countInfoStream select count(*) as countl from
EventNetworkStream;

output when OutputTriggerVarl = true then set OutputTriggerVarl = false;

@name (’NetworkRule#1’) select * from countInfoStream where countl > maxEventl

The first statement (S1) extracts <q-plugin, release_dhcp_port> events and for-
wards them to the stream NetworkEventStream. The second statement (S2) counts the
number of events in NetworkEventStream and passes this information to the stream
CountInfoStream. Finally, the third statement (NetworkRule#1) produces an output
if the value in CountInfoStream is bigger than the maximum value. To avoid that the
third statement outputs anytime it receives a new <g-plugin, release_dhcp_port>
event after the first output, we use the OutputTriggerVar boolean variable, initialized
to true and set to false after the first time the rule is verified.

The monitor synthesis is automatically performed once EPL rules are compiled. The
Esper Runtime acts like a container for EPL statements which continuously executes
the queries (expressed by the statements) against the data arriving as inputs. For more
detailed information on Esper, we refer the reader to the official documentation [19].

4.2 Multi User Case

We applied the EPL statements, derived from the monitoring rules, also in the multi-
user scenario. Since we do not collect an event ID, we use a counter to take into
account multi-user operations. Indeed, we use the counter as an event ID to relate
couples of events. We associate a different counter to each event type: when an event
of a specific type occurs, we increment its counter. In particular, the translation of
rules described in Listing uses the clause of pattern, useful for finding time
relationships between events. Pattern expressions usually consist of filter expressions
combined with pattern operators. We use the pattern operators every, followed-by
(=), and timer:interval. The operator every defines that every time a pattern
subexpression connected to this operator turns true, the Esper Runtime starts a new
active subexpression. Without this operator, the subexpression stops after the first
time it becomes true. The operator — operates on events order, establishing that the

Towards Runtime Verification via Event Stream Processing 9

right-hand expression is evaluated only after that the left-hand expression turns true.
The operator timer:interval establishes the duration of the time-window during
which to observe the arriving events (it starts after that the left-hand expression turns
true). The value of the counter is sent, along with the event name, to the Esper Runtime.
Listing [I.3] shows the EPL translation of the rule Rule#1 in the multi-user case.

Listing 1.3. EPL rule in the multi-user scenario

@name (’Rule#1’) select * from pattern [every a = Event(name="
compute_reserve_block_device_name") -> (timer:interval (secondsToWait
seconds) and not b=Event (name="compute_attach_volume", countEvent = a.
countEvent))];

Every time the Esper Runtime observes an event <compute, reserve_block_device name>
with its counter value, it waits for the receive of the event <compute, attach_volume>

with the same counter value within a time window of secondsToWait seconds. If this
condition is not verified, the approach generates a failure detection message.

5 Preliminary Experiments

To preliminary evaluate our approach, we performed a campaign of fault injection
experiments in the OpenStack platform. In our experiments, we targeted OpenStack
version 3.12.1 (release Pike), deployed on Intel Xeon servers (E5-2630L v3 @ 1.80GHz)
with 16 GB RAM, 150 GB of disk storage, and Linux CentOS v7.0, connected through
a Gigabit Ethernet LAN. In particular, our tool [I0] injected the following fault types:

— Throw exception: An exception is raised on a method call, according to pre-
defined, per-API list of exceptions;

— Wrong return value: A method returns an incorrect value. In particular, the
returned value is corrupted according to its data type (e.g., we replace an object
reference with a null reference, or replace an integer value with a negative one);

— Wrong parameter value: A method is called with an incorrect input parameter.
Input parameters are corrupted according to the data type, as for the previous
fault type;

— Delay: A method is blocked for a long time before returning a result to the caller.
This fault can trigger timeout mechanisms inside OpenStack or can cause a stall.

Before every experiment, we clean-up any potential residual effect from the previous
experiment, in order to ensure that the potential failure is only due to the current
injected fault. To this end, we re-deploy the cloud management system, remove all
temporary files and processes, and restore the OpenStack database to its initial state.

In-between calls to service APIs, our workload generator performs assertion checks
on the status of the virtual resources, in order to reveal failures of the cloud management
system. In particular, these checks assess the connectivity of the instances through
SSH and query the OpenStack API to ensure that the status of the instances, volumes,
and the network is consistent with the expectation of the tests. In the context of our
methodology, assertion checks serve as ground truth about the occurrence of failures
during the experiments (i.e., a reference for evaluating the accuracy of the proposed
approach).

10 D. Cotroneo et al.

We evaluated our approach in terms of the failure detection coverage (FDC), defined
as the number of experiments identified as failed over the total number of experiments
that experienced a failure. We focused only on the experiments that experienced a
failure, for a total of 481 faulty traces, one per each fault-injection experiment. We
define an experiment as failed if at least one API call returns an error (API error)
or if there is at least one assertion check failure (assertion check failure). Also, to
evaluate the most interesting cases, we focused on the experiments in which the target
system was not able to timely notify the failure (i.e., failure notified with a long delay
or not notified at all), as described in our previous work [12].

The coverage provided by our runtime verification approach is compared with the
coverage provided by OpenStack API Errors by design. API Errors notifies the users
that the system is not able to perform a request, thus they work as a failure detection
mechanism. Table [T shows the FDC of both approaches considering different failure
cases (related to different operations). The results show that our approach is able to
identify a failure in the 79.38% of the failures, showing significantly better performance
of the OpenStack failure coverage mechanism. In particular, the table highlights how
our rules are able to identify failures that were never notified by the system (Instance
Creation and SSH Connection). The RV approach shows lower performance only in the
Volume Creation case failure: this suggests the need to add further monitoring rules or
to improve the existing ones for this specific case.

Table 1. Comparison with API Errors Coverage

Failure Case OpenStack FDC % RV FDC %
Volume Creation 29.67 28.57
Volume Attachment 25.33 92.00
Volume Deletion 100 100
Instance Creation 0.00 90.96
SSH Connection 0.00 38.46
Total 23.96 79.38

We evaluated our approach also in a simulated multi-user scenario. To simulate
concurrent requests, 10 traces (5 fault-free and 5 faulty) are “mixed-together” by
alternating the events of all the traces but without changing the relative order of the
events within every single trace. The faulty traces are related to the same failure type
(e.g., Volume Creation). For each failure type, we performed the analysis 30 times by
randomly choosing both the fault-free and the faulty traces. Table [2] shows the average
FDC and the standard deviation of our monitoring rules for all the failure volume
cases. The preliminary results can be considered promising. However, the high standard
deviation indicates that the average FDC is very sensitive to the randomity of the
analyzed traces.

Table 2. Average FDC in the multi-user scenario

Failure Case Avg FDC %
Volume Creation 32.00F12.42
Volume Attachment 45.33F13.82
Volume Deletion 36.00F12.20

Total 37.78F13.88

Towards Runtime Verification via Event Stream Processing 11

6 Conclusion and Future Work

In this paper, we propose an approach to runtime verification via stream processing in
cloud computing infrastructures. We applied the proposed approach in the context of the
OpenStack cloud computing platform, showing the feasibility of the approach in a large
and complex “off-the-shelf” distributed system. We performed a preliminary evaluation
of the approach in the context of the fault-injection experiments. The approach shows
promising results, both in the single-user and simulated multi-user cases.

Future work includes the development of algorithms able to automatically identify
patterns using statistical analysis techniques, such as invariant analysis. We also aim to
conduct fault-injection campaigns by using a multi-tenant workload in order to perform
an evaluation in a real multi-user scenario and to analyze the overhead introduced by
the approach.

Acknowledgements

This work has been supported by the COSMIC project, U-GOV 000010-PRD-2017-S-
RUSSO_001_001.

References

1. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Performance
debugging for distributed systems of black boxes. ACM SIGOPS Operating Systems
Review 37(5), 74-89 (2003)

2. Arlat, J., Fabre, J.C., Rodriguez, M.: Dependability of cots microkernel-based systems.
IEEE Transactions on computers 51(2), 138-163 (2002)

3. Barham, P., Isaacs, R., Mortier, R., Narayanan, D.: Magpie: Online modelling and
performance-aware systems. In: Proc. HotOS. pp. 85-90 (2003)

4. Bartocci, E., Falcone, Y.: Lectures on Runtime Verification: Introductory and Advanced
Topics, vol. 10457. Springer (2018)

5. Bianculli, D., Ghezzi, C., Pautasso, C., Senti, P.: Specification patterns from research to
industry: a case study in service-based applications. In: Proc. ICSE. pp. 968-976. IEEE
(2012)

6. Blom, S., van de Pol, J., Weber, M.: Ltsmin: Distributed and symbolic reachability. In:
Proc. CAV. pp. 354-359. Springer (2010)

7. Chen, F., Rogu, G.: Mop: an efficient and generic runtime verification framework. In: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications. pp. 569-588 (2007)

8. Chen, Y.Y.M., Accardi, A.J., Kiciman, E., Patterson, D.A., Fox, A., Brewer, E.A.:
Path-based failure and evolution management. In: Proc. NSDI. pp. 309-322 (2004)

9. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking. In: Proc.
CAV. pp. 359-364. Springer (2002)

10. Cotroneo, D., De Simone, L., Liguori, P., Natella, R.: Profipy: Programmable software
fault injection as-a-service. In: 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). pp. 364-372 (2020)

11. Cotroneo, D., De Simone, L., Liguori, P., Natella, R., Bidokhti, N.: Enhancing failure
propagation analysis in cloud computing systems. In: 2019 IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE). pp. 139-150. IEEE (2019)

12

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.
23.
24.
25.
26.
27.

28.
29.

30.

31.

32.
33.

34.

35.

36.

D. Cotroneo et al.

Cotroneo, D., De Simone, L., Liguori, P., Natella, R., Bidokhti, N.: How bad can a bug
get? an empirical analysis of software failures in the openstack cloud computing platform.
In: Proc. ESEC/FSE. pp. 200-211 (2019)

Dang, L.M., Piran, M., Han, D., Min, K., Moon, H., et al.: A survey on internet of things
and cloud computing for healthcare. Electronics 8(7), 768 (2019)

Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Transactions on software Engineering 30(12), 859-872 (2004)
Denton, J.: Learning OpenStack Networking. Packt Publishing Ltd (2015)

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-
state verification. In: Proc. ICSE. pp. 411-420 (1999)

Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao,
C.: The daikon system for dynamic detection of likely invariants. Science of computer
programming 69(1-3), 35-45 (2007)

EsperTech: ESPER HomePage (2020), http://www.espertech.com/esper

EsperTech: Esper Reference (2020), http://esper.espertech.com/release-8.5.0/
reference-esper/html_single/index.html

Grant, S., Cech, H., Beschastnikh, I.: Inferring and asserting distributed system invariants.
In: Proc. ICSE. pp. 1149-1159 (2018)

Gu, J., Wang, L., Yang, Y., Li, Y.: Kerep: Experience in extracting knowledge on
distributed system behavior through request execution path. In: Proc. ISSREW. pp. 30-35.
IEEE (2018)

Holzmann, G.J.: The model checker spin. IEEE Transactions on Software Engineering
23(5), 279295 (1997)

OpenStack: Tempest Testing Project (2018), https://docs.openstack.org/tempest
OpensStack: OpenStack HomePage (2020), https://www.openstack.org/

OpenStack: OSProfiler HomePage (2020), https://github.com/openstack/osprofiler
OpensStack project: The OpenStack marketplace (2018), https://www.openstack.org/
marketplace/distros/

OpenStack project: User stories showing how the world #RunsOnOpenStack (2018),
https://www.openstack.org/user-stories/

Pnueli, A.: The temporal logic of programs. In: Proc. SFCS. pp. 46-57. IEEE (1977)
Power, A., Kotonya, G.: Providing fault tolerance via complex event processing and
machine learning for iot systems. In: Proc. IoT. pp. 1-7 (2019)

Rabiser, R., Guinea, S., Vierhauser, M., Baresi, L., Griinbacher, P.: A comparison framework
for runtime monitoring approaches. Journal of Systems and Software 125, 309-321 (2017)
Reynolds, P., Killian, C.E., Wiener, J.L., Mogul, J.C., Shah, M.A., Vahdat, A.: Pip:
Detecting the unexpected in distributed systems. In: Proc. NSDL vol. 6, pp. 9-9 (2006)
Solberg, M.: OpenStack for Architects. Packt Publishing (2017)

Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In:
Proc. SIGMOD/PODS. pp. 407-418 (2006)

Yabandeh, M., Anand, A., Canini, M., Kostic, D.: Finding almost-invariants in distributed
systems. In: Proc. SRDS. pp. 177-182. IEEE (2011)

Yin, Z., Yu, F.R., Bu, S., Han, Z.: Joint cloud and wireless networks operations in
mobile cloud computing environments with telecom operator cloud. IEEE Transactions on
Wireless Communications 14(7), 4020-4033 (2015)

Zhou, J., Chen, Z., Wang, J., Zheng, Z., Dong, W.: A runtime verification based trace-
oriented monitoring framework for cloud systems. In: Proc. ISSREW. pp. 152-155. IEEE
(2014)

http://www.espertech.com/esper
http://esper.espertech.com/release-8.5.0/reference-esper/html_single/index.html
http://esper.espertech.com/release-8.5.0/reference-esper/html_single/index.html
https://docs.openstack.org/tempest
https://www.openstack.org/
https://github.com/openstack/osprofiler
https://www.openstack.org/marketplace/distros/
https://www.openstack.org/marketplace/distros/
https://www.openstack.org/user-stories/

	Towards Runtime Verification via Event Stream Processing in Cloud Computing Infrastructures

