
ProFIPy: Programmable Software Fault Injection
as-a-Service

Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella
Università degli Studi di Napoli Federico II, Italy

{cotroneo, luigi.desimone, pietro.liguori, roberto.natella}@unina.it

Abstract—In this paper, we present a new fault injection
tool (ProFIPy) for Python software. The tool is designed to
be programmable, in order to enable users to specify their
software fault model, using a domain-specific language (DSL) for
fault injection. Moreover, to achieve better usability, ProFIPy is
provided as software-as-a-service and supports the user through
the configuration of the faultload and workload, failure data
analysis, and full automation of the experiments using container-
based virtualization and parallelization.

Index Terms—Software Fault Injection, Python, Software-as-
a-Service, Bug Pattern

I. INTRODUCTION

Fault injection is a key technique for assessing fault-tolerant
systems, ranging from embedded and mobile systems [1] to
distributed systems [2]. To perform a fault injection campaign,
it is important to define a fault model, which describes the
faults to be emulated in the experiments. The fault model entails
the definition of three main aspects, namely what to inject
(i.e., which kind of fault), when to inject (i.e., the timing of
the injection), and where to inject (i.e., the part of the system
targeted by the injection) [3]–[7]. The what can be represented
by bit-flips [1]; program exceptions for amplifying unit- and
integration-tests [8], [9]; node crashes, network partitions and
latency for networked and distributed systems [2], [10]. The
when and where to inject are sampled from a (large) space of
possibilities across time and program locations.

The problem of defining a fault model becomes more difficult
when injecting software faults (i.e., design and/or programming
defects [11]), since they depend on a variety of technical and
organizational factors, including the programming language, the
software development process, the maturity of the system, the
expertise of developers, and the application domain [12], [13].
Despite the variability of software faults across systems, the
existing software fault injection tools are based on a predefined,
fixed software fault model, that cannot be easily customized
by users. Most of the existing tools adopt the Orthogonal
Defect Classification (ODC), proposed in the ’90s (e.g., bugs
in initialization, algorithm, interfaces, etc.), or derived the
fault model from bug samples of third-party open-source and
commercial projects [3], [14].

We believe that a modern software fault injection tool has
to be able to modify the fault model for the following reasons.
First, a typical necessity in industry, which arises when a critical
failure occurs, is to introduce regression tests against the fault
that caused the failure, to assure that the same failure cannot

occur again [15]. Second, to preserve the efficiency of the fault
injection campaign, it is important to avoid injecting bugs that
are unlikely to affect a system; e.g., some classes of faults may
be prevented by testing and static analysis policies adopted by
the company [16]. Third, as the scale and the complexity of
systems increase, the need for a more sophisticated fault model
grows. For instance, modern distributed systems, such as cloud
applications, have to integrate a variety of components, including
third-party and open-source ones, and they have to deal with
high volumes of traffic. For these systems, the user needs to
inject more variants of design/programming defects than those
reported in the literature, including performance bottlenecks,
resource management issues, lack of interoperability between
components, security issues, failed updates, etc., and to adapt
these faults to their projects. In general, the potential users of
software fault injection want to tune the fault model so that
it reflects their experience and expectations about failures. All
these use cases require a greater degree of control over the fault
model than what provided by existing fault injection tools.

In this paper, we present a new fault injection tool (ProFIPy)
designed to be programmable, enabling users to add and to
customize a software fault model. By using our tool, users
can specify new software fault models using a domain-specific
language (DSL) for fault injection. The tool compiles the specifi-
cation into an automatically-generated fault injector. Finally, the
generated fault injector is applied to the software-under-test to
generate fault-injected versions and to execute experiments. To
achieve better usability, ProFIPy is provided as software-as-a-
service, and includes a workflow for configuring the faultload and
the workload to i) fully automate the execution of experiments
using container-based virtualization and parallelization, and to
ii) perform failure data analysis. The tool has been designed
for the popular Python language, which has recently arisen as
one of the most widespread languages (e.g., among the GitHub
and StackOverflow communities [17], [18]), and has found
applications in several areas such as systems software (e.g., the
OpenStack cloud platform is one of the largest projects in Python
[19], [20]), enterprise and web applications and data science
[21]. We present ProFIPy in the context of a Python project, by
performing three fault injection campaigns in which we define
three different faultloads.

In the following, Section II discusses related work; Section III
presents a new domain-specific language; Section IV describes
the workflow of the tool; Section V shows the application of
ProFIPy on a Python project; Section VI concludes the paper.

1

II. RELATED WORK

The idea of software fault modeling for fault injection purposes
was initially investigated by Chillarege et al. [22], who analyzed a
dataset of failures of IBM OS and DBMS products at users’ sites
[23], [24], to identify recurring patterns in the faults that caused
them, and to inject the same patterns by corrupting program
data and code, e.g., as in the FINE tool [25]. In the same
period, they also introduced the Orthogonal Defect Classification
(ODC) [26], [27], where one the goals was to classify software
fault data into orthogonal categories, including Initialization,
Algorithm, Interface, Checking, and Synchronization defects.
Christmansson and Chillarege [3] proposed to inject software
faults by following the statistical distribution of OS faults across
these categories, such that the injected faults are representative
of faults experienced by the users of the OS in the field.
Similarly, Chen and colleagues [28], [29] defined a software
fault model for OSes based on data for the IBM MVS and
Tandem GUARDIAN90 OS products [23], [30], and used this
fault model to emulate realistic OS and DBMS crashes, to assess
crash recovery mechanisms. This fault model was later merged
in the well-known fault injection tool of the Nooks project [31].

The work on the G-SWFIT fault injection technique by
Madeira and colleagues [14], [32] aimed to define a generic
software fault model (i.e., not tailored for a specific system)
that could go beyond specific OS and DBMS products, and
that could be used for injecting faults even without any field
failure data for the specific system under testing. To define such
a generic fault model, they analyzed a sample of bugs in several
open-source projects in C [14], [32] and Java [33], [34], and
looked for bug-fixes (e.g., program elements that were changed
to fix the bug, such as new assignments, control flow constructs,
function calls, etc.) which were recurring more than the norm,
and which occurred consistently across all of the projects. Based
on this analysis, they defined a software fault model with 13 fault
types, covering 60% of the sample of bugs in the open-source
projects [14]. This fault model was used in several other tools,
including SAFE [35], HSFI [36], and FastFI [37]. However,
these tools focus on a fixed software fault model, with no ability
to customize the injected faults according to the specific needs
of a project or company.

Winter et al. [38] and Giuffrida et al. [39] showed that
implementing a new fault model in a tool takes both significant
programming effort, e.g., in terms of SLOC and other metrics,
and considerable expertise in program analysis and transforma-
tion, e.g., to implement a software fault injection tool using the
LLVM compiler suite, which are not affordable for the average
user of a fault injection tool.

Some tools provide a limited ability to customize the fault
model with a lower effort: among them, the FIDLFI tool [40]
provides the user with a configuration language to control the
trigger of fault injection (i.e., instructions and paths that trigger
the injection), target (i.e., instruction source and destination
registers to inject), and action (e.g., corruption, freeze, delay,
etc.). The FAIL-FCI tool [41] provides a fault injection language
tailored for grid systems, which specifies protocol states and

nodes to inject (e.g., node crashes). PreFail [2] and FATE [10],
which inject crashes and I/O API errors, allow the user to write
policies in Python to select the location and timing of potential
injections by considering the allocation of processes across nodes
and racks (e.g., network partitions between different racks), and
the coverage of injectable points in the software-under-test. LFI
[42], which injects errors at C library calls, allows the user to
configure what functions and error codes should be injected,
and when to trigger the injection (e.g., when a specific function
appears in the stack frame) using an XML configuration file.
The commercial tools QA Systems Cantata [43] and Razorcat
TESSY [44] provide user-friendly GUIs to select a source-code
statement to inject, similarly to breakpoints in a GUI debugger.

It is important to note that these tools do not support rich
software fault models as in G-SWFIT and derivatives, as they only
provide limited control on what to inject, e.g., they focus on API
and library calls, register accesses, nodes, etc., but do not allow
to create new fault types for injecting arbitrary changes to the
software. The proposed ProFIPy tool provides a new language
to gain a higher degree of control, where the user can specify
transformation rules about which parts of the program to inject,
in terms of program elements (e.g., assignments, expressions,
control flow directives, and combinations of thereof), and how
to transform these program elements into faulty ones.

III. FAULT INJECTION DOMAIN-SPECIFIC LANGUAGE

The ProFIPy allows the user to enter a bug specification using
a high-level and easy-to-use DSL language, which is close to
the Python language. The bug specification describes how the
source code of the program should be transformed to introduce
a software bug. It consists of two parts:

• Code pattern: a description of which parts of the program
should be fault-injected. The fault injection tool parses the
source code of the software and will generate a fault for
every match of the code pattern.

• Code replacement: a description of the code that should
be injected, which will replace the original source code
that matched the code pattern.

The code pattern describes a combination of program entities
(variables, expressions, blocks, control flow constructs, etc.)
that will be searched for in the software-under-injection. The
code pattern can either consist of a Python snippet of code;
or, it can be a mix of Python code and DSL directives. In the
former case, ProFIPy will look for exact matches between the
Python snippet in the code pattern and the Python code in the
software-under-injection. In the latter case, the DSL directives
will make the pattern to match several different variants of the
Python snippet of code. Similarly, the code replacement can
either be Python-only code, i.e., the injector will insert a fixed
snippet of buggy code; or, it can contain a mix of Python and
DSL directives, i.e., the injected buggy code can vary depending
on what matched the code pattern.

Fig. 1 shows three examples of bug specifications. These
specifications inject three fault types from G-SWFIT [14]: the
omission of a function call (MFC); the omission of a small
block of statements surrounded by an IF construct (MIFS); and

2

a wrong parameter in input to a function call (WPF). Differing
from the G-SWFIT technique, we modified the definition of the
fault types, to point out the features of the DSL language, and
to emulate more accurately some of the bugs that we found in
the OpenStack project [45], [46].

change {
$BLOCK{tag=b1; stmts=1,*}
$CALL{name=delete_*}(...)
$BLOCK{tag=b2; stmts=1,*}

} into {
$BLOCK{tag=b1}
$BLOCK{tag=b2}

}

(a) Missing function call fault (MFC).

change {
if $EXPR{var=node} :
$BLOCK{stmts=1,4}
continue

} into {
}

(b) Missing IF construct with
statements (MIFS) fault.

change {
$CALL#c{name=utils.execute}(..., $STRING#s{val=*-*}, ...)

} into {
$CALL#c(..., $CORRUPT($STRING#s), ...)

}

(c) Wrong parameter in function call (WPF) fault.

Fig. 1. Examples of fault specifications.

The MFC fault type from G-SWFIT looks for function calls
in the software-under-injection, where there is no return value
from the function call, or where the return value is ignored
by the caller [14]. By targeting this kind of function calls, the
injector can emulate a function call omission by removing these
function call statements, and yet to obtain a syntactically-correct
program, as the removal does not break any dependency with
the rest of the program. Moreover, the G-SWFIT study [14]
recommended that the function call should only be removed
when the function call is not the only statement in its block, to
better reflect the real bugs from open-source projects that were
analyzed in that study.

In Fig. 1a, the code pattern (i.e., the change { . . . } part
of the specification) looks for any function or method call, by
using the $CALL directive of the DSL. The {name=delete *}
syntax after $CALL means that we are targeting calls where the
function name starts with “delete ” string, in order to inject
faults in calls to the OpenStack Neutron APIs delete port,
delete subnet, delete network, etc. This is an example
of how a user may want to customize fault injection according to
domain knowledge: these APIs are prone to omissions (e.g., the
Neutron bug #1028174 [47]), and users may want to simulate
these faults to assess solutions for resource leak detection. The
rest of the specification implements the rules of the MFC fault
type. $CALL only matches statements where the function or
method call is the outermost part of the statement: thus, a
statement like x = mycall(), where the assignment is the
outermost expression, would not match the code pattern of
Fig. 1a. The (. . .) syntax means that we are targeting function
calls with any number of input parameters (zero, one, or more).
The directives $BLOCK directives require that the function call

must be both preceded and followed by one or more statements.
Finally, the code replacement (i.e., the into { . . . } part of the
specification) means that we want to transform the matched code
by replacing it only with the blocks that precede and follow
the function call. The {tag=...} syntax after $BLOCK allows
the user to give a label (e.g., b1, b2) to the parts of the code
pattern that matched the software-under-injection, and to reuse
these parts in the code replacement.

In the second example (Fig. 1b), the MIFS fault type matches
an IF construct with its statements (up to 4), and removes them,
i.e., the code replacement part of the specification is empty.
The specification mixes fragments of Python code (i.e., the if
construct and continue keywords) and DSL directives ($EXPR,
$BLOCK). Again, we refined the original fault type from G-
SWFIT by leveraging domain knowledge, to inject into more
specific targets. We emulate another recurring issue in OpenStack,
in which metadata of resources (e.g., the UUID of instances)
must have been initialized to allow operating on the resource,
but a check on the validity of the metadata has been omitted
(e.g., the Nova bug #1096722 [48]). To emulate this real bug, we
target if constructs that check specific variables (e.g., variables
called node, which are used throughout the OpenStack Nova
codebase) and that skip an operation if the check fails (e.g., by
issuing a continue).

In the third example (Fig. 1c), the WPF fault type injects
an invalid parameter to a function call. The bug specification
replaces a $CALL statement with the same $CALL statement, but
modifying one of the input parameters. We use again a tag to
reuse code from the code pattern in the code replacement, by
means of the #c syntax after $CALL, i.e., the matched function
call is labeled as “c”. We tailored the bug specification to match
another recurring issue in OpenStack, in which an external utility
(e.g., iptables, dnsmasq, e2fsck) is invoked at the host OS
level, but with incorrect or missing parameters (e.g., the Nova bug
#732549 [49]). Thus, we target the utils.execute() library
function (the name attribute in $CALL), and look for a string
literal ($STRING) among the input parameters of the function,
where the string contains the character used by UNIX utilities
to denote parameters. In the code replacement, we inject the
same function call, but the string literal (labeled s) is wrapped
by a function call that corrupts the string with random contents,
using the $CORRUPT DSL directive.

In addition to these examples, we have been using the DSL to
define several fault models in an industrial context, in cooperation
with Huawei Technologies Co. Ltd.. The DSL provided us a fine-
grain control over the injections, by combining DSL directives
with Python code fragments. Other fault types include: the
injection of exceptions within try blocks, in order to increase
the test coverage of error handlers [2], [42]; the injection of None
values from library function calls, in order to test error handlers
in which the returned value is checked by an IF construct after
the call; the omission of optional input parameters to function
calls; the omission of AND/OR clauses in IF conditions; wrong
or missing initialization of data, such as key-value pair literals in
Python dictionaries, using the $CORRUPT directive; high resource
consumption (CPU, memory, storage), using the $HOG directive.

3

The DSL can be used to inject more complex fault types, by:
using regular expressions for specifying search patterns; using
the tagging syntax in the change block, to change the order of
statements in the into block; mutating any arithmetic, boolean,
and control flow expression of the Python grammar; injecting
algorithmic bugs by removing entire portions of code (e.g.,
patterns with multiple nested loops and control flow constructs),
and by injecting artificial time delays using a $TIMEOUT directive.
More examples are presented in § V.

IV. THE ProFIPy WORKFLOW

ProFIPy provides a complete fault injection workflow, which
assists test engineers at applying software fault injection in
Python systems. The ProFIPy workflow generates a set of
mutated versions of the target software, according to user-defined
bug specifications. These mutated versions are executed in a
controlled environment, and further analyzed for drawing insights
about the system behavior under failure. Fig. 2 summarizes the
workflow, which consists in a sequence of three main phases,
that is, Scan (see § IV-A), Execution (see § IV-B), and Data
Analysis (see § IV-C and § IV-D). The following sub-sections
provide details for each phase.

A. Scan

In the Scan phase, the user interacts with the ProFIPy tool to
define the fault injection plan, which is the set of fault injection
experiments to be run. Each experiment specifies a fault to be
injected. ProFIPy takes in input the source code of the target
software, and the bug specification described by using our DSL
(section III). The fault model is stored in a JSON file, and users
can save and import fault models of previous fault injection
campaigns. ProFIPy provides pre-defined fault models based on
previous fault injection studies (section II).

The Scan phase identifies fault injection points in the
software, i.e., a statement (or group of statements) in the source
code where ProFIPy can inject the software bug according to the
user-defined specification. ProFIPy looks for arithmetic/boolean
expressions, method and function calls, variable initializations,
and other kinds of statements.

ProFIPy processes the target code using its Abstract Syntax
Tree (AST) representation, which is commonly by program
analyzers to represent the structure of a piece of code. The DSL
compiler component takes the bug specification written using
the DSL and generates a meta-model, which consists of a small
AST that reflects the structure of the code in the code pattern.
The meta-model will be used by the source code scanner, which
visits the program’s AST to find matches against the code pattern
(i.e., portions of the program’s AST that match the AST of the
meta-model). The meta-model is also used by the source code
mutator to generate fault-injected versions of the program (see
§ IV-B).

After obtaining a set of fault injection points, the user can
select a subset of such locations according to their needs. For
example, the user may want to perform experiments only for
a specific component (e.g., class or file); the user may want
to inject a sample of randomly-chosen faults (e.g., to enforce

a limit on the number of experiments); or, the user can inject
faults in all of the injection points. The set of injections defines
the fault injection plan, which is used in the Execution phase.

In this paper, the proposed DSL is tailored for the Python
language. It is possible to define a similar DSL to support
other languages, such as C/C++ and Java. Several of the bug
patterns for Python could be re-used (i.e., patterns not involving
special Python syntax). The porting would mostly affect the
DSL compiler and the source code scanner and mutator.

B. Execution

In this phase, ProFIPy iterates over the fault injection plan. In
each experiment, the original Python source code is transformed
into a mutated version, which is identical to the original except
for a few mutated statements. The mutation emulates a residual
bug in the software. For example, to inject a wrong parameter
bug in a method call, ProFIPy modifies the method call statement
by replacing it with a call to the same method but with different
or corrupted input parameters; to emulate an omission by the
developer, ProFIPy deletes the method call in the mutated
version. The set of mutated versions are the faultload that will
be executed in the experiments. At the end of every experiment,
ProFIPy collects logs from the target system for data analysis
(§ IV-C).

The user also configures a workload, i.e., a set of directives
to exercise the target software during the experiments. The
workload emulates the operating conditions of the system and
triggers the injected fault. Moreover, the workload serves to
detect service failures and recovery abilities, e.g., by looking
for crashes and timeouts of the workload (e.g., due to stalled
service calls), or by performing consistency checks with test
assertions on the outputs of the workload (e.g., after a resource
has been modified by the workload, the behavior of the system
should reflect the new state of the resource).

The user defines the workload by providing command-line
directives. For example, the user can use UNIX shell commands
to start the target software, e.g., to launch a UNIX daemon such
as a network server. Command-line directives can be used both to
invoke the command-line interface of the target Python program
or to indirectly launch the software by running automated test
scripts. These scripts can be uploaded by the user along with the
target Python source code (Fig. 2). Additionally, the user can
specify command-line directives to launch workload generator
tools, such as HTTP and RPC traffic generators, which in turn
exercise the target software.

ProFIPy runs the fault injection experiments within a
container-based experimental environment, by using the Docker
virtualization system [50]. The tool first creates a container
image, in which it copies the Python source code uploaded by
the user. The user can customize the container image by adding
configuration directives in Dockerfile format [51], such as, to
install within the container external dependencies to run the
Python software under test (e.g., using the pip command), and
to install external tools (e.g., HTTP and RPC traffic generators).
Then, for each fault to be injected, ProFIPy deploys a new
container, by copying into it the mutated source code with

4

SCAN EXECUTION DATA ANALYSIS

Injection
configuration
& Sampling

Source code
mutator

Mutated
versions

Deploy and Run
Analytics

Fault injection plan

ØSystem logs
ØWorkload logs
ØTrace files Log-based failure analysis

Service
availability

Failure
propagation

Failure
mode

Failure
logging

User

Bug specification

DSL

DSL
compiler

...injection 1...

...injection 2...
…
...injection N...

Source
code

scanner

Trace-based failure analysis

Original Python
source code

Visualization
Workload

configuration
Event A

Event B

Event C

change {
. . .

}
into {

. . .
}

Fig. 2. Workflow of the ProFIPy tool.

the fault, and runs the workload directives defined by the user.
The experiment ends when the workload completes, or when
a user-defined timeout expires. Finally, ProFIPy cleans-up the
experimental environment by deallocating the container. In this
way, the tool can also clean-up any resource leaked or corrupted
because of the injected fault (e.g., stale processes or files). Using
containers also allows the tool to run several parallel experiments
on independent sandboxes, to take advantage of multi-core CPUs.
ProFIPy tunes the number of parallel experiments according to
run at most N − 1 parallel containers at the same time, where
N is the number CPU cores in the host system [52]. To avoid
interferences in memory and I/O bandwidth, the tool further
reduces the number of parallel containers if it hits a threshold
for memory and I/O utilization.

ProFIPy can enable and disable the injected faulty code at any
time during the execution of the target software. The mutated
source code retains a copy of the original statements of the fault
injection point, similarly to the EDFI fault injection tool [39]:
ProFIPy mutates the source code by inserting an IF ... ELSE
... construct, where the two branches include respectively
the original statements and the faulty ones. Then, the tool can
control which of the two branches to execute, by writing a
control variable (a “trigger”) allocated in a shared memory area
between the tool and the target software. This ability enables
additional analyses of the effects of failures and recovery. The
tool executes the workload for two times (“rounds”), without
restarting the target program between the two executions. In the
first round, the injected fault is enabled, so that it infects the
target software with error states, possibly causing service failures.
The workload is executed again in the second round, but the
injected fault is disabled. Of course, if the target program fails
and is unable to recover, the second workload execution will fail.
The second round allows us to analyze the scope of the error
states [53], [54]. In the best case, the error state is confined to
service requests that were issued during the first round, and the
requests during the second round are not affected by any error
(e.g., the target software recovers a correct state with a restart).
In the worst case, the error states are persistent even after that
the faulty code is disabled, causing further failures during the
second round. This analysis provides additional feedback to the

user about the failure behavior of the target software.
During the experiments, ProFIPy saves the output of the target

program (stdout, stderr) and the output of the workload directives
(e.g., the commands for launching a workload generator, which
reports service failures). Moreover, the tool can be configured to
save log files that may be generated by the target software or by
the workload. These outputs and logs are analyzed in the last
phase of the ProFIPy workflow (data analysis), as discussed in
the following.

C. Data Analysis

The data analysis evaluates the target software in terms of
service failures, logging, and recovery. ProFIPy classifies the
experiments into a set of failure modes, which include the crash
and the timeout of the target software, and user-defined failure
modes. The user can specify patterns (e.g., using keywords and
regex) that the tool will look for among the outputs and the logs
produced by the experiments. For example, failure modes can
include failures of the workload (e.g., the workload stops due to
a service API exception) and of the target software (e.g., the
software detects an error state with an internal assertion, and
reports it with a high-severity log message). The tool reports
the statistical distribution of failure modes. The user can drill-
down the individual classes of failures, to further inspect logs
of experiments in that class. The user can also drill-down with
respect to fault types and injected components, to identify the
critical areas (e.g., components that are most prone to failures)
where failure mitigations are most needed.

ProFIPy can analyze failures with respect to workload rounds.
It computes a service availability metric, i.e., the percentage
of experiments in which the software was (un)available in the
second round of execution (injected fault disabled), because
of error states generated during the first round (injection fault
enabled) that persisted and were not recovered. These cases
deserve a deeper analysis, e.g., to identify resource leaks that
may occur in error handling paths, and that may cause more
failures over time [55], [56].

D. Advanced Features

ProFIPy includes more, optional features for deeper analysis of
the large amounts of data produced by fault injection experiments.

5

We briefly report here on these features.
� Coverage analysis. To reduce the time needed to run the fault
injection experiments, ProFIPy performs a preliminary analysis
to avoid injecting faults in program paths that are not covered
by the workload. Most likely, the workload will not cover all of
the paths in the program, and injecting into non-covered paths
causes a waste of time since the fault would not cause any
effect. Before executing the experiments, ProFIPy conducts a
coverage analysis, by running a “fault-free” execution (i.e., no
fault injected) using the same workload that will be used for
the experiments. It generates coverage information by adding
logging statements at every fault injection point in the target
program discovered by the scan phase (see § IV-A). After the
fault-free run, ProFIPy generates a reduced fault injection plan,
by only including the covered fault locations.
� Failure logging. ProFIPy checks whether the target system
can detect error states and report diagnostic information on
log files. The tool computes a failure logging metric, i.e., the
percentage of experiments in which the target software both
experienced a workload failure and logged at least one error
message. Failures and error logs are identified with user-provided
keywords and regex. This metric gives feedback about the logging
abilities, and non-logged failures are opportunities for improving
telemetry. An example of this analysis can be found in a previous
study [45].
� Failure propagation. ProFIPy checks if the fault in the
injected component propagated across other components. The
tool computes a failure propagation metric, i.e., the percentage of
injected faults that impacted on more than one component. This
metric is applicable for larger software with a component-based
architecture, where each sub-system generates a distinct log
file, or where logs of the sub-systems can be separated with
keywords and regex. The user configures a list of sub-systems,
their source code files (e.g., a sub-folder of the source code),
and their log files or patterns. The experiments that exhibit
propagation are worth further investigation, e.g., to develop more
robust interfaces between sub-systems to prevent the propagation
and make recovery easier. Examples of this analysis can be
found in previous papers [45], [57].
� Failure visualization. ProFIPy provides a graphical repre-
sentation of an experiment, to help the user to understand what
happened during a failure. The tool instruments selected RPC
APIs in the target software, and records their invocations during
the experiment using the Zipkin distributed tracing framework
[58]. These API calls are visualized as events on timelines as
interactive plots. An example of visualization can be found in a
previous study [59].

V. CASE STUDY

We present an application of ProFIPy in the context of Python-
etcd [60], which is a library that provides Python bindings for
the etcd distributed key-value store [61]. Huawei uses Python-
etcd in their systems and asked for three fault classes to be
evaluated using our fault injection tool (Table I): (i) call failures
when invoking APIs from external libraries (wrong response,
timeouts, etc.), (ii) wrong inputs to the Python-etcd APIs, and

TABLE I
INJECTED FAULT TYPES.

Fault Category Injection Target Examples of
Injections

Failures when
calling external

library APIs

API calls to the urllib and
os Python modules

Exceptions, None
objects, omitted
call, wrong call

Wrong inputs in
Python-etcd API

set(key, val), get(key),
test and set(key, val,

old), ...

String corruptions,
None values,

negative integers

Resource
management bugs

set(key, val), get(key),
test and set(key, val,

old), ...

Hog threads inside
methods of
Python-etcd

(iii) resource management faults. We implemented these fault
types using the ProFIPy DSL language.

We performed three fault injection campaigns on Python-etcd
version 0.4.5. The workload used deploys the etcd server, and it
uploads and queries several key-value pairs of a different kind
(e.g., with directories, sub-keys, TTL, etc.) that we derived from
Python-etcd’s integration tests. In the following subsections, we
present the injected fault types and analyze failure modes using
ProFIPy.

A. Errors from external APIs

In the first campaign of experiments, we injected faults at
method calls in Python-etcd external modules, targeting the
methods of urllib (a Python package for working with URLs)
and from os (e.g., Python methods for file I/O). The injected
fault types include:

• Throw Exception: The raise of the exception on a
method call, according to pre-defined, per-API list of
exceptions (e.g., ConnectTimeoutError);

• Missing Function Call: A method call is entirely omitted
(e.g., replaced with the python statement pass);

• Missing Parameters: A method call is invoked with omit-
ted parameters (e.g., the method uses a default parameter
instead of the correct one).

For this faultload, ProFIPy identified 26 points where to inject
faults. In 13 cases, the workload covered the injected faulty
code. We found failures in 12 experiments.
B Reconnection failure. In half of the cases, we found failures
in both rounds of execution, as denoted by the service availability
metric. The experiments did not complete within the timeout,
and etcd was unable to reconnect even after the fault removal.
We found that the etcd server was unable to bind to a TCP/IP
port. Thus, restarting etcd does not suffice to recover from
the fault, but the port needs to be explicitly freed. We need
additional exception handlers to catch exceptions caused by
network connections, such as time-outs.
B Critical errors about ’member has already been
bootstrapped’. In a few experiments, Python-etcd was unable
to perform operations on etcd in the first round, due to an
inconsistent state of the server caused by the fault. To recover
from this failure, the system needs a more elaborated exception
handling: it should explicitly remove the affected member by

6

using the dynamic configuration API of etcd, and it should
restart etcd by reverting to a previous consistent state.
B Client process crash due to an exception. In the remaining
cases, the client process crashed during the first round due to
an unhandled exception. Moreover, the system was not available
after disabling the fault. In these cases, Python-etcd should
provide exception handlers to catch these exceptions or to raise
another kind of exception (such as EtcdException) to be managed
by Python-etcd client process.

B. Wrong Inputs

In the second campaign of fault injection experiments, we in-
jected faults in input parameters of Python-etcd API methods. We
configured ProFIPy with fault types for injecting corrupted inputs,
such as strings with random characters, None object references,
negative integers, etc. For example, let us consider the method
test and set(key, value, old value) taking in input
three parameters: A fault consists in injecting a corrupted input
in the first parameter (string type) by randomly replacing the
characters of the string.

The ProFIPy tool identified 66 locations where to inject these
faults. In all of the cases, the injected faulty code was covered
by the workload, and in 29 experiments we found the following
failures in the first round of execution:
B AttributeError: ’NoneType’ object has no attribute
’startswith’. This failure is due to an issue of Python-etcd.
It happens when the tool injects a None value instead of a string
(e.g., a key string). Python-etcd does not check whether the input
strings are valid. Therefore, when a None value is passed in
input, Python-etcd uses the startswith attribute on a None
reference. To avoid this failure, Python-etcd should sanitize null
strings in inputs.
B EtcdKeyNotFound exception. This failure happens when a
wrong key or value is injected. In this case, the workload failed
because it is not able to find the expected key or value in the
etcd datastore. The caller (in this case, the workload) needs to
get/set the correct keys and values. Thus, the Python-etcd client
should handle these exceptions.
B EtcdException: Bad response: 400 Bad Request. This
failure happens when ProFIPy injects a wrong key or value that
is not valid (e.g., a non-ASCII string). When this value is passed
to etcd, the server rejects the request with the HTTP Error 400
Bad Request. Python-etcd should be fixed to check and sanitize
non-ASCII strings.

C. Resource Management Bugs

In the last campaign of experiments, we injected CPU hogs
to overload Python-etcd. We used ProFIPy for injecting stale
threads that generate a high CPU load. We targeted the same
methods of the second campaign of experiments, by injecting
a resource hog after the method call. The tool found 37
injectable locations, and the faulty code was always covered
during the workload execution. In 14 experiments, the system
experienced a service failure in the first round of execution.
Most of these failures forced a process termination with the
exception “UnboundLocalError: local variable ... referenced

before assignment”. In other cases, the workload also failed
because of inconsistent values read from the etcd datastore.
The high CPU usage triggered race conditions in Python-etcd,
and in the Python interpreter itself. Since it is hard to find and to
fix these issues, the failure should be mitigated, by cleaning-up
stale threads that may cause high CPU consumption. This should
be pursued by monitoring at run-time the CPU utilization of
Python processes, and by killing or restarting stale threads if
CPU utilization is too high.

D. Performance evaluation

ProFIPy can quickly inject faults even for large projects since
the scan and mutation can be parallelized across several CPUs (it
is an “embarrassingly parallel“ task). It took less than one minute
to scan and mutate Python-etcd on an 8-core Intel Xeon with
16 GB RAM. We also evaluated performance on the OpenStack
project, by targeting the three most important modules (Nova,
Neutron, and Cinder) accounting for about 400K lines of Python
code. Using the same hardware, ProFIPy takes about 20 min
to identify 17488 injectable locations using 120 different DSL
patterns, which is reasonable for practical purposes given the
large size of this project. The duration of the execution phase is
beyond the control of our tool since it depends on the time to
deploy the target system and run the workload. It took between
10s and 120s (worst case of a “hang” failure) to run a single
experiment on Python-etcd, and about 30 min to run all of
the tests of this section. For OpenStack, an experiment takes
several tens of minutes, since it is a complex system that deploys
VMs, loads large storage volumes, initializes databases, etc. We
were able to execute experiments on OpenStack through nightly
parallelized runs.

VI. CONCLUSION

ProFIPy is designed to be programmable and highly usable, by
performing fault injection campaigns with customized faultloads
in Python software.

The analysis of results pointed out several failure modes,
which were acknowledged as valid threats by our industrial
partners. The programmability of the tool through a DSL was
useful to easily and quickly customize fault injections to comply
with the fault classes requested by the company, based on their
internal software resiliency requirements. We discussed in the
paper potential strategies to mitigate the failure modes.

We plan to extend the tool with more features for failure
analysis and to use it as a basis for research on software
fault tolerance strategies in modern applications, such as cloud
software.

ACKNOWLEDGMENTS

This work has been done in the framework of the R&D
project of the multiregional investment programme ”REINForce:
REsearch to INspire the Future” (CDS000609) with Hitachi
Rail S.p.A., supported by the Italian Ministry for Economic
Development (MISE) through the Invitalia S.p.A. agency.

7

REFERENCES

[1] M. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and tools,”
IEEE Computer, vol. 30, no. 4, pp. 75–82, 1997.

[2] P. Joshi, H. Gunawi, and K. Sen, “Prefail: a programmable tool for multiple-
failure injection,” ACM SIGPLAN Notices, vol. 46, no. 10, pp. 171–188,
2011.

[3] J. Christmansson and R. Chillarege, “Generation of an Error Set that
Emulates Software Faults based on Field Data,” in FTCS, 1996.

[4] H. Madeira, D. Costa, and M. Vieira, “On the Emulation of Software
Faults by Software Fault Injection,” in Proc. DSN. IEEE, 2000.

[5] A. Johansson and N. Suri, “Error propagation profiling of operating
systems,” in Proc. DSN. IEEE, 2005, pp. 86–95.

[6] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri, “An empirical
study of injected versus actual interface errors,” in Proceedings of the
2014 International Symposium on Software Testing and Analysis, 2014,
pp. 397–408.

[7] D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experimental
analysis of binary-level software fault injection in complex software,” in
IEEE EDCC, 2012.

[8] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execution of
Android test suites in adverse conditions,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis. ACM, 2015,
pp. 83–93.

[9] Z.-M. Jiang, J.-J. Bai, J. Lawall, and S.-M. Hu, “Fuzzing error handling
code in device drivers based on software fault injection,” in Proc. IEEE
Intl. Symp. on Software Reliability Engineering, 2019.

[10] H. Gunawi, T. Do, P. Joshi, P. Alvaro, J. Hellerstein, A. Arpaci-Dusseau,
R. Arpaci-Dusseau, K. Sen, and D. Borthakur, “FATE and DESTINI: A
Framework for Cloud Recovery Testing,” in USENIX Proc. NSDI, 2011.

[11] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic Concepts
and Taxonomy of Dependable and Secure Computing,” IEEE TDSC, 2004.

[12] F. Huang, B. Liu, and B. Huang, “A taxonomy system to identify human
error causes for software defects,” in 18th Intl. Conf. on Reliability and
Quality in Design, 2012, pp. 44–49.

[13] F. Huang, “Human error analysis in software engineering,” Theory and
Application on Cognitive Factors and Risk Management: New Trends and
Procedures, p. 19, 2017.

[14] J. Durães and H. Madeira, “Emulation of Software faults: A Field Data
Study and a Practical Approach,” IEEE TSE, 2006.

[15] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U.
Jain, and M. Stumm, “Simple testing can prevent most critical failures: An
analysis of production failures in distributed data-intensive systems,” in 11th
{USENIX} Symposium on Operating Systems Design and Implementation,
2014, pp. 249–265.

[16] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines of code
later: using static analysis to find bugs in the real world,” Communications
of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[17] GitHub Inc., “The state of the octoverse,” 2019. [Online]. Available:
https://octoverse.github.com/

[18] Stack Overflow, “Developer survey results,” 2019. [Online]. Available:
https://insights.stackoverflow.com/survey/2019

[19] OpenStack project, “User stories showing how the world #RunsOnOpen-
Stack,” 2019. [Online]. Available: https://www.openstack.org/user-stories/

[20] ——, “The OpenStack marketplace,” 2019. [Online]. Available:
https://www.openstack.org/marketplace/

[21] Python Software Foundation, “Applications for Python,” 2019. [Online].
Available: https://www.python.org/about/apps/

[22] R. Chillarege and N. Bowen, “Understanding Large System Failures–A
Fault Injection Experiment,” in Digest of Papers, Intl. Symp. on Fault-
Tolerant Computing, 1988, pp. 356–363.

[23] M. Sullivan and R. Chillarege, “Software Defects and their Impact on
System Availability: A Study of Field Failures in Operating Systems,” in
Digest of Papers, Intl. Symp. on Fault-Tolerant Computing, 1991, pp. 2–9.

[24] ——, “A comparison of software defects in database management systems
and operating systems,” in Digest of Papers, Intl. Symp. on Fault-Tolerant
Computing, 1992, pp. 475–484.

[25] W.-I. Kao, R. Iyer, and D. Tang, “FINE: A Fault Injection and Monitoring
Environment for Tracing the UNIX System Behavior under Faults,” IEEE
TSE, vol. 19, no. 11, pp. 1105–1118, 1993.

[26] R. Chillarege, W. Kao, and R. Condit, “Defect Type and its Impact on the
Growth Curve,” in Proc. ICSE. IEEE, 1991, pp. 246–255.

[27] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and
M. Wong, “Orthogonal Defect Classification–A Concept for In-Process
Measurements,” IEEE TSE, vol. 18, no. 11, pp. 943–956, 1992.

[28] W. Ng, C. Aycock, G. Rajamani, and P. Chen, “Comparing disk and
memory’s resistance to operating system crashes,” in Proc. ISSRE. IEEE,
1996, pp. 185–194.

[29] W. Ng and P. Chen, “The Design and Verification of the Rio File Cache,”
IEEE TC, vol. 50, no. 4, pp. 322–337, 2001.

[30] I. Lee and R. Iyer, “Faults, Symptoms, and Software Fault Tolerance in
the Tandem GUARDIAN90 Operating System,” in Digest of Papers, Intl.
Symp. on Fault-Tolerant Computing, 1993, pp. 20–29.

[31] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy, “Recovering
device drivers,” ACM TOCS, vol. 24, no. 4, pp. 333–360, 2006.

[32] J. Duraes and H. Madeira, “Emulation of Software Faults by Educated
Mutations at Machine-Code Level,” in Proc. ISSRE. IEEE, 2002, pp.
329–340.

[33] T. Basso, R. Moraes, B. Sanches, and M. Jino, “An Investigation of Java
Faults Operators Derived from a Field Data Study on Java Software Faults,”
in Workshop de Testes e Tolerância a Falhas, 2009.

[34] B. Sanches, T. Basso, and R. Moraes, “J-SWFIT: A Java Software Fault
Injection Tool,” in Proc. LADC. IEEE, 2011.

[35] D. Cotroneo and R. Natella, “Fault injection for software certification,”
IEEE Security & Privacy, vol. 11, no. 4, pp. 38–45, 2013.

[36] E. van der Kouwe and A. S. Tanenbaum, “HSFI: Accurate fault injection
scalable to large code bases,” in Proc. DSN. IEEE, 2016.

[37] O. Schwahn, N. Coppik, S. Winter, and N. Suri, “FastFI: Accelerating
software fault injections,” in Proc. PRDC. IEEE, 2018, pp. 193–202.

[38] S. Winter, C. Sârbu, N. Suri, and B. Murphy, “The impact of fault models
on software robustness evaluations,” in Proc. ICSE. IEEE, 2011, pp.
51–60.

[39] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Edfi: A dependable
fault injection tool for dependability benchmarking experiments,” in Proc.
PRDC. IEEE, 2013, pp. 31–40.

[40] M. R. Aliabadi and K. Pattabiraman, “FIDL: A fault injection description
language for compiler-based SFI tools,” in International Conference on
Computer Safety, Reliability, and Security. Springer, 2016, pp. 12–23.

[41] W. Hoarau, S. Tixeuil, and F. Vauchelles, “FAIL-FCI: Versatile fault
injection,” Elsevier FGCS, vol. 23, no. 7, pp. 913–919, 2007.

[42] P. Marinescu and G. Candea, “LFI: A practical and general library-level
fault injector,” in Proc. DSN. IEEE, 2009.

[43] B. Sampson, “How to automate software fault injection
testing, without changing source code,” Aug. 2018. [Online].
Available: https://www.aerospacetestinginternational.com/opinion/how-
to-automate-software-fault- injection-testing-without-changing-source-
code.html

[44] J. Happich, “Automated fault injection without source code change,” Jan.
2018. [Online]. Available: http://www.eenewseurope.com/news/automated-
fault-injection-without-source-code-change

[45] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti,
“How bad can a bug get? an empirical analysis of software failures in
the openstack cloud computing platform,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
200–211.

[46] D. Cotroneo, L. De Simone, A. K. Iannillo, R. Natella, S. Rosiello,
and N. Bidokhti, “Analyzing the context of bug-fixing changes in the
openstack cloud computing platform,” in Proceedings of the 2019 IEEE
30th International Symposium on Software Reliability Engineering (ISSRE),
2019, pp. 334–345.

[47] OpenStack Launchpad, “Bug #1028174 “tenant cannot delete network
when dhcp-agent is running”,” Jul. 2013. [Online]. Available:
https://bugs.launchpad.net/neutron/+bug/1028174

[48] ——, “Bug #1096722 “inconsistent nova-bm state will prevent
launching new instances”,” Jan. 2013. [Online]. Available: https:
//bugs.launchpad.net/nova/+bug/1096722

[49] ——, “Bug #732549 “execvp fallout”,” Mar. 2011. [Online]. Available:
https://bugs.launchpad.net/nova/+bug/732549

[50] Docker Inc., 2019. [Online]. Available: https://www.docker.com/
[51] ——, 2019. [Online]. Available: https://docs.docker.com/engine/reference/

builder/
[52] S. Winter, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo, “No PAIN,

no gain?: the utility of PArallel fault INjections,” in Proceedings of the
37th International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 494–505.

8

https://octoverse.github.com/
https://insights.stackoverflow.com/survey/2019
https://www.openstack.org/user-stories/
https://www.openstack.org/marketplace/
https://www.python.org/about/apps/
https://www.aerospacetestinginternational.com/opinion/how-to-automate-software-fault-injection-testing-without-changing-source-code.html
https://www.aerospacetestinginternational.com/opinion/how-to-automate-software-fault-injection-testing-without-changing-source-code.html
https://www.aerospacetestinginternational.com/opinion/how-to-automate-software-fault-injection-testing-without-changing-source-code.html
http://www.eenewseurope.com/news/automated-fault-injection-without-source-code-change
http://www.eenewseurope.com/news/automated-fault-injection-without-source-code-change
https://bugs.launchpad.net/neutron/+bug/1028174
https://bugs.launchpad.net/nova/+bug/1096722
https://bugs.launchpad.net/nova/+bug/1096722
https://bugs.launchpad.net/nova/+bug/732549
https://www.docker.com/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

[53] T. Yoshimura, H. Yamada, and K. Kono, “Using fault injection to
analyze the scope of error propagation in Linux,” Information and Media
Technologies, vol. 8, no. 3, pp. 655–664, 2013.

[54] M. Sugimoto, T. Kubota, and K. Kono, “Short-liveness of error propagation
in kernel can improve operating systems availability,” in 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks–
Supplemental Volume (DSN-S). IEEE, 2019, pp. 23–24.

[55] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvena-
tion: Analysis, module and applications,” in Twenty-Fifth International
Symposium on Fault-Tolerant Computing. Digest of Papers. IEEE, 1995,
pp. 381–390.

[56] M. Grottke and K. Trivedi, “Fighting Bugs: Remove, Retry, Replicate, and
Rejuvenate,” IEEE Computer, vol. 40, no. 2, pp. 107–109, 2007.

[57] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti,
“Enhancing failure propagation analysis in cloud computing systems,” in
Proceedings of the 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), 2019, pp. 139–150.

[58] Zipkin. [Online]. Available: https://zipkin.io
[59] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti,

“Failviz: A tool for visualizing fault injection experiments in distributed
systems,” in 2019 15th European Dependable Computing Conference
(EDCC). IEEE, 2019, pp. 145–148.

[60] Python-etcd, 2019. [Online]. Available: https://pypi.org/project/python-etcd/
[61] etcd HomePage, 2019. [Online]. Available: https://etcd.io/

9

https://zipkin.io
https://pypi.org/project/python-etcd/
https://etcd.io/

	Introduction
	Related Work
	Fault Injection Domain-Specific Language
	The ProFIPy workflow
	Scan
	Execution
	Data Analysis
	Advanced Features

	Case Study
	Errors from external APIs
	Wrong Inputs
	Resource Management Bugs
	Performance evaluation

	Conclusion
	References

