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In theory, theory and practice are the same. In practice, they are not. Lawrence Peter Berra

I. INTRODUCTION

In the large majority of cases, the basis for a pharmacodynamic effect is the interaction of a certain substance with
a biomacromolecule of physiological importance. Proteins—like enzymes, receptors, and ion channels—but also
nucleic acids serve as physiological binding partners for small organic ligands. In all cases, a highly specific 3D bind-
ing epitope must exist, which serves as complementary binding site for a drug molecule. Compounds exerting simi-
lar activities on the same enzyme or receptor therefore possess—in most cases—closely related binding properties.
That is, these molecules present structural elements of identical chemical features in sterically consistent locations to
the macromolecule. The highest common denominator of a group of ligands exhibiting a similar biological effect rec-
ognized by the same binding site is named a “pharmacophore.” [1] In other words, a pharmacophore is an abstrac-
tion of the crucial molecular features responsible for the binding of a set of ligands to a macromolecular target.

As a practical matter, computer-aided molecular design is frequently split into disciplines that focus on either
structure-based or ligand-based methods. When the 3D structure of a target protein and the binding site is available,
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it is possible to invoke structure-based approaches. New candidate ligands may be docked into a particular binding
site in order to study whether they can interact with the protein in an optimal way. If, however, knowledge about
the structure of the macromolecular target is limited but a sufficient number of active analogues have already been
discovered, then pharmacophore-based methods are applied to design novel active molecules. It may seem straight-
forward to develop new ligands for known proteins by applying structure-based approaches, but significant pro-
blems are involved. Induced fit mechanism, multiple binding modes, solvation, and entropic effects are some of the
problems that must be overcome to end up with reliable models. Beside these problems, many target proteins of
high pharmaceutical interest are membrane-bound receptors (e.g., G-protein coupled receptors [GPCRs]) and
attempts to crystallize them have been only partially successful. Although twenty-four GPCR crystal structures from
four different classes have been published at this point, structure-based 3D pharmacophore development with these
structures remains a challenge. A larger amount of 3D structures for activated and inactivated structures would be
necessary to be able to develop structure-based predictive models for agonists and inverse agonists, respectively.

In the absence of the 3D structure of a protein of interest or a biologically relevant conformation, ligand design
may be performed by the use of a pharmacophore-based method. This is based on the assumption that several
ligands bind to the same binding pocket of the protein. Thus, a flexible superposition can be identified, which
represents the interaction pattern of the binding pocket from the view of the ligands.

A. Historical Background

The idea that bioactive substances interact with receptors began in 1878 with Langley, who introduced the term
“receptive substance.” [2] However, the term “receptor” was introduced several years later by Paul Ehrlich [3]. He
also introduced the term “pharmacophore” to describe those parts of a molecule that are responsible for its activity.
Together with the lock-and-key concept of Emil Fischer, it became clear that not all parts of a molecule—the
“key”—are equally important for exerting its biological effect on the “lock.” [4] Thus, sometimes small variations of
distinct parts of a molecule can dramatically influence the activity, whereas variations of other parts only cause
minor changes in the biological activity. The concepts of Langley, Ehrlich, and Fischer constitute the cornerstones
of modern drug discovery and development up to this day. Half a decade later, their concepts were confirmed in
an impressive manner by the first solved crystal structures of protein�ligand complexes [5].

Even before the advent of computers and modeling software, simple pharmacophores were described in the
literature and considered tools for the discovery of novel molecules. Based on initial structure�activity relationship
considerations, simple 2D models were introduced in the 1940s. With the advent of computers and modeling
programs, the idea of displaying and manipulating 3D structures became possible [6]. Kier and Marshall pioneered the
development of the pharmacophore concept and its application in structure�activity relationships [7,8]. In the 1970s,
Peter Gund implemented the first in silico screening method with a program to screen a substance library for pharmaco-
phoric patterns [9]. The active analogue approach developed by Garland Marshall’s group was one of the first auto-
mated tools for pharmacophore generation. Marshall’s approach was the basis for many following pharmacophore
modeling programs in that area. Since these early days, a variety of automated pharmacophore discovery programs
have been developed in academia and by software developing companies (for review, see [10,11]).

B. Definitions

The term pharmacophore is not always used by different groups of scientists in accordance with the official
definition elaborated by the IUPAC working party, which states [1]: “A pharmacophore is the ensemble of steric and
electronic features that is necessary to ensure the optimal supramolecular interaction with a specific biological target
structure and to trigger (or block) its biological response.” Many scientists use the term “pharmacophore” or
“pharmacophoric group” to define distinct functional groups or substance classes possessing biological activity
(e.g., sulfonamides or dihydropyridines). In this context, the term pharmacophore is mixed with another concept of
structure and activity, namely “privileged structures.” The retrospective analysis of the chemical structures and
scaffolds of drug molecules led to the detection of some structural motifs that are often associated with biological
activity. Such motifs were called “privileged structures” by Evans et al to represent substructures that confer activity
toward two or more different targets [12]. The idea behind this is that the privileged structure provides the scaffold
and the substitution provides the reason for specificity. However, in terms of the IUPAC definition, the pharmaco-
phore represents the common molecular interaction features of a set of molecules toward their receptor [13].
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A pharmacophoric element (also called feature) is generally defined as an atom or a group of atoms (e.g., a
hydrogen bond donor atom or an aromatic ring system) common to active compounds with respect to a target
protein and essential for the activity. Thus, a pharmacophore model can also be regarded as the representation of
a collection of pharmacophore features.

The above-described definition of a pharmacophore is based on a 3D point-of-view of molecules. It reflects
the way medicinal chemists characterize the binding ability of molecules for a given target protein. However,
depending on the different research areas, scientists have different views. Computational chemists often use the term
pharmacophore in a more abstract way. Influenced by the structural representation of molecules, a set of topological
connections is used to define the properties and dimension of a molecule in 2D. Here, the spatial and topological dis-
tribution of pharmacophoric features is converted to a lower dimensional representation (e.g., vectors). Such vectors,
which represent pharmacophore descriptors, are called “fingerprints,” “keys,” “bitstrings,” or “correlation vectors,”
depending on the type of information stored. The pharmacophore descriptors or fingerprints can be regarded as a
transformed molecular representation instead of an explicit 3D structure. These fingerprints are often used to screen
large compound libraries rapidly. In this chapter, we will only focus on 3D pharmacophore concepts.

Starting from a preliminary pharmacophore model, a hypothetical receptor consisting of individual amino
acid residues can be constructed surrounding a set of superimposed ligands. Guided by permanent correlation of
biological data and model-derived calculated free energies of binding, a complex system is generated, mimicking
the interaction pattern of a real binding site reasonably well. The resulting hypothetical receptor model is named
“mini-receptor” or “pseudo-receptor,” and can be used to derive 3D quantitative structure�activity relationships
(3D-QSAR). The concept was originally developed in the 1980s by several groups [14�17].

C. Importance of the Pharmacophore Concept

A pharmacophore captures the concept of bio-isosterism by not only comparing topological similarities but
structural groups at similar locations with the same chemical functionality. It is important to concentrate on the
pharmacophoric features, since topological molecule characteristics are often misleading in the superpositioning
of two molecules with respect to their binding mode. Figure 21.1 shows the well-known example of dihydrofolate
reductase ligands [18]. For the two ligands shown, a topological overlay would result in an incorrect prediction
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FIGURE 21.1 Comparison of atom-based alignment and experimentally derived position of methotrexate and dihydrofolate in dihydro-
folatreductase. Blue arrows indicate hydrogen bond acceptors, and green arrows show hydrogen bond donors.
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of the binding mode. If the pharmacophoric features (the hydrogen bonding pattern in this example) are taken
into account for the superimposition, the correct overlay mode can be deduced. The pharmacophore-based super-
position is similar to the binding mode observed in the crystal structures of methotrexate and dihydrofolate with
dihydrofolatreductase (Figure 21.2; PDB IDs 1RX2, and 1RB3).

The increasing number of accessible compounds that can currently be used as starting points for biological
target screening makes it necessary to have fast and reliable in silico screening tools. Structure-based methods are
often too slow to screen compound databases with millions of molecules virtually. Beside the speed, other
problems in structure-based design and docking programs need to be addressed. For instance, most of the
current docking programs do not take into account protein flexibility. Only recently were programs developed
(e.g., AutoDock4 [19], GOLD Suite 5.2 [20], Glide [21] or FlexE [22]) that consider protein side-chain flexibility for
docking. Other problems, which often occur in ligand docking, are the correct placement of water molecules
within the binding site (which represents putative ligand binding partners), the treatment of solvation effects
(on the ligand and protein site), and consideration of the internal strain of a docked ligand. Structure-based
approaches are able to provide important information about the interaction between a ligand and a macromole-
cule, but the accurate prediction of the binding affinity is still an unsolved problem. A detailed discussion about
the limitations of docking and scoring programs can be found in several reviews [23�28].

Another reason pharmacophore-based approaches are often used in drug design is the missing 3D structure of
many interesting macromolecules. Many current drug targets are membrane-bound and, despite recent progress
in crystallizing GPCRs [29�31], only a small fraction of membrane proteins have been successfully crystallized.
An additional challenge for some membrane-bound receptors is that ligands bind in the extracellular region,
causing conformational changes in the protein that lead to a signaling response, such as the release of G-proteins
in the case of GPCRs. It is still very difficult to capture the “right” conformation in a crystal, especially when it
comes to modeling ligand function (e.g., agonists or antagonists). In the absence of an experimentally determined
3D protein structure, the use of indirect ligand-based approaches—including pharmacophores—is the only way
to design novel bioactive molecules rationally [32].

D. Application of Pharmacophores

Pharmacophore modeling in computer-aided drug design is generally applied in three domains. The first is the
definition of relevant pharmacophoric features in a drug molecule necessary to achieve a certain biological effect and
to establish clear structure�activity relationships. A well-developed pharmacophore model, preferentially including
information about the dimension of the receptor binding cavity, may be employed to design novel and more active
molecules that fit the model. Often, such pharmacophore models are the starting point for 3D-QSAR analysis (e.g.,
CoMFA [33]), by which quantitative predictions may be made. The second is scaffold hopping, the practice if detect-
ing molecules with different scaffolds (novel chemotypes) by virtually screening large compound libraries [34]. The
third domain is the use of parallel pharmacophore-based screening in order to predict pharmacological profiles for
lead structures in silico. The use of 3D pharmacophore models can hopefully predict unwanted side effect in very
early stages of the drug-discovery process and therefore reduce the risk of late failure of drug candidates [35].

FIGURE 21.2 Comparison of the pharmacophore-based alignment of dihydrofolate reductase ligands (left) and the experimentally derived
protein-based alignment (right).
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II. METHODOLOGY

A. Pharmacophore Modeling

To end up with a predictive pharmacophore model, it is necessary to start with reliable structural and bio-
logical data. First of all, it is important to have correct 3D structures of all compounds under study. Thus, atomic
valences, bond orders, protonation state, and stereochemistry have to be checked carefully. Also, the consider-
ation of different possible tautomers is necessary when the bioactive form is not known exactly. Another prereq-
uisite is the existence of a similar binding mode of all ligands under study. Experimental data, from competition
experiments or protein�ligand crystal structures, can clearly point out that the ligands interact with the same
binding epitope in a similar way instead of on distinct binding sites.

The four steps in the development of a pharmacophore model are: (a) selection of a set of active ligands
known to bind to the same target (same binding site); (b) conformational analysis for all ligands; (c) assign-
ment of pharmacophoric features; and (d) molecular superimposition of the ligand conformations to develop
a common 3D-pharmacophore. The majority of automated pharmacophore generation programs use qualita-
tive pharmacophore models that do not consider the activity of the ligands. The ultimate goal of all these
programs is to search for a unique conformation of all congeners, where most if not all assigned pharmaco-
phoric features of the ligands are presented in a superimposed manner. Most of the programs are based on
minimizing the root-mean-square (RMS) superposition error between conformations of the ligands under
study while trying to increase the fit of the pharmacophoric features. To compare the different conforma-
tions for a data set of given active molecules, a superpositioning procedure is needed. The assignment of the
pharmacophoric features and the generation of the ligand alignment is carried out in an automated way by
most of the current pharmacophore modeling programs (e.g., Catalyst [36], DISCO [37], Galahad [38],
LigandScout [39], Phase [40], MOE [41]). The scope of this chapter is not to describe all available software
packages in detail, but to illustrate the different steps of the pharmacophore development process.
For a recently published overview of current pharmacophore modeling programs, the reader is referred to
the literature [10,42�44].

1. Conformational Analysis of Ligand Molecules and Bioactive Conformation

Since molecules are flexible and not static, a conformational analysis has to be carried out first to generate an
ensemble of low-energy conformations. This is probably one of the most critical steps in the pharmacophore
discovery process, since the goal is not only to consider the global minima of a molecule but also to include the
bioactive conformation as part of an ensemble of low-energy conformations.

In order to bind to a protein with high affinity, a ligand must match the binding pocket. The steric match will
thereby depend primarily on the ligand conformation. Within a binding pocket, the ligand will not necessarily be
present in its lowest energy conformation, as the gain in interaction energy with the receptor can compensate for
a conformation with higher energy [45]. Still, it can be expected that for a high-affinity ligand, the bioactive
conformation is at least energetically favorable, as otherwise the conformational energy cost would reduce bind-
ing affinity. The relation between a high energetic binding conformation and the loss of free energy of binding
ΔG is given by Equation 21.1:

ΔG522:303RT logKi ð21:1Þ

Under physiological conditions (T5 310 K), the free energy (in kcal mol21) and the binding affinity are
related by

ΔG521:42 logKi ð21:2Þ

Thus, if a compound binds in a conformation that deviates 1.42 kcal mol21 from the global minimum struc-
ture, its affinity will be decreased by one order of magnitude. High-affinity compounds can thus be expected to
bind in an energetically favourable conformation. To analyze the conformational space of molecules experimen-
tal and theoretical approaches are applied. Experimental techniques like NMR only provide information on one
or a few conformations of a molecule. A complete overview about the conformational space of molecules can be
gained only by theoretical techniques [46]. Correspondingly a variety of theoretical methods for conformational
analysis has been developed. The most general conformational analysis methods are those that are able to iden-
tify all minima on the potential energy surface. However, as the number of minima dramatically increases with
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the number of rotatable bonds, an exhaustive detection of all minima becomes a difficult and time-consuming
task. Commonly used methods for this purpose are listed below (described in depth in [47]):

• Systematic search: Each bond is rotated incrementally and the resulting structures are minimized. Systematic
search algorithms have the advantage of sampling the conformational space very well. In cases with a high
number of rotatable bonds, this method may be computationally impracticable [48].

• Random search: In a random search, one can move from one region of the energy surface to a completely
unconnected region in a single step. A commonly applied method is the Metropolis Monte Carlo scheme that
starts with a minimized conformation A of a molecule. A random move on the energy-landscape is carried out
(e.g., torsion angles are rotated by a random amount), and the structure is minimized. The potential energy of
the output structure B is evaluated. If Epot(B) , Epot (A), the new conformation is accepted. If Epot(B) . Epot

(A), the move may still be accepted depending on the transition probability, which in turn depends on the
temperature. Monte Carlo methods efficiently sample the conformational space, but there is no guarantee—as
with all random search tools—that the entire energetic landscape will be sampled. Another sampling
technique applied to the problem of improved conformational searching is known as Poling [49]. Poling is
implemented within Catalyst [36] allowing the generation of large multi-conformer virtual screening databases
in a reasonable amount of time.

• Simulated annealing or molecular dynamics (MD) simulations: The aim of MD simulations is to reproduce the
time-dependent motional behavior of a molecule. MD is based on molecular mechanics. It is assumed that the
atoms in the molecule interact with each other according to the rules of an employed force field. MD
simulations generate an ensemble of coordinates that does not only contain minimized structures, but rather
provides a (limited) sampling of conformational space. In a simulated annealing MD protocol, the system
temperature is periodically increased, resulting in a significant rise of kinetic energy, which makes it easier to
overcome barriers of potential energy. Subsequently, the system is cooled down, thereby trapping the
molecule in an energetically favorable conformation. MD simulation techniques for sampling the
conformational space are quite time-consuming and are therefore used only for smaller ligand data sets.
Again, there is no guarantee of sampling the entire potential energy surface [50].

There is an ongoing discussion in the literature about which ligand conformations (i.e., within which energy
range) have to be considered in a pharmacophore generation process. Several recent studies on protein�ligand
X-ray structures have shown that many conformational search tools yield ensembles, including the experi-
mentally observed bioactive conformation [51]. The energy difference between the co-crystallized conformation
of a ligand and its global minimum calculated with molecular mechanic programs is dependent on the force field
employed. Therefore, a general energy range to be considered cannot be defined [52].

Which conformational analysis performs best? A clear-cut answer cannot be given, as it depends on the indi-
vidual data set to be studied and the problems to be addressed. If only a limited number of ligands is considered,
more computationally intensive methods such as the systematic search can be applied. If a compound library
with hundreds of thousands of entries has to be converted into a multi-conformer database, faster simplified
approaches have to be used (e.g., in Catalyst [36] or Omega [53]) [54].

2. Pharmacophore-Ligand Superposition Techniques

Three-dimensional pharmacophore�ligand superpositioning has to deal with the challenge of conformational
flexibility. One possibility for addressing the problem is to perform the identification of common chemical
features and the conformational search simultaneously (flexible alignment). Other approaches pre-generate
conformations (rigid-body alignment), which makes the overlay algorithm faster, but the inclusion of relevant
conformations must be ensured.

A well-known pharmacophore elucidation program using a flexible approach is GASP [55,56], which was
initially developed by Jones and co-workers in the mid-1990s. The software is based on a genetic algorithm that
simulates evolution by randomly combining and mutating chromosomes of an initial population. Each chromo-
some represents a potential flexible pharmacophore by encoding all torsion angles and by listing all feature
mappings to a manually selected rigid reference compound. In each run, highest scoring chromosomes are
selected according to a simple fitness function, and those are then mutated by applying random torsional rota-
tions to cover conformational space during the alignment process. Today, most program use rigid-body align-
ment techniques, because conformers only have to be calculated once and can be stored in a database, which
saves computational time during the alignment.
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The wide field of rigid-body superpositioning algorithms (also referred to as “alignment techniques”) can
roughly be divided into 3D geometry-based and linearized fingerprint-based (descriptor-based approaches).
Fingerprint-based approaches create a linearized bit sequence representing the chemical feature properties of the
alignment partners. They allow for fast computational similarity assessment. A very advanced example for
fingerprint approaches is the Chemically Advanced Template Search (CATS) developed in Gisbert Scheider’s
group [57]. However, no real 3D overlay is produced using such an implementation. With geometry-based
approaches, chemical features represented as 3D points with optional geometry constraints (such as vectors or
planes) are assigned to 3D conformations of the ligands. In a subsequent step, these algorithms attempt to mini-
mize distances between those points while considering the assigned constraints like the parallel orientation of the
planes or the overlap of the projection point of a vector. Computationally expensive solutions to this problem
have been proposed relatively early and range from 3D maximum clique detection algorithms [58] as used in
DISCO [59,60] to the sequential build-up of increasingly larger common feature configurations as employed in
Catalyst [36], Phase [40], or MOE [41]. This approach becomes problematic if pharmacophore point tolerances
shall be subsampled, and it results in geometric fuzziness of the resulting alignment. LigandScout [61] uses a
novel and computationally more efficient pattern-matching technique [62] to identify an initial alignment. With
this technique, it is possible to perform a geometrically more accurate alignment that also subsamples chemical
feature point tolerances when performing high-throughput virtual screening.

3. Assignment of Pharmacophoric Elements

The assignment of pharmacophoric features shall be described using as an example the histamine H3 receptor
antagonist shown in Figure 21.3 [63]. Table 21.1 lists the pharmacophoric features assigned in the ligand structure
by comparison with other known active antagonists. Thus, the protonated nitrogen atom of the piperidyl moiety
can be translated into a center of a sphere with coordinates corresponding to the location of the nitrogen atom

FIGURE 21.3 (top) Pharmacophoric features observed in the ligand (by comparison with other known active ligands). (bottom) The molecule’s
shape can serve as an additional constraint in pharmacophore searches. The resulting pharmacophore is based on features and shape (middle).
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and a radius defining a volume around this atom. If a molecule is compared to this pharmacophore model and
its protonated nitrogen atom lies within the sphere, this pharmacophoric feature will be said to be matched. The
bigger the sphere, the easier it will be for a ligand conformation to match the pharmacophoric features. Similarly,
an aromatic or a hydrophobic aliphatic moiety can be defined by a center of sphere and radius. Hydrogen bond
acceptors and donors are represented by vectors in order to account for the directionality of H-bonds, while
aromatic rings can be either defined by spheres or the combination of center, plane, and vector. When defined
this way, the orientation of the aromatic plane in respect to the rest of the molecule is considered, too.

Again, the shape of the molecule can be incorporated into a pharmacophore by translating the van der Waals
volume into an additional feature. If the ligand is known to fill the binding pocket well, the available volume can
be taken into account. The abstract definition of a molecule in form of a pharmacophore as defined in Figure 21.3
facilitates comparison with other molecules. In the given example, most features of the antagonist were consid-
ered for the generation of the pharmacophore model resulting in an fingerprint of the molecule. Depending on
the number of features included in the model and the tolerances defined, it will be more or less difficult for other
molecules to match the pharmacophore model. Matching a pharmacophore additionally depends strongly on the
conformation adopted by the molecule that is compared to the pharmacophore model. Even a different confor-
mation of the ligand might not match the pharmacophore model defined above. Thus, in order to increase the
likelihood of a specific molecule fitting a pharmacophore model, each molecule of interest is associated with a
conformational ensemble. When searching for similarities with the pharmacophore model, all conformations of a
molecule are tested on the pharmacophore before the best fit is evaluated. The difficulty in defining a useful
pharmacophore model lies in the restriction to essential pharmacophoric features observed in the active ligands.

4. Model Quality and Pharmacophore-Based Virtual Database Screening

If a pharmacophore is used for database screening in order to retrieve new compounds based on the similarity
of pharmacophoric features, a model is useful when it is able to identify known actives among a number of
inactive molecules. In order to screen commercial compound databases with a pharmacophore model, a so-called
multi-conformer database must first be generated. This means a set of conformations must be generated for all
compounds deposited in the compound databases. Since such databases can include millions of compounds, fast
algorithms are paramount. In addition, the conformation database should not lead to an explosion in storage
requirements for the millions of conformers. Finally, the database program should be able to handle the pharma-
cophore search within a reasonable amount of time. The most widely available commercial programs for building
large multi-conformation databases are Catalyst [36], UNITY [64], Omega [53], and MOE [41]. Whereas Catalyst,
UNITY, and MOE are also used to carry out pharmacophore generation and pharmacophore searches, Omega
can only be used to generate multi-conformer databases. A comparison of the performance of the different
programs can be found in the literature [51].

Recently, freeware alternatives to the above-mentioned programs have become available, but they are yet to be
evaluated in terms of their performance when used with pharmacophore development and virtual screening [65].

The pre-calculation of conformations bears the important advantage that the screening process is considerably
faster and avoids a dramatic reduction of the conformational search space by falling into a local minimum
[66,44]. With current computer hardware, the additionally required storage space no longer represents a limita-
tion, and screening databases with pre-generated conformations are clearly preferred. These databases can be
generated once and reused for subsequent virtual screening runs, which results in a considerable speed-up of the
overall screening procedure.

TABLE 21.1 Pharmacophoric features observed in the ligand shown in Figure 21.3

Feature Color Representation

positive charge red sphere

H-bond donor magenta sphere-vector-sphere

H-bond acceptor green sphere-vector-sphere

hydrophob. aliphatic blue sphere

aromatic ring orange plane, center of plane, vector

hydrophobic light blue sphere
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Typically, a 3D pharmacophore is first created as a hypothesis and analyzed retrospectively to assess its
predictive power before being used for a prospective virtual screening that should predict whether new
molecules with a certain pharmacophore pattern actually bind to the protein under investigation. To assess
retrospective screening performance, several virtual screening metrics have been established that can be used to
evaluate model quality [67�69]. These metrics describe the ability of a pharmacophore model to match bioactive
molecules and thus include them in the virtual hit list versus the ability to exclude biologically inactive
molecules. The most frequently used metrics are described below. For a more extensive overview, the reader is
referred to reviews on this topic [70,71].

Sensitivity (Se) describes the ratio of the retrieved true positive compounds (TP) in relation to all biologically
active compounds in the database that is the sum of TP and the number of false negatives (FN). Sensitivity values
range from 0 to 1, where a value of 0 means that the search did not yield any actives in the database and a value
of 1 indicates that all active compounds could be retrieved.

Se5
TP

TP1 FN

Specificity (Sp) describes the portion of rejected biologically inactive compounds (true negatives, TN) divided
by the sum of TN and the number of false positives (FP). Specificity ranges from 0 to 1, where a value of 0 means
that none of the inactive com- pounds could be excluded and a value of 1 indicates that no inactive compounds
fit the pharmacophore hypothesis.

Sp5
TN

TN1 FP

Yield of Actives (Ya) sets the amount of true positives (TP) in relation to the size of the hit list (n).

Ya5
TP

N

Enrichment Factor (EF) measures the Ya proportionally to the fraction of actives in the database. In the formula
below, A is the number of actives in the database and N is the total number of molecules in the database.

EF5
Ya

ðA=NÞ
Convenient and meaningful tools for the assessment of screening performance are Receiver Operating

Characteristic (ROC) curves [72]. A ROC curve displays the sensitivity on the y-axis versus (1-Specificity) in the
x-axis and thus gives a good impression of the quality of a model. An ideal curve would rise vertically along the
y-axis until it reaches the maximum true positive rate (1), and then continue horizontally to the right, which
means that the hit list contains all active compounds in the database and that none of the hits is a false positive.
The diagonal line between the lower left and the upper right corner of the graph would represent the ROC curve
of a random database search. Figure 21.4 shows an example for a ROC curve.

III. ADVANCED APPROACHES

A. Structure-Based Pharmacophores

If the 3D structure of a protein�ligand complex is known from either X-ray crystallography or protein NMR, the
most obvious way of deriving a picture of the relevant ligand interactions is to analyze the molecule’s complemen-
tarity within the corresponding protein binding site. A commonly used structure-based design approach is the
previously mentioned molecular docking of ligands into a target binding pocket, assuming that the binding site is
more or less rigid whereas the ligand is flexible. Molecular docking is still the most popular method for structure-
based drug design. However, pharmacophore-based approaches have shown clear advantages regarding the
computational demand and accuracy for virtual screening [61]. Especially with regard to the number of false posi-
tives—which are often observed in classical docking-based virtual screening—the idea of combining structural
information derived from a protein�ligand complex and the use of a rapid pharmacophore-based screening
technique is obvious. There is no competition between ligand-based and structure-based pharmacophore modeling,
and both approaches can be used fruitfully in a complementary manner [73]. In fact, a variety of pharmacophore
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modeling programs allow one to take advantage of additional information provided by a protein or protein�ligand
complex structure to help improve the reliability of the generated model. The development of several novel pro-
grams for deriving structure-based pharmacophores in the last few years has clearly shown that pharmacophore-
based virtual screening is very successful in identifying novel bioactive molecules [74�78]. On the other side, it
was also recognized that the consideration of pharmacophores in docking programs can increase reliability and
accuracy. Several docking programs are now available which apply the pharmacophore concept to discriminate bet-
ter between false and real binding modes (e.g., Glide [21], FlexX-Pharm [22], GOLD [20]).

As an illustration, the generation of a structure-based pharmacophore and its application for virtual screening
of ABL tyrosine kinase inhibitors is given. STI-571 (Gleevecs) has been approved for the treatment of chronic
myelogenous leukemia (CML) and was the first antitumor drug from the family of tyrosine kinase inhibitors [79].
Several crystal structures of STI-571 in complex with different tyrosine kinases (ABL, c-KIT, SYK) have been
obtained in the last few years, showing that the compound can bind in varying conformations (open and closed
conformation) to different forms of tyrosine kinases. In the case of ABL tyrosine kinase, STI-571 binds to the inac-
tive enzyme form and prevents activation [80]. Several pharmacophores from the available X-ray structures of
ABL in complex with STI-571 and analogues (PDB IDs 1IEP, 1FPU and 1OPJ) were generated [81]. In a straight-
forward approach, the different pharmacophore models were merged using the program LigandScout. The
merged pharmacophore contained four lipophilic aromatic areas, two acceptor features, and eight excluded
volume spheres. As an example, the structure-based pharmacophore extracted from the X-ray structure 1iep is
shown in Figure 21.5. Subsequently a virtual screening was carried out using two different ligand databases. The
first one was a collection of 2,765 drug-like ligands from the complexes in the Protein Databank (PDB): the
second one was the Maybridge compound library (containing B59,000 molecules). The pharmacophore model
was able to identify all STI-571 entries from the PDB database and did not result in false positives. In addition,
seven compounds from the Maybridge database were identified that might represent potential lead structures for
the development of novel ABL tyrosine kinase inhibitors.

Several successful applications of the LigandScout program have been reported recently and have supported
the feasibility of structure-based pharmacophores to identify novel active molecules [74�77].

B. Pseudo-Receptor Models

Starting in the 1980s, a combination of pharmacophore modeling and structure-based design was introduced
and referred to as “pseudo-receptor modeling” or “receptor mapping.” [82] Based on a preliminary pharmacophore

FIGURE 21.4 Example ROC plot for a pharmacophore screening. In this virtual screening run, approximately 60 percent of the biologically
active molecules were identified by the model (i.e., part of the virtual hit list), while approximately 85 percent of the inactive compounds
could be excluded (i.e., were not part of the virtual hit list). The black arrow illustrates the end of the virtual hit list.
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model, a hypothetical receptor consisting of individual amino acid residues is constructed, surrounding a set of
superimposed ligands. The placement of the individual amino acid residues is guided by experimental data (e.g.,
from site-directed mutagenesis data). Höltje successfully applied the receptor-mapping technique to several target
proteins for which no 3D structure was available [83�85]. Using a data set of twenty 5-HT2A receptor antagonists
from different chemical families, a pharmacophore was generated that was able to explain the SAR of the ligand
[86]. The receptor mapping (i.e., the placement of the individual amino acids) was based on a homology model
of the 5-HT2A receptor generated on the basis of the low-resolution 3D structure of bacteriorhodopsin (a related
membrane protein). Using the derived pseudo-receptor, a predictive QSAR model could be obtained that was sub-
sequently applied to design novel potent antagonists [86].

1. Yak, PrGen, Flo

Whereas the first pseudo-receptor models were generated more or less intuitively “by hand,” which some-
times resulted in irreproducible results, a broader distribution of this concept was achieved by the commercial
software packages Yak and PrGen [15]. Both programs allow the generation of a pseudo-receptor in a more or

FIGURE 21.5 3D structure of Gleevecs (capped sticks) bound to ABL kinase (top). The structure-based pharmacophore generated with the
program LigandScout is shown in the middle, and the extracted pharmacophore together with the excluded volumes (grey spheres) is shown at
the bottom. Yellow spheres5hydrophobic features, green arrows5hydrogen bond donors, and red arrows5hydrogen bond acceptors.
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less automated way. In addition, guided by extensive correlation of experimental and model-derived free ener-
gies of binding, a host�guest system is created, mimicking the interaction at a real binding site reasonably well.
The fundamental basis of a pseudo-receptor is the placement of the individual amino acid residues. In Yak and
PrGen, ligand-specific interaction vectors (the pharmacophoric elements) are calculated and saturated with
individual residues from a database of pre-calculated conformations of amino acids. Subsequently, a receptor
minimization is carried out by relaxing all residues, keeping the position, orientation, and conformation of the
ligands unchanged. To achieve a correlation between the experimentally derived binding affinities (or other
biological data) and the calculated interaction energies, a coupling constant is introduced and the system is
minimized (correlation-coupled minimization). In a next step, the ligand alignment is allowed to relax within the
fixed pseudo-receptor (ligand relaxation). This process (i.e., correlation-coupled minimization followed by uncon-
strained ligand relaxation) is repeated several times until a highly correlated pseudo-receptor is obtained. To
validate the generated pseudo-receptor, its ability to predict the binding affinities of novel ligands must be exam-
ined [85]. Therefore, classical QSAR methods such as cross-validation via leave-one-out and/or prediction of
external test set compounds are applied. In case of test set or novel ligands, the molecules have to be placed
equally to the training set molecules in the pseudo-receptor and have to be minimized applying the same
protocol as for the training set ligands.

Another pseudo-receptor modeling approach has been developed by Bohacec et al [87]. Their program, Flo,
generates an ensemble of low-energy conformers of each compound of a training set. The conformations are then
optimized to minimize the internal energy and maximize the match of chemically similar moieties simulta-
neously. Then, a pseudo-receptor is composed of functional groups that will mimic the binding cavity. For exam-
ple, a guanidinium group is selected to form hydrogen bonds with an acidic group of the ligands. The selected
residues are positioned around the aligned training set ligands and anchored to the chemically complementary
ligand atoms, applying a distance constraint. The remaining volume of the pseudo-receptor is filled with propane
molecules to mimic a binding site’s hydrophobic surface. In the last step, the pseudo-receptor is equilibrated—
comparable to the PrGen approach—by applying several rounds of dynamics. While a pseudo-binding site is
quite artificial, the method has the advantage of allowing the binding site to be visualized and used for ligand
docking and structure-based design.

2. Quasar and Raptor

A further development of Vedani et al was the simplification of the atomistic pseudo-receptor concept
(Yak and PrGen) to a quasi-atomistic receptor approach (named Quasar) [88]. Similar to the approach of Walters
et al, who developed the program GERM [89], Quasar uses a 3D binding-site surrogate surrounding the ligands
instead of a shell of amino acid residues. Each of the virtual particles bears relevant atomistic properties (e.g.,
H-bond donor, hydrophobic particle). Quasar not only takes into account one conformer per ligand but repre-
sents each ligand by an ensemble of low-energy conformations (called “fourth dimension”), thereby reducing the
bias associated with the selection of a putative bioactive conformation. Binding of ligand molecules to a macro-
molecular binding pocket is often facilitated by an induced fit (i.e., the adaptation of a protein to the ligand
topology). This effect, which is not considered in most of the pharmacophore and 3D-QSAR approaches, is
considered by Quasar and Raptor [90] (the so-called “fifth dimension”). Quantitative models generated with
these programs have therefore been named 4D- or 5D-QSARs [91].

3. Application of Pseudo-Receptor Models

The pseudo-receptor concept has been applied in recent years to analyze crucial ligand�receptor interaction
sites and to establish 3D-QSARs for the prediction of biological activities of ligands [92]. A variety of application
studies have shown that the pseudo-receptor concept is a versatile tool in establishing 3D-QSAR models that are
often better in their predictive behavior compared to results obtained from classical 3D-QSAR approaches (e.g.,
CoMFA) [93]. Several application studies have been published that have shown the value—and the limitations—
of this approach [82,94].

In a recently published study by Bohacec et al, the pseudo-receptor concept was successfully applied to iden-
tify novel small-molecule inducers of fetal hemoglobin [95]. Four available active compounds (Figure 21.6) were
selected based on activity and diversity for the construction of an initial pharmacophore.

The initial pharmacophore was constructed using the Flo molecular modeling software [87]. The derived phar-
macophore was then successfully tested on a larger ligand data set to see if it could distinguish between active
and inactive compounds. Satisfied with the preliminary evaluation of the pharmacophore template, the authors
used the model to design novel compounds. The model was sufficiently well defined to allow docking of 630

500 21. PHARMACOPHORE IDENTIFICATION AND PSEUDO-RECEPTOR MODELING

V. SPATIAL ORGANIZATION, RECEPTOR MAPPING AND MOLECULAR MODELING



compounds and the selection of thirty compounds for testing. Of the twenty-six compounds acquired and tested,
four displayed significantly greater activity than previously identified ligands, showing the feasibility of using
pseudo-receptor and docking to identify novel bioactive molecules. The structures of the two most potent
molecules are shown in Figure 21.7.

When working with pseudo-receptors and in general with quantitative-structure�activity relationships
(QSAR) of any dimension, a word of caution is necessary with respect to the biological data that are used. These
should preferably constitute binding affinities from a single laboratory, a prerequisite that is also true for all
QSAR studies. Since the receptor models simulate interaction events (ΔH) in a highly simplified manner, the
experimental data that are combined with them in a correlation analysis must be as close to the molecular level
as possible. It is therefore nonsense to correlate the calculated interaction energies with biological in vivo data,
because the receptor interaction can be blurred or even completely hidden by transport and other pharma-
cokinetic processes. Sometimes, even the use of in vitro data is dangerous if a reaction cascade separates the
measured event from the receptor binding interaction. Also, the combination of biological data (e.g., IC50 values)
from different laboratories or assays is extremely dangerous. The reliability and meaning of any QSAR model
(3D-QSAR, pseudo-receptor, 4D-QSAR, 5D-QSAR, 6D-QSAR [96]) should always be assessed by the ultimate test
of usefulness, the prediction of new compounds [97]. Very often, QSAR models are internally validated but never
tested on whether they are useful in designing novel, more potent compounds [98].

Recently, a novel pseudo-receptor modeling method has been developed named Surflex-QMOD [99,100]. Two
datasets, CDK2 inhibitors and muscarinic antagonists, have been chosen to test the performance of the method.
Interestingly, the used dataset of congeneric CDK2 inhibitors showed that induced binding pockets can be quite
congruent with the enzyme’s active site but that model predictivity within a chemical series does not necessarily
depend on congruence.

IV. APPLICATION STUDY: NOVEL HISTAMINE H3-RECEPTOR ANTAGONISTS

A. Pharmacophore-Based Screening

An example from the author’s laboratory shall give the reader an informative picture of the pharmacophore
generation process and its application to develop novel bioactive compounds [63]. The example deals with
antagonists of the human histamine H3 receptor (hH3R). hH3R is a GPCR for which no exact 3D structures is
available, as is the case for many other GPCRs. Although we have a crystal structure for the H1 receptor in the
meantime (PDB ID 3RZE), it is still challenging to derive information about the right physiological receptor

OH

O

OH

O

O

OH

O
O

O
OH

O

FIGURE 21.6 Molecules used to generate the pharmacophore for inducers of fetal hemoglobin.
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FIGURE 21.7 Molecular structures of the two most active inducers identified by the pseudo-receptor modeling.
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conformation by structure-based modeling techniques. The H3 receptor modulates the release of various
neurotransmitters in the central and peripheral nervous system, and therefore is a potential target in the therapy
of numerous diseases [101]. Although ligands addressing this receptor are already known, the discovery of alter-
native lead structures represents a challenging goal in drug design [102]. Experimental structure�activity
data for the hH3R antagonists can be summarized as follows. The pharmacological results suggest that a
protonatable nitrogen atom (either in an aromatic imidazole or in a saturated ring system) and an aromatic
system separated by a certain distance seem to constitute a potent hH3R antagonist. Additional polar moieties in
the spacer can enhance the antagonistic activity (Figure 21.8).

B. Pharmacophore Determination Process

Due to their high flexibility and huge structural diversity, hH3R antagonists also provide difficulties in the
generation of pharmacophore models by standard means, which normally include the identification of common
features required for binding from a ligand set. A dataset of 418 ligands for which hH3R binding affinities were
determined in a [3H]Nα-methylhistamine assay is available (pKi from 5 to 10). A pharmacophore able to discrimi-
nate between active and inactive antagonists should be developed on the basis of the known antagonists and be
used virtually to screen compound libraries for novel structurally diverse hH3R antagonists.

For the available ligand dataset, a multi-conformer database was generated using the Catalyst software. An
energy cut-off of 20 kcal mol-1 from each energetic minimum structure was set in order to avoid high-energy
structures. In a first step, three individual pharmacophore models were generated based on the potent anta-
gonists 1, 2, and 3. The bioactive conformation of the ligands was deduced from a conformational analysis of
semi-rigid hH3R antagonists and an extensive docking study carried out on a homology model of the hH3R
(Figure 21.9; for details see [103]). The docking study showed that the homology model is able to explain the
interaction of the ligands, which is in accordance with known biochemical data (e.g., site-directed mutagenesis
data). However, a receptor-based virtual screening was not very successful in discriminating active from inactive
antagonists. Therefore, the idea was to carry out a pharmacophore-based virtual screening.

Defining a pharmacophore model upon a ligand has the advantage that the individual features are already
correctly aligned in space. In order to account for the great structural variability of hH3R antagonists, the phar-
macophores were defined as loosely as possible in order to retrieve most of the validated hH3R ligands as hits.

Once a pharmacophore capable of retrieving known hH3R antagonists had been defined, it can be used in sub-
sequent screening procedures of commercial compound libraries. As an example, the pharmacophore generated
on the basis of compound 1 is shown in Figure 21.10.
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FIGURE 21.8 Molecular structures of hH3R antagonists used for the pharmacophore development.

502 21. PHARMACOPHORE IDENTIFICATION AND PSEUDO-RECEPTOR MODELING

V. SPATIAL ORGANIZATION, RECEPTOR MAPPING AND MOLECULAR MODELING



The choice of chemical features was based on functionalities observed in validated hH3R antagonists and inspec-
tion of the binding pocket of the homology model. The linker moiety and the adjacent hydrophobic/π-electron-rich
system of the ligands lie in a cleft between trans-membrane region (TM) 3, 6, and 7 of the hH3R. In this region, several
aromatic residues border the binding site that are able to interact with the electron-rich system in the hH3R antago-
nists. No pharmacophoric features were defined upon the 4-aminoquinoline moiety, as a high degree of chemical
diversity is observed in active ligands within this region. Any restriction of chemical features was thus avoided.

Apparently, the derived pharmacophore model is too loose fitting for screening a compound database. Thus, the
van der Waals volume of ligand 1 was included as an additional constraint into the pharmacophore model. Default
parameters were used for the definition of the shape query. Finally, forbidden volumes (black spheres) were
defined in order to account for the fact that some ligands extending into these areas were inactive, although they
resembled other active compounds. Figure 21.11 shows the ligand 1 fitted into the complete pharmacophore model.

FIGURE 21.9 Interaction of compound 1 with the hH3R binding site as obtained from the docking study. Only the two important acidic
amino acid residues of the binding site are shown for clarity. H-bonds are shown as orange dotted lines.

FIGURE 21.10 Pharmacophoric features defined based upon compound 1. Red sphere5 any positively charged element; orange
sphere5 aromatic or hydrophobic group; cyan sphere5 aromatic ring.

FIGURE 21.11 Pharmacophore model based on compound 1 including the shape feature (van der Waals volume) and the two forbidden
volumes (black spheres).
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Using this model, 316 compounds from the 418 ligand dataset were found as hits in a pharmacophore search
using the Catalyst [36] program. Ninety-three percent of the ligands with highest activity were retrieved by the
pharmacophore model; less satisfactorily, 54 percent of a set of inactive compounds could also pass the pharma-
cophoric filter (Figure 21.11, top). Application of the pharmacophore filter for screening the Maybridge Database
(MDB) and the World Drug Index (WDI) resulted in 249 and 929 hits, respectively. Thus, 70 percent of the active
and moderate active hH3R ligands (with a pKi . 7) were retrieved by the pharmacophore. Meanwhile, from the
pool of MDB and WDI ligands (MDB: 59,000 compounds; WDI: 48,000 compounds), 98.9 percent could be
excluded.

The filter was still quite loose, however, so that a subsequent definition of further pharmacophoric
features could result in a better separation of in/actives. In order to further increase the percentage of active
hH3R ligands found during the virtual screening, further pharmacophore models were defined in a similar
way based upon compounds 2 (Ki5 0.33 nM) and 3 (Ki5 69 nM). For the definition of the pharmacophore
derived from compound 2, the three features described above were again used in combination with a shape
query and forbidden volumes. The third individual pharmacophore model was defined based on ligand 3
(see Figure 21.12), capable of retrieving 68 percent of ligands deposited in the hH3R database. By combining
the three pharmacophore models, 369 of 398 (93 percent) hH3R ligands with a pKi . 7 could be obtained,
while only 2668 (2.5 percent) compounds were obtained as hits when screening the MDB and WDI database
with 107,599 total structures deposited. The small percentage of structures from commercial databases
matching the pharmacophores showed that the generated models were stringent enough for a reasonable
screening.

C. Pharmacophore-Based Screening of Compound Libraries

For a more stringent screening, a leave-one-out (LOO) filter was defined on the pharmacophoric features of
1. The Catalyst LOO model consisted of a combination of five individual pharmacophore models, each lacking
one pharmacophoric feature found in compound 1 at a time, with the exception of the positive ionizable group
and the spacer moiety that were required in all models. The screening of the 2,668 WDI and MDB compounds
with the LOO filter reduced the number of hits to 320. In order to ensure that compounds selected by the
pharmacophore-based screening could be accommodated into the hH3R binding site, the 320 hits were docked
into the hH3R binding site using the GOLD [20] program and ranked according to their docking scores. From the
top-ranked complexes, seven MDB compounds were selected for experimental testing. The selection of the seven
compounds was guided by a cluster analysis in order to select the most structurally diverse compounds among
the top-ranked molecules. All compounds showed affinity for the hH3R with binding affinities ranging from
79 nM to 6.3 μM, thereby showing that the pharmacophore and hH3R binding site model can be used to identify
novel active antagonists. Two compounds, BTB-08079 and RJC-03033, were found to be active in the nanomolar
range (Figure 21.13) [63].

In order to determine the structural similarity between the seven retrieved MDB compounds and the 418
hH3R ligands, we calculated similarity indices on the basis of different fingerprint systems (MACCS keys and
graph-3-point pharmacophore fingerprints in MOE [41]). Using the different fingerprint systems, low similarities
were observed between the seven MDB compounds and the original hH3R antagonists. For the most potent hit
(BTB-08079; 79 nM), the lowest similarity to the original hH3R ligand structures was observed. The dimethyl-
aminofuran fragment, which was already known from the potent histamine H2 receptor antagonist Ranitidine,
was not reported before as a structural element of potent H3R antagonists.

Compared to the receptor-based virtual screening, application of the pharmacophore-based search resulted in
significantly improved results. In the docking approach, 66.6 percent of the hH3R ligands were retrieved, limiting
the number of WDI and MDB compounds to approximately 1,720 structures, but application of a
pharmacophore-based search allowed retrieval of 93 percent of active compounds, while reducing the number of
WDI and MDB structures to 2,668 compounds (2.5 percent). The ideal strategy for the flexible hH3R ligand data
set, however, appeared to be a combined approach comprising a pre-screening of commercial databases with
relatively loose pharmacophore models that mainly reflect the available volume in the binding site (e.g., by
considering shape queries of sterically demanding ligands and forbidden volumes derived from ligand super-
position) and some essential requirements for binding such as the protonated head group. In order to ensure that
compounds selected by the pharmacophore-based screening fit into the binding site, docking of this subset of
ligands resulted in a selection of candidates for biological testing.
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V. RECENT DEVELOPMENTS AND OUTLOOK

3D pharmacophores have evolved as important tools for describing protein�ligand interactions, and the num-
ber of examples that successfully predict biological activity using pharmacophore methods is constantly growing.
A multitude of therapeutic areas is covered, such as anti-viral drug discovery [104,105], the discovery of novel
anti-bacterial agents [106,107], and modeling of GPCR ligand interaction (Figure 21.14) [108,109], among others.

FIGURE 21.12 Enrichment of hH3R ligands by pharmacophore search based on compound 1, 2, and 3. The percentage of hH3R ligands retrieved
by the individual pharmacophore model within each pKi-cluster is depicted. The percentage of ligands found in each cluster (dark columns) is
written in red numbers and compared to the population of pKi clusters of all hH3R compounds in the 418 ligand data set (light grey columns).
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Technically, all these approaches follow the sequence of careful model design, prediction, and selection of
existing compounds from libraries with previously unknown biological activity or de novo design to fulfil phar-
macophoric requirements. The crucial step remains model design and careful retrospective validation before
performing a prospective virtual screening, which is followed by purchasing compounds and biological tests. If
model building is done carefully, it can lead to successful predictions and rationalization of a possible ligand-
binding mode. Mainly due to the better usability of recent programs, 3D pharmacophores are now also used
aside of the typical workflow of virtual screening against a single protein-binding site. The program Ligandscout,
for example, now includes a module for fragment-based screening that aims at supporting fragment-based
de novo design [110].
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FIGURE 21.13 Selected hits from the pharmacophore-based virtual screening.

FIGURE 21.14 LigandScout 3D pharmacophore model example for the newly discovered muscarinic acetylcholine receptor antagonist
NSC23766. Red arrows5H-bond donors; yellow spheres5 lipophilic contact areas; blue rays5positively charged groups.
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Another important new application is parallel screening against several pharmacophores to predict multi-
target effects [111,112]. Although this can also be done using various other molecular modeling techniques, such
as classical QSAR or descriptor approaches [113], multi-target predictions using 3D pharmacophores have the
advantage that results remain easy to interpret and provide intuitive starting points for further optimization.

As previously mentioned pharmacophore screening comparisons [43] show, algorithm development for
compound/pharmacophore mapping remains a challenge. This leaves room for further algorithmic improve-
ments, such as the implementation of advanced filter methods like bloom filtering as implemented in recent tools
like Pharmer [114] or LigandScout [44].

Another recent approach developed by Rognan’s group uses 3D fingerprints based on pharmacophoric features
to compare protein-binding sites in terms of ligand binding properties (including druggability). In a comparable
fashion, pharmacophore fingerprints can be used to describe subpocket similarity [115].

VI. CONCLUSIONS

In spite of the recent success and popularity of pharmacophore-based drug design, one should not forget the
limitations of pharmacophore modeling. As with any other model, we should be aware of the abstraction that is
applied to generate these models. All pharmacophore approaches are based on molecular mechanical abstrac-
tions. Thus, properties associated with the interaction of electrons (e.g., polarization effects) are not considered.
Another limitation in many pharmacophore-based approaches is the neglect of the dynamic nature of
protein�ligand interaction. Although novel pharmacophore generation programs allow the parallel consideration
of multiple/alternative pharmacophores (e.g., Catalyst [38], LigandScout [39]), modeling different binding modes
is still a challenge. It is becoming increasingly clear that for some protein binding sites, one has to be prepared to
consider different binding modes and therefore different pharmacophores [116�118].

Whereas in the past, pharmacophore models have been mainly generated using ligand-based strategies, novel
programs have been developed and applied successfully in the last few years by combining structure-based and
pharmacophore-based approaches. This is mainly influenced by the rapidly growing number of protein�ligand
3D structures that are the basis for such combined approaches. Closely related to this, one can observe a general
merging of different techniques in molecular modeling studies—pharmacophore modeling, 3D-QSAR, de novo
design, and docking [119,120]—that might be helpful for future drug design studies.
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[106] Perdih A, Kovaç A, Wolber G, Gobec S, Solmajer T. Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and
MurE ligases by structure-based virtual screening approach. Bioorg Med Chem Letters 2009;19:2668�73.

[107] Perdih A, Wolber G, Solmajer T. Molecular dynamics simulation and linear interaction energy study of d-Glu-based inhibitors of the
MurD ligase. J Comput Aided Mol Des 2013;27:723�38.

[108] Levay M, Krobert KA, Wittig K, Voigt N, Bermudez M, Wolber G, et al. NSC23766, a widely used inhibitor of Rac1 activation, addition-
ally acts as a competitive antagonist at muscarinic acetylcholine receptors. J Pharmacol Exp Ther 2013;347:69�79.

[109] Leschner J, Wennerberg G, Feierler J, Bermudez M, Wolber G, Welte B, et al. Interruption of the ionic lock in the bradykinin B2 receptor
results in constitutive internalization and turns several antagonists into strong agonists. J Pharmacol Exp Ther 2013;344:85�95.
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